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Abstract

We analyze the effect of taxation in the online sport betting mar-

ket. A relevant characteristic of this market is its negligible marginal

cost on bet volume. Taxation can be on gross profit (Gross Profit Tax)

or on volume (General Betting Duty). We model the two most pop-

ular online sport betting bets: fixed-odds and spread, as compared

with another traditional sport betting: parimutuel. We character-

ize the odds and the bookmaker’s payoff in (strong) subgame perfect

equilibrium for each of the three types of bets under both taxation

schemes. The results show that taxation on gross profit maximizes

the utilitarian social welfare. Moreover, the three types of bets are

equivalent when the market is symmetric.
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1 Introduction

A remarkable feature of online betting (which includes sports, casino and

card games such as poker) is that their operators require little more than an

internet web page to enter a new market. As opposed to offline operators,

they do not need to open physical selling points. Under an unregulated

market, the cost of offering a bet is inelastic with respect to the bet volume,

i.e. the total sum of betting stakes. This is because online betting users can

bet from any internet terminal, even at home. As opposed, offline betting

users need to be physically at a selling point.

Things may be different in a regulated market. Over the last years, many

European countries have been regulating their online betting and gaming sec-

tor. However, this regulation has not been done in a uniform way throughout

the different countries.

In general, the basic taxation scheme is based on two types of taxes:

the General Betting Duty (GBD) is levied as a proportion of betting stakes;

whereas the Gross Profits Tax (GPT) is levied as a proportion of the net

revenue of the operators.

Some examples: the United Kingdom applied a 6.75% tax on GBD until

October 2001, when it was replaced by a 15% tax in GPT (National Audit

Office, 2005). Italy applies a 2%-5% tax on GBD (Ficom Leisure, 2011)

for general sport betting and a 20% tax on GPT for spread bets (PwC,

2011). France applies a 8.5% tax on GBD (Global Betting and Gaming

Consultancy, 2011) since 2010. In Germany, tax rates largely depend on

the respective federal state, and they vary between 20% and 80% on GPT

plus a 5% federal tax on GBD Hofmann and Spitz (2015). In 2011, Spanish

authorities approved a law1 that applies a 25% tax on GPT for some types

of sports bets and a 22% tax on GBD for others, plus a 0.1% tax on GBD.

In table 1 we summarize the data.

1Ley 13/2011, de 27 de mayo, de regulación del juego (in Spanish). Bolet́ın Oficial

del Estado 127, ref. BOE-A-2011-9280. Available at https://www.boe.es/buscar/pdf/

2011/BOE-A-2011-9280-consolidado.pdf
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Table 1: Taxation schemes for online sports betting

Country General Betting Duty (GBD) Gross Profits Tax (GPT)

UK 6.75% (until 2001) 15% (since 2001)

Italy 2-5% (general) 20% (spread)

France 8.5% -

Germany 5% 20-80%

Spain 22% (parimutuel)+0.1% (all) 25% (fixed odds and spread)

In the Spanish case, GBD has been the taxation scheme in the most tradi-

tional offline sport betting (la quiniela), which takes a parimutuel structure.

In a parimutuel market, a winning bet pays off a proportional share of

the total stake on all outcomes. However, the most popular online sport

operators are specialized in another two markets: Fixed-odds and spread. In

a fixed-odd market, the operator sets the odds for each possible outcome of

the match, and the bettors decide whether they accept or not these odds.

In a spread market, the operator acts as an intermediator among the users,

who bargain the odds.

For sport matches, a bet of 1 monetary unit on a particular team yields a

return of 1
π

monetary units in case the team wins the match, and 0 otherwise.

In this context, an odd π ∈ (0, 1) is defined as the probability assigned by

the market. Notice that any risk-neutral bettor would find it profitable to

bet at odd π when her private probability estimation is higher than π.

In parimutuel and spread bets, the operator’s profit comes from a commis-

sion on either the amount at risk or the winning amount (typically around 5%

in online spread operators). In fixed-odds bets, the operator’s profit comes

from the odds, which should sum up more than 100%2 for all the possible

outcomes of the sport match3.

2In case the odds summed up less than 100%, it would be possible, by betting an

appropriate amount of money on each possible match outcome, to win a positive amount

irrespectively of the final match outcome.
3The sum of the odds, called overround, provides a way to measure the operator ad-
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In this paper, we model the three types of market in a general setting. The

regulator decides on the general taxing scheme (either GBD or GPT) and the

operators decide on their commission (parimutuel and spread operators) or

odds (fixed-odds operators). We assume that the spread betting commission

is applied to the winning bets (as it is typical in online spread operators),

whereas commission in parimutuel betting applies to the total amount (as in

the Spanish regulation).

We show that, from the online bettor’s point of view, it is preferable a

GPT scheme, in the following sense: In equilibrium, the odds are not affected

by the taxation under GPT; whereas a GBD scheme would reduce the odds

and hence the bettors’ utility.

These results agree with the ones presented by Smith (2000) and Paton

et al. (2002, 2001), whom analyse the effect of the different taxation schemes

in Australian, UK and USA betting markets. These results, however, are

more focused on offline betting operators and government revenue. Moreover,

they take into account the marginal cost of each bet. As opposed, we assume

that these marginal costs are negligible.

There are other works that focus on parimutuel markets: Ottaviani and

Sørensen (2009) provide a model that explains the empirical evidence of un-

derdogs overbet. These authors argue that this bias may be due to privately

informed bettors. As opposed, we prove (Corollary 3.1) that the spread bet

operator would get a higher profit if the underdog wins the game.

Other works concentrate on fixed-odd markets. For example, Bag and

Saha (2011, 2016) study the externalities due to bribery in sports; and Levitt

(2004) argues that the operators may achieve higher profits by an accurate

prediction of the match outcome.

As far as we know, no similar research has been addressed for spread

markets.

The rest of the paper is organized as follows. In Section 2 we describe

the model. In Section 3, we characterize the equilibrium payoffs in each

vantage.
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of the markets. In Section 4 we provide the main results. In Section 5, we

study the symmetric case. In Section 6, we present some concluding remarks.

Technical proofs are deferred to the Appendix.

2 The model

Two teams (home and away) play a competitive sport match; the match

being drawn is not a possibility.

There are three types of agents in the model: A continuum set B of bettors

are interested in betting, but only if the odds are attractive; a finite set K

of bookmakers that offer bets; and a regulator (Government) that decides on

taxes.

We assume that bettors are risk neutral and try to maximize their ex-

pected profit. Each bettor i ∈ B is characterized by her individual belief

(i.e. the probability) xi that the home team wins (1 − xi is the probability

that the away team wins); xi is distributed following an absolutely continu-

ous cdf with probability density function f and full support over (0, 1). The

bookmakers, on the other side, also want to maximize their own profit. We

consider two possibilities:

Risk-adverse case: Bookmakers do not have any belief on the true proba-

bility for the home team to win. Hence, it is not possible to estimate

an expected profit for them. Instead, we assume that each bookmaker

tries to maximize her monetary profit under the worst possible outcome

of the match.4

Risk-neutral case: Bookmakers have a precise common estimation of the

true probability q ∈ (0, 1) for the home team to win. This estimation

may arise from their own expertise on the sport discipline plus a de-

tailed study of the match, or by a previous sampling among users with

4There are other posible decision criteria, as for example the Hurwicz’s rule (see Section

6). We study the maximin case (maximizing profits under the worst case scenario) due to

its simplicity.
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the most accurate bet record, or both. In this case, we assume that

each bookmaker is risk-neutral and tries to maximize her expected final

monetary profit.

In each case, there are three possible types of bookmakers: Fixed-odd

bookmakers, spread bookmakers and parimutuel bookmakers. Fixed-odd

bookmakers decide odds πH , πA ∈ [0, 1] such that any bettor that bets on the

home (away) team receives 1
πH
−1 ( 1

πA
−1) in case of home (away) win, and−1

in case of away (home) win. Spread bookmakers decide a commission c on the

profit of any winning bettor. Parimutuel bookmakers decide a commission c

on the stake of any bettor.

The third type of agent is the regulator, or Government, that looks for the

social welfare via taxes. We consider that the regulator has the same attitude

towards risk as the bookmaker, i.e. risk-adverse when the bookmakers are

risk-adverse, and risk-neutral when the bookmakers are risk-neutral. As a

way to measure social welfare, we consider two criteria: the total tax income

and the utilitarian social welfare function. Our aim is to estimate the optimal

tax (GBD and/or GPT) in order to maximize each of these two criteria.

2.1 The non-cooperative game

Assume the regulator announces a tax, that could be a percentage υ on

volume (GBD), a percentage ρ on gross profit (GPT), or both. The (non-

cooperative) game has two steps:

Step 1 Each bookmaker k ∈ K observes υ and ρ and announces her odds

(fixed-odds) or commission (spread/parimutuel). Let sk denote this choice

and let sK = (sk)k∈K .

Step 2 Each bettor i ∈ B observes sK , and chooses whether to participate

or not, and, in the former case, with which bookmaker and in which team

she bets on. Let si(sK) denote this choice.
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For each L ⊆ K, let sL = (sk)k∈L denote a strategy profile for bookmakers

in L. Analogously, for each C ⊆ B, let sC(·) = (si(·))i∈C denote a strategy

profile for bettors in C.
Following Neyman (2002), we assume that, for any bettors’ strategy pro-

file, the set C of bettors that give any particular signal is always Borel-

measurable5, and we denote its volume as ‖C‖.
For any set S, we denote as RS the Euclidean space where the coordinates

are indexed by the elements of S. Given an admissible strategy profile s =

(sK , sB(·)), we denote as u(s) ∈ RK∪B, or simply u, the final payoff allocation

of the noncooperative game.

2.2 The equilibrium concept

We will work with the standard concept of subgame perfect equilibrium and

a natural extension of it, named bettor-strong subgame perfect equilibrium.

Notice that the only proper subgames arise in Step 2.

Definition 2.1 A strategy profile s = (sK , sB(·)) is a subgame perfect equi-

librium if two conditions hold:

1. For each i ∈ B, each bookmakers’ strategy profile s̃K and all bettor i’s

strategy s̃i(·),

ui
(
s̃K , s̃i (s̃K) , sB\{i} (s̃K)

)
≤ ui (s̃K , sB (s̃k)) .

2. For each k ∈ K and all bookmaker k’s strategy s̃k,

uk
(
s̃k, sK\{k}, sB

(
s̃k, sK\{k}

))
≤ uk (sK , sB (sk)) .

The first part of the definition states that no bettor has incentives to

deviate in Step 2, even if the bookmakers did. The second part states that

no bookmaker has incentives to deviate in Step 1.

5This is done in order to avoid meaningless strategies such as, for example, to bet iff

xi is a rational number.
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Subgame perfect equilibria is a standard solution concept. However, we

will also focus on a refinement of it. Notice that one of the assumptions is

that each bettor has the same amount of money to bet. But this is obviously

not a realistic assumption. Another interpretation is that the bettors are in

fact minimal bet stakes, or coins, willing to be spend by the actual users,

each of them owning many coins. Hence, it is obvious that different coins can

coordinate their strategies, being held by the same user. Our next definition

of equilibrium allows to capture this coordination. It also covers situations

where the bettors increase their stakes when the bookmaker improves the

odds (or decreases the commission).

Definition 2.2 A strategy profile s = (sK , sB(·)) is a bettor-strong subgame

perfect equilibrium if two conditions hold:

1. For each C ⊆ B, all bookmakers’ strategy s̃K and all strategy profile

s̃C(·),

ui
(
s̃K , s̃C (s̃K) , sB\C (s̃K)

)
≤ ui (s̃K , sB (s̃k))

for all i ∈ C.

2. For each k ∈ K and all bookmaker k’s strategy s̃k,

uk
(
s̃k, sK\{k}, sB

(
s̃k, sK\{k}

))
≤ uk (sK , sB (sk)) .

The first part of the definition states that no coalition of bettors has incen-

tives coordinate in order to deviate in Step 2, even if the bookmakers did.

The second part states that no bookmaker has incentives to deviate in Step

1.

3 Characterization of equilibria

In this section, we study the equilibrium payoff in each of the three bet

markets and each attitude towards risk. We distinguish two possible scenar-

ios: The monopolistic market and the competitive market. We say that the
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market is monopolistic when there exists a unique bookmaker. Remarkably,

the results change drastically when we add a second one. In particular, the

market becomes competitive with two bookmakers. There are no further

changes in payoffs when adding a third, fourth, an so on. Hence, we define

competitive market as that in which there are more than one bookmaker.

The monopolistic market does not only cover situations where there is an

actual monopoly. The licensees in a particular country are offering bets con-

tinuously and the non-cooperative game that we model can be seen as just

a particular instance of a game that is repeatedly played. As it is well-know

from the theory of repeated games (Aumann and Shapley, 1994; Rubinstein,

1994; Joosten et al., 2003), almost any individual rational payoff is supported

by subgame perfect equilibria. Hence, the bookmakers can eventually coop-

erate, even without forming a cartel, and ending up offering the bets of the

monopolistic market.

3.1 Fixed-odds bookmakers

In the fixed-odd case, each bookmaker k ∈ K chooses odds πHk and πAk , i.e.

sk =
(
πHk , π

A
k

)
∈ [0, 1] × [0, 1]. Each bettor i ∈ B observes the odds and

chooses si (sK) ∈ {D} ∪K × {H,A} with the following interpretation:

• If si (sK) = D, bettor i declines to bet (abstains) and her final payoff

is zero.

• If si (sK) = (k,H), bettor i bets for the home team at odd πHk and her

final payoff is

ui =

(
1

πHk
− 1

)
xi + (−1) (1− xi) .

• If si (sK) = (k,A), bettor i bets for the away team at odd πAk and her

final payoff is

ui = (−1)xi +

(
1

πAk
− 1

)
(1− xi) .
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For each k ∈ K, let

BHk = {i ∈ B : si (sK) = (k,H)}

BAk = {i ∈ B : si (sK) = (k,A)}

and let hk = ||BHk || and ak = ||BAk || be their respective volumes. Then,

bookmaker k’s final payoff is

uk = (1− ρ) min

{
(1− υ) (hk + ak)−

1

πHk
hk, (1− υ) (hk + ak)−

1

πAk
ak

}
= (1− ρ)

(
(1− υ) (hk + ak)−max

{
1

πHk
hk,

1

πAk
ak

})
(1)

in the risk-adverse case and

uk = (1− ρ)

(
(1− υ) (hk + ak)−

q

πHk
hk −

1− q
πAk

ak

)
= (1− ρ)

(
1− υ − q

πHk

)
hk + (1− ρ)

(
1− υ − 1− q

πAk

)
ak (2)

in the risk-neutral case.

The next result characterizes the (bettor-strong) subgame perfect equi-

librium in the monopolistic case:

Proposition 3.1 Given υ and ρ, there exists a (bettor-strong) subgame per-

fect equilibrium in the fixed-odds monopolistic market. In equilibrium, each

bettor i ∈ B bets for the home team if xi > πH , for the away team if

xi < 1 − πA, and declines to bet otherwise, where πH and πA are charac-

terized by the following maximization problems:

Risk-adverse case:

max

(
1− υ − 1

πH + πA

)(∫ 1

πH
f (t) dt+

∫ 1−πA

0

f (t) dt

)
(3)

subject to

1

πH

∫ 1

πH
f (t) dt =

1

πA

∫ 1−πA

0

f (t) dt (4)

πH , πA ∈ [0, 1] , πH + πA ≥ 1.
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Risk-neutral case:

πH ∈ arg maxπ∈(0,1]

(
1− υ − q

π

)∫ 1

π

f (t) dt (5)

πA ∈ arg maxπ∈(0,1]

(
1− υ − 1− q

π

)∫ 1−π

0

f (t) dt. (6)

Proof. See Appendix.

From the previous result, we see that a bookmaker looks to balance the

positive effect of a large volume (given by
∫ 1

πH
f (t) dt and

∫ 1−πA
0

f (t) dt)

against the negative effect of a big prize (given by 1
πH

∫ 1

πH
f (t) dt = 1

πA

∫ 1−πA
0

f (t) dt

in the risk-adverse case, and by q
π

and 1−q
π

in the risk-neutral case). A large

volume is obtained by setting low πH and low πA. A low prize is obtained

by setting high πH and high πA.

The effect of ρ (tax on profit) is irrelevant for the maximization problem.

Hence, the optimal πHk and πAk are independent of the chosen ρ. A different

issue happens with υ, which gives less weight to the positive effect of a large

volume. This suggests that the bookmaker would set a higher πHk (and a

higher πAk ) a larger υ is, which means that the utility of bettors is reduced.

The next result characterizes the (bettor-strong) subgame perfect equi-

librium in the competitive case:

Proposition 3.2 Given υ and ρ, there exists a (bettor-strong) subgame per-

fect equilibrium in the fixed-odds competitive market. In equilibrium, the final

payoff for each bookmaker is zero. The optimal odds in equilibrium, πH and

πA, are proposed by at least two bookmakers, who clear the market, and are

characterized as follows:

Risk-adverse case: Equation (4) and πH + πA = min
{

2, 1
1−υ

}
.

Risk-neutral case: πH = max
{

1, q
1−υ

}
and πA = max

{
1, 1−q

1−υ

}
.

In equilibrium, each bettor i ∈ B bets for the home team if xi > πH , for the

away team if xi < 1− πA, and declines to bet otherwise.

11



Proof. See Appendix.

Again, the effect of ρ (tax on profit) is irrelevant. The optimal πH and

πA are independent of the chosen ρ. As opposed, a higher υ increases the

overround πH + πA, which means that the utility of bettors is reduced.

3.2 Spread bookmakers

In the spread case, each bookmaker k ∈ K chooses commission ck ∈ (0, 1),

i.e. sk = ck ∈ (0, 1). Each bettor i ∈ B observes sK and chooses si (sK) ∈
{D} ∪K × {H,A} × (0, 1) with the following interpretation:

• If si (sK) = D, bettor i declines to bet and her final utility is zero.

• If si (sK) =
(
k,H, πH

)
, bettor i declares that she wants to bet in k for

the home team at odd at most πH .

• If si (sK) =
(
k,A, πA

)
, bettor i declares that she wants to bet in k for

the away team at odd at most πA.

Each bookmaker k ∈ K matches
(
k,H, πH

)
-bettors with

(
k,A, πA

)
-

bettors that satisfy πH ≥ 1 − πA with odds πk, 1 − πk such that: πk ≤ πH

and 1−πk ≤ πA. The matching is done in such a way that each πk volume of(
k,H, πH

)
-bettors is matched with a 1−πk volume of

(
k,A, πA

)
-bettors. The

reason is that, in case home team wins, a 1−πk volume of money is transferred

from
(
k,A, πA

)
-bettors to

(
k,H, πH

)
-bettors, so that each

(
k,H, πH

)
-bettor

receives a gross winning (profit + bet):

1− πk
πk

+ 1 =
1

πk
≥ 1

πH

hence granting their request to bet for the home team at odd at least πH .

Analogously, in case away team wins, a πk volume of money is transferred

from
(
H, πH

)
-bettors to

(
A, πA

)
-bettors, so that each (A, πA)-bettor receives

a gross winning (profit + bet):

πk
1− πk

+ 1 =
1

1− πk
≥ 1

πA
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hence granting their request to bet for the away team at odd at least πA.

Hence, πk is chosen so that

(1− πk)
∥∥∥BHk ∪ BHk ∥∥∥ ≥ πk

∥∥BAk ∥∥
πk

∥∥∥BAk ∪ BAk ∥∥∥ ≥ (1− πk)
∥∥BHk ∥∥

where

BHk =
{
i ∈ B : si =

(
k,H, πH

)
, πH > πk

}
BHk = {i ∈ B : si = (k,H, πk)}

BAk =
{
i ∈ B : si =

(
k,A, πA

)
, πA > 1− πk

}
BAk = {i ∈ B : si = (k,A, 1− πk)} .

If si =
(
k,H, πH

)
with πH > πk, bettor i bets in k for the home team at

odd π and her final payoff is

ui = (1− ck)
(

1

πk
− 1

)
xi + (−1) (1− xi) . (7)

If si =
(
k,A, πA

)
with πA > 1− πk, bettor i bets in k for the away team

at odd 1− πk and her final payoff is

ui = (−1)xi + (1− ck)
(

1

1− πk
− 1

)
(1− xi) . (8)

If si = D, or si =
(
k,H, πHk

)
with πH < πk, or si =

(
k,A, πA

)
with

πA < 1− πk, bettor i does not bet and her final payoff is zero.

When si = (k,H, πk) or si = (k,A, 1− πk), we have two cases:

Case 1:

∥∥∥BHk ∪BHk ∥∥∥
πk

≤
∥∥∥BAk ∪BAk ∥∥∥

1−πk
. If si = (k,H, πk), then bettor i bets for the

home team and her final payoff is (7). If si = (k,A, 1− πk), then bettor i

bets in k for the away team with probability pA = 1−πk
πk

∥∥∥BHk ∪BHh ∥∥∥∥∥∥BAk ∥∥∥ − ‖B
A
k ‖∥∥∥BAk ∥∥∥ and

her final payoff is

ui =

[
(−1)xi + (1− ck)

(
1

1− πk
− 1

)
(1− xi)

]
pA.
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Case 2:

∥∥∥BHk ∪BHk ∥∥∥
πk

≥
∥∥∥BAk ∪BAk ∥∥∥

1−πk
. If si = (k,A, 1− πk), then bettor i bets in

k for the away team and her final payoff is (8). If si = (k,H, πk), then bettor

i bets in k for the home team with probability pH = πk
1−πk

∥∥∥BAk ∪BAk ∥∥∥∥∥∥BHk ∥∥∥ − ‖B
H
k ‖∥∥∥BHk ∥∥∥

and her final payoff is

ui =

[
(1− ck)

(
1

πk
− 1

)
xi + (−1) (1− xi)

]
pH .

We describe this protocol in the following examples:

Example 3.1 Assume f(x) = 1 for all i ∈ B, ‖B‖ = 1 and K = {k}
and each bettor i ∈ B announces (k,H, xi) if xi > 0.5 and (k,A, 1 − xi) if

xi < 0.5. Under these bets, πk = 0.5 clears the market, so that the ratio

of H-bettors to A-bettors should be 1. Moreover,
∥∥BHk ∥∥ =

∥∥BAk ∥∥ = 0.5 and∥∥∥BHk ∥∥∥ =
∥∥∥BAk ∥∥∥ = 0. Hence, there exists no excess of H-bettors nor A-bettors.

All bettors will be matched. In particular, the whole 0.5 volume of (k,H, xi)-

bettors matches the 0.5 volume of (k,A, xi)-bettors.

Example 3.2 Assume ‖B‖ = 1 and K = {k} and the bets are D, (k,H, 0.4),

(k,H, 0.6), (k,H, 0.8), (k,A, 0.2), (k,A, 0.4), and (k,A, 0.6) with volumes

0.2, 0.1, 0.3, 0.1, 0.1, 0.1, and 0.1, respectively, as shown in the first two

columns of Table 2. Under these bets, πk = 0.6 clears the market, so that the

ratio of H-bettors to A-bettors should be 0.6
1−0.6 = 3

2
. Moreover,

∥∥BHk ∥∥ = 0.1,∥∥∥BHk ∥∥∥ = 0.3,
∥∥BAk ∥∥ = 0.1, and

∥∥∥BAk ∥∥∥ = 0.1. Since

∥∥∥BHk ∪BHk ∥∥∥
πk

= 0.4
0.6

> 0.2
0.4

=∥∥∥BAk ∪BAk ∥∥∥
1−πk

, we are in Case 2 and there exists an excess of H-bettors that will

not be matched. In particular, the whole 0.1 volume of (k,H, 0.8)-bettors

matches a 0.2
3

volume of (k,A, 0.6)-bettors; a 0.05 volume of (k,H, 0.6)-bettors

matches the remaining 0.1
3

volume of (k,A, 0.6)-bettors; finally, a 0.15 volume

of (k,H, 0.6)-bettors matches the remaining 0.1 volume of (k,A, 0.4)-bettors.

The remaining 0.1 volume of (k,H, 0.6)-bettors, the 0.1 volume of (k,A, 0.2)-

bettors, and the 0.1 volume of (k,H, 0.4)-bettors remain unmatched.

We now compute the bookmaker’s payoff. Analogously to the previous

subsection, we denote hk =
∥∥BHk ∥∥, hk =

∥∥∥BHk ∥∥∥, ak =
∥∥BAk ∥∥, and ak =

∥∥∥BAk ∥∥∥.
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Table 2: Example of a spread market

Bet Volume Matched

D 0.2 No (abstain)

(H, 0.4) 0.1 No

(H, 0.6) 0.3 67%

(H, 0.8) 0.1 100%

(A, 0.2) 0.1 No

(A, 0.4) 0.1 100%

(A, 0.6) 0.1 100%

Total 1 50%

Now, in case the home team wins, the monetary transfer from (k,A)-bettors

to (k,H)-bettors is

αk =

(
1

πk
− 1

)(
hk + min {1, pH}hk

)
=

1− πk
πk

min
{
hk + hk, hk + pHhk

}
= min

{
1− πk
πk

(hk + hk), ak + ak

}
.

Analogously, in case the away team wins, the monetary transfer from

(k,H)-bettors to (k,A)-bettors is

βk = min

{
πk

1− πk
(a+ ak), hk + hk

}
.

Then, the total volume is αk + βk and the final payoff for bookmaker k is

uk = (1− ρ) (min{αk, βk}ck − (αk + βk) υ)

in the risk-adverse case and

uk = (1− ρ) ((qαk + (1− q)βk)) c− (αk + βk) υ)

in the risk-neutral case.

The next result characterizes the bet volume in Step 2 for the spread bets

case:
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Lemma 3.1 Given c ∈ [0, 1], the bet volume and odds that clear the market

in equilibrium in the spread bets market are characterized by:

γ =
1

π

∫ 1

π
1−(1−π)c

f (t) dt =
1

1− π

∫ (1−c)π
1−πc

0

f (t) dt (9)

π ∈ [0, 1] .

Proof. See Appendix.

It follows from Lemma 3.1 that, as opposed to fixed-odds, the spread

bookmaker are not indifferent to which team will win the match. In fact,

the bookmaker would always prefer the underdog (non-favorite) to win the

match, as next result shows:

Corollary 3.1 Let π, 1−π be the odds that clear the market for some spread

bookmaker with nonzero bet volume. If π > 1
2
, then the bookmaker’s ex-post

payoff is bigger when the away team wins. If π < 1
2
, then the bookmaker’s

ex-post payoff is bigger when the home team wins. If π = 1
2
, then the spread

bookmaker’s ex-post payoff is independent of which team wins.

Proof. See Appendix.

Intuitively, the explanation for this result is the following: The spread

bookmaker has only one degree of freedom to modulate the actual thresh-

olds that determine the bets. She can make the H and A bets volumes

simultaneously larger or smaller, but not individually in order to equalize

both scenarios. The worst-case scenario arises when the favorite team wins.

Since commission is applied to prizes, when the favorite team wins, the bet

volume is not high enough to compensate the low prize for winning a bet.

The next result characterizes the (bettor-strong) subgame perfect equi-

libria in the monopolistic case:

Proposition 3.3 Given υ and ρ, there exists a (bettor-strong) subgame per-

fect equilibrium with undominated strategies6 in the spread bets monopolistic

6Undominated strategies are required in order to avoid meaningless equilibria of the

form “everybody chooses D”. This refinement is not needed for the bettor-strong subgame

pefect equilibrium.
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game. Moreover, the commission and odds in equilibrium are characterized

by the following maximization problems:

Risk-adverse case: maxc∈[0,1] (min{1− π, π}c− υ) γ.

Risk-neutral case: maxc∈[0,1] ((q + π − 2qπ)c− υ) γ.

subject (in both cases) to (9). In equilibrium, each bettor i ∈ B bets for the

home team if xi >
π

1−(1−π)c , for the away team if xi <
(1−c)π
1−cπ , and declines to

bet otherwise.

Proof. See Appendix.

As c increases, the percentage of winners profits increase too, but this

winner profit decreases because less bettors participate. Hence, the book-

maker looks to balance the positive effect of a big commission (hence big

percentage of winnings) against the negative effect on the winnings (which

decreases with c).

Like fixed-odds bookmakers, the effect of ρ (tax on profit) is irrelevant

for the maximization problem. Hence, the optimal c is independent of the

chosen ρ. Again, a different issue happens with υ, which penalizes the effect

of a large volume. Hence, like fixed-odds, the bookmaker would set a higher

c, which means that the utility of the bettors is reduced.

The next result characterizes the (bettor-strong) subgame perfect equi-

libria in the competitive case:

Proposition 3.4 Given υ and ρ, there exists a (bettor-strong) subgame per-

fect equilibrium with undominated strategies7 in the spread bets competitive

game. In equilibrium, the final payoff for each bookmaker is zero. The mini-

mal commission, c, clears the market and is characterized as follows:

Risk-adverse case: c = min
{

1, υ
min{1−π,π}

}
Risk-neutral case: c = min

{
1, υ

q+π−2qπ

}
7Again, undominated strategies are not required for the bettor-strong subgame equi-

librium.
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subject (in both cases) to (9). In equilibrium, c = mink∈K ck, each bettor

i ∈ B bets in k∗ ∈ arg mink∈K ck for the home team if xi >
π

1−(1−π)c , for the

away team if xi <
(1−c)π
1−cπ , and declines to bet otherwise.

Proof. See Appendix.

Proposition 3.4 requires either bettor-strong subgame perfect equilibria,

or subgame perfect equilibria with undominated strategies. There are mul-

tiple subgame perfect equilibria with dominated strategies. For example,

assume w.l.o.g. 1 ∈ K. Then, for any c ∈ [0, 1], let π ∈ [0, 1] given by (9),

and consider the following strategy profile: c1 = c and ck = 0 otherwise, and:

• if c̃1 = c, then si(c̃K) = (1, H, π) for all i ∈ B such that xi >
π

1−(1−π)c ,

si(c̃K) = (1, A, 1− π) for all i ∈ B such that xi <
(1−c)π
1−cπ , and si(c̃K) =

D otherwise;

• if c̃1 6= c, then si(c̃K) = D for all i ∈ B.

This is a subgame perfect equilibrium. In words, it says that all bettors will

bet in 1 when c1 = c, even if it has not the lowest commission. If bookmaker

1 deviates, then all bettors will abstain. Hence, any c ∈ [0, 1] is supported in

a subgame perfect equilibrium.

3.3 Parimutuel bookmakers

In the parimutuel case, each bookmaker k ∈ K chooses commission ck ∈
(0, 1), i.e. sk = ck ∈ (0, 1). Each bettor i ∈ B observes sK and (simultane-

ously) chooses si(c) ∈ {D} ∪K × {H,A} with the following interpretation.

Let BHk = {i ∈ B : si = (k,H)} and BAk = {i ∈ B : si = (k,A)}:

• If si (sK) = D, bettor i declines to bet and her final payoff is zero.

• If
∥∥BHk ∥∥ = 0 or

∥∥BAk ∥∥ = 0, bets are canceled for bookmaker k. The

final payoff is zero for bookmaker k and bettors in BHk ∪ BAk .
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• If si (sK) = (k,H), bettor i declares that she wants to bet for the home

team in k. If
∥∥BHk ∥∥ > 0 and

∥∥BAk ∥∥ > 0, her final payoff is:

ui =

∥∥BHk ∪ BAk ∥∥
‖BHk ‖

(1− ck)xi − 1.

• If si (sK) = (k,A), bettor i declares that she wants to bet for the away

team in k. If
∥∥BHk ∥∥ > 0 and

∥∥BAk ∥∥ > 0, her final payoff is:

ui =

∥∥BHk ∪ BAk ∥∥
‖BAk ‖

(1− ck) (1− xi)− 1.

If
∥∥BHk ∥∥ > 0 and

∥∥BAk ∥∥ > 0, bookmaker k’s final payoff is

uk = (1− ρ)
(∥∥BHk ∪ BAk ∥∥ ck − ∥∥BHk ∪ BAk ∥∥ υ)

= (1− ρ) (ck − υ)
∥∥BHk ∪ BAk ∥∥ .

Notice that attitude towards risk is irrelevant in the parimutuel case.

The next result characterizes the (bettor-strong) subgame perfect equi-

libria in the monopolistic case:

Proposition 3.5 Given υ and ρ, there exists a unique bettor-strong subgame

perfect equilibrium in the parimutuel monopolistic market, where each bettor

i ∈ B bets for the home team if xi > πH and for the away team if xi < πA for

some thresholds πH , πA ∈ [0, 1]. Moreover, the commission and thresholds in

equilibrium are characterized by the maximization problem

max
c∈[0, 12 ]

(c− υ)

(∫ 1

πH
f (t) dt+

∫ 1−πA

0

f (t) dt

)
(10)

subject to

1

πH

∫ 1

πH
f (t) dt =

1

πA

∫ 1−πA

0

f (t) dt (11)

πH + πA =
1

1− c
(12)

πH , πA ∈ [0, 1].
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Proof. See Appendix.

Proposition 3.5 uses bettor-strong subgame perfect equilibria. There are

multiple subgame perfect equilibria, but they will involve an unreasonable

coordination among bettors. For example, assume K = {k}. Then, for any

c∗ ∈
[
0, 1

2

]
, consider the following strategy profile: sk = c∗ and si(c̃k) = D for

all i ∈ B when c̃k 6= c∗; when c̃k = c∗, si(c̃k) is defined as in Proposition 3.5.

This is a subgame perfect equilibrium. Hence, any c ∈
[
0, 1

2

]
is supported in

a subgame perfect equilibrium.

The next result characterizes the bettor-strong subgame perfect equilibria

in the competitive case:

Proposition 3.6 Given υ and ρ, there exists a unique bettor-strong subgame

perfect equilibrium payoff allocation in the parimutuel competitive market. In

equilibrium, the minimum commission is v, offered by at least two bookmak-

ers, each bookmaker receives zero and each bettor i ∈ B bets for the home

team if xi > πH and for the away team if xi < πA where πH , πA ∈ [0, 1] are

characterized by (11) and

πH + πA = min

{
2,

1

1− υ

}
. (13)

Proof. See Appendix.

Next result follows from Proposition 3.1, Proposition 3.2, Proposition 3.5

and Proposition 3.6:

Proposition 3.7 For any v and ρ, risk-adverse fixed-odds and parimutuel

yield the same payoff allocation in bettor-subgame perfect subgame equilib-

rium.

Proof. See Appendix.

4 Effect of taxation

We can now state our main results. These results hold for each of the three

types of bookmakers: fixed-odds, spread, and parimutuel. The first propo-

sition is implied by the results presented in the previous section. It follows
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from the fact that ρ does not play any role in the characterization of the

equilibria.

Proposition 4.1 In a monopolistic market, tax on profit (ρ) leaves odds,

commissions and bettors’ utilities unaffected, and decreases linearly the book-

maker’s payoff. The maximum tax income is achieved for ρ = 1.

Proof. See Appendix.

The second part of Proposition 4.1 simply says that the maximum tax

income is achieved when the monopolistic bookmaker is a state-owned com-

pany.

As opposed, the role of υ will depend on the particular distribution on

the bettors. In general, one may expect that an increase in υ would decrease

the bet volume. Hence, the maximum utilitarian social welfare should be

achieved for υ = 0. We will check it in a particular example after presenting

the main result, which describes the effect of taxation in competitive markets.

Theorem 4.1 In a competitive market:

a) Taxes on profit (ρ) leave odds, commissions, tax income, and utilities

unaffected.

b) Taxes on volume (υ) increase odds and commission, and reduces the

utility of bettors. The utility of bookmakers remains unaffected.

c) Maximum utilitarian social welfare is achieved for υ = 0.

d) Maximum tax income is achieved for some υ ∈
(
0, 1

2

)
in the risk-adverse

case, and υ ∈ (0,max{q, 1− q}) in the risk-neutral case.

Proof. See Appendix.

Theorem 4.1 provides a range of values where the tax income maximizer

can be. The exact value of the maximizing υ will depend on the distribution

of bettors given by f . On the other hand, we have no complete counterpart

for Proposition 4.1 in the monopolistic case, but we can still figure out how

21



it behaviours for some particular function f and (for the risk-neutral case)

probability q.

For the risk-neutral case, a natural choice for q is the one that agrees with

f in the sense that odds q, 1 − q will clear the market with maximum bet

volume. Next lemma characterizes this q, that we denote as q∗.

Lemma 4.1 There exists a unique q∗ such that odds q∗, 1− q∗ maximize the

bet volume, and it is characterized by

q∗ =

∫ 1

q∗
f(t)dt.

Proof. See Appendix.

For example, when f is symmetric (i.e. f(x) = f(1−x) for all x ∈ (0, 1))

it is clear that q∗ = 1
2
. When f(x) = 2x for all x ∈ (0, 1), then q∗ =

√
5−1
2
≈

0.618.

As a paradigmatic case, assume the allocation of bettors follows the linear

distribution f(x) = 2x. This distribution represents a match where the home

team is favourite. Despite its simplicity, it is nontrivial to prove the results

in Proposition 4.1 for the monopolistic market in this particular example.

However, a simulation analysis8 shows the following:

• Taxes on volume (υ) increase odds and commission, and reduce the

utility of both bettors and bookmaker.

• Maximum utilitarian social welfare is achieved for υ = 0.

• In the monopolistic case, maximum tax income is achieved for ρ = 1

and υ = 0.

The maximum tax income is described in Table 3.

Apart from the risk-adverse spread case, where the bookmaker has no ca-

pability to adjust both equilibrium odds, the maximum tax income is similar

in all the other markets.
8Tested on a sampling of 1000 instances of υ uniformly distributed on [0, 1] in each

market.
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Table 3: Effect of taxation when f(x) = 2x and q =
√
5−1
2

.

Bookmaker Market Risk Max. income Maximizer

Fixed odds Monopoly Adverse 0.143087 ρ = 100%, υ = 0%

Fixed odds Monopoly Neutral 0.143852 ρ = 100%, υ = 0%

Spread Monopoly Adverse 0.110593 ρ = 100%, υ = 0%

Spread Monopoly Neutral 0.143828 ρ = 100%, υ = 0%

Parimutuel Monopoly - 0.143087 ρ = 100%, υ = 0%

Fixed odds Competition Adverse 0.143087 υ = 25%

Fixed odds Competition Neutral 0.140669 υ = 24%

Spread Competition Adverse 0.110531 υ = 19%

Spread Competition Neutral 0.143828 υ = 25%

Parimutuel Competition - 0.143087 υ = 25%

5 Effect of taxation in the symmetric case

In this section, we study the effect of taxation in the symmetric case, i.e.

when q = 1
2

and f is symmetric:

f(x) = f(1− x)

for all x ∈ (0, 1).

This case covers situations where there is no favourite team in the sport

match, or when there exists a favourite but it has a handicap that makes the

match even. Such handicap bets are quite common in online betting, and

allow the bookmakers to assure that the volume of bets between home and

away teams are balanced. In our model, this is particularly relevant for the

spread bets bookmaker, since it makes her indifferent of who is the winning

team (Corollary 3.1).

The next result characterizes the equilibrium payoffs and states that fixed

odds, spread bets and parimutuel are equivalent in the symmetric case.

Proposition 5.1 Assume f(x) = f(1 − x) for all x ∈ (0, 1). Then, fixed-

odds, spreads and parimutuel yield the same payoff allocation in equilibrium
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for both risk-adverse case and risk-neutral case with q = 1
2
. The optimal odds

in the fixed-odds market are πH = πA = π∗, the optimal commission in the

spread market is c = 2 − 1
π∗ , and the optimal commission in the parimutuel

market is c = 1− 1
2π∗ , where π∗ is given as follows:

a) Monopolistic case: π∗ = arg maxπ∈[ 12 ,1]
(
2(1− υ)− 1

π

) ∫ 1

π
f(t)dt.

b) Competitive case: π∗ = min
{

1, 1
2(1−υ)

}
.

Proof. See Appendix.

The previous result allows us to analyse the effect of ρ and υ on the

odds/commissions and the bookmakers’ payoffs for a particular cdf. It is still

too general for a characterization of the υ that maximizes the tax income. In

order to study a relevant example, consider the symmetric beta distribution.

Symmetry means that shape parameters α, β coincide, α = β. Hence, the

symmetric probability density function is given by

f(x) =
xα−1(1− x)α−1∫ 1

0
tα−1(1− t)α−1dt

for some α ∈ (0,∞). The beta distribution is a suitable model for a random

allocation of percentages (see Evans et al. (2000); Ferrari and Cribari-Neto

(2004) and references herein). Hence, it is justifiable to use it for estimating

the distribution of bettors’ odds. Moreover, the family of symmetric beta

distributions is rich enough to cover a wide range of symmetric distributions,

including the uniform distribution (α = 1), unimodal distributions (α > 1)

with a unique central peak, and bimodal distributions (α < 1) with two peaks

at 0 and 1, respectively. The interpretation is that α > 1 describes a society

where bettors agree that the chances of home win is around 1
2
, and α > 1

a society where bettors are divided half-half between those that believe that

the home team is favorite, and those that believe that away team is favorite.

As a paradigmatic case, next proposition shows the effect of taxes when

α = 1, i.e. the uniform distribution f(x) = 1 for all x ∈ (0, 1).

Proposition 5.2 Assume f(x) = 1 for all x ∈ (0, 1) and q = 1
2
. Then,
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Figure 1: Tax on volume (υ) that maximizes tax income in the symmetric

(α = β) competitive market. Scale is linear on α ∈ (0, 1) and logarithmic on

α ∈ (1,∞).

a) Taxes on volume (υ) increase odds and commission, and reduces the

utility of bettors. In a monopolistic market, they also decrease the utility

of the bookmaker when ρ < 1.

b) Maximum utilitarian welfare is achieved for υ = 0.

c) Maximum tax income is achieved as follows:

c1) In the competitive case, by ρ = 1 and υ = 0.

c2) In the monopolistic case, by υ = 2−
√
2
2
≈ 29.3%.

Proof. See Appendix.

For arbitrary α ∈ (0,∞), a simulation analysis shows that Proposition

5.2, parts a), b) and c1), hold in general, and the maximizing υ in the

competitive case (Proposition 5.2, part c2)) decreases with α. The υ that

maximizes tax income in the competitive case is represented in Fig. 1.

The interpretation is that the more agreement among bettors that the

probability of local is around 0.5, the smaller the optimal tax is. Reciprocally,

when bettors disagree half-half on who the favorite team is, it is easier to

extract the utility surplus via taxes.
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6 Concluding remarks

In this paper, we model three different online betting markets: those given

by fixed-odds, spread bets, and parimutuel, respectively. This allows us to

analyse the effect of two different tax schemes: On volume (GBD) and on

profit (GPT). In all these markets, odds (fixed-odds) and commission (spread

bets and parimutuel) are unaffected by GPT but they are by GBD. Hence,

it should be expected that odds and commission to depend on the partic-

ular regulation. For example, Paddy Power Betfair, which includes one of

the largest Internet spread betting companies, charges a different commis-

sion for spread bets on each country. This commission is 5% in the United

Kingdom, Ireland, Italy, Gibraltar and Malta; 7% in Albany, Armenia, Croa-

tia, Monaco, Serbia, Montenegro and Slovakia; and 6.5% in the rest of the

countries, including Spain. Moreover, the company is restricted in Belgium,

Greece, Germany9, Turkey, Israel, France and Portugal, among other coun-

tries.

As opposed to other approaches in the literature, we do not need to

assume the existence of an actual probability for the home (or away) team

to win the match. Instead, the bettors are characterized by their subjective

beliefs on this probability. An alternative interpretation is that each bettor

is characterized by the the odd at which she is willing to bet, which includes

the individual surplus of the act of betting itself. In this sense, a natural

extension of the model, which does not change the results, is to assume that

there are two subsets of bettors: one of them willing to bet for the home

team, another willing to bet for the away team, and both characterized by

the minimum odd they will bet.

As for the bookmakers, we cover two situations: either they are risk-

adverse and play a maximin strategy (i.e. they maximize profits under the

worst match outcome scenario), or they are risk-neutral because of a precise

common estimation of the true probability of the match outcome. Assuming

9Betfair is only restricted in Germany for spread bets.
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there is no such precise estimation, a more general decision criterium than

maximin would be the Hurwicz’s rule, which uses a weighted average between

both match outcomes. Checking the implications of using the Hurwicz’s rule

is an open question. My own feeling is that the general results remain with

a more elaborate characterization of the bet volume in equilibrium (as given

by (4)).

Another extension is to consider bettors betting on more than one event

simultaneously. Of course, bettors decisions will become more elaborate when

they have a limited budget and several matches to choose. Competition

among different matches may arise. In fact, this situation is already partially

covered by the model, because: 1) distribution f may depend on the existence

of other potential matches, and 2) bettors’ strategies are not affected when

they have no budget restrictions, so that they are able to bet in all the

matches they find profitable.

Appendix

Proof of Proposition 3.1. Assume w.l.o.g. ‖B‖ = 1 and K = {k}.
In Step 2 of the game, it is optimal for any bettor i ∈ B with xi > πHk to

announce si
(
πHk , π

A
k

)
= (k,H). Analogously, it is optimal for any bettor

i ∈ B with 1 − xi > πAk to announce si
(
πHk , π

A
k

)
= (k,A). Hence, hk =∫ 1

πHk
f (t) dt and ak =

∫ 1−πAk
0

f (t) dt.

Risk-adverse case: Equality (4) comes from the fact that the bookmaker

wants to minimize max
{

1
πHk
hk,

1
πAk
ak

}
, that is the maximum bettors’

winnings when either the home team ( 1
πHk
hk) or the away team ( 1

πAk
ak)

wins. In equilibrium both amounts should be equal, since otherwise

(say, 1
πHk
hk <

1
πAk
ak) there would be a profitable deviation by the book-

maker (she could reduce πHk slightly so that hk increases without af-

fecting her worst case scenario). For a fixed πAk , there exists a unique

πHk that satisfies (4). To see why, notice that φ (π) = 1
π

∫ 1

π
f (t) dt

is a continuous and strictly decreasing function on π ∈ (0, 1) with
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φ (0+) = +∞ and φ (1−) = 0+, whereas ψ (π) = 1
1−π

∫ π
0
f (t) dt is a con-

tinuous and strictly increasing function on π ∈ (0, 1) with ψ (0+) = 0+

and ψ (1−) = +∞. Hence, for each πHk , there exists a unique πAk with

φ
(
πHk
)

= ψ
(
1− πAk

)
. Moreover, the larger πHk is, the larger πAk is. Let

ΠA
k : (0, 1) → (0, 1) be the function that assigns to each πHk its corre-

sponding πAk . This function is well-defined, strictly increasing, and it

satisfies ΠA
k (0+) = 0+ and ΠA

k (1−) = 1−. Notice that the bet volume

is given by hk + ak. Since tax v applies on volume, and ρ applies on

profit, the bookmaker would maximize

(1− ρ)

{
(1− υ) (hk + ak)−

1

πHk
hk

}
. (14)

Under (4),

hk + ak = hk +
πAk
πHk

hk =
πHk + πAk
πHk

hk

which implies 1
πHk
hk = 1

πHk +πAk
(hk +ak). Hence, (14) can be rewritten as

(1− ρ)

(
1− υ − 1

πHk + πAk

)
(hk + ak)

which, apart from the irrelevant effect of 1−ρ, coincides with the desired

maximizing function. Furthermore, it is straightforward to check that

there exists at least one maximizing πHk ∈ (0, 1).

Risk-neutral case: The bookmaker looks to maximize (2), which has two

terms. The first term only depends on πHk and the second one only on

πAk . Hence, the maximal odds are obtained independently, yielding (5)

and (6). To see that there exists at least one maximum for (5) (the

reasoning for (6) is analogous), notice φ(π) =
(
1− υ − q

π

) ∫ 1

π
f (t) dt is

a continuous function on (0, 1] satisfying φ(0+) = −∞ and φ(1) = 0.

Since φ(0+) = −∞, we deduce that there exists some π0 such that

φ(π) ≤ 0 for all π ∈ (0, π0]. Existence of a maximum in [π0, 1] is then

guaranteed by the Weierstrass extreme value proposition.
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Proof of Proposition 3.2. Assume we are in a subgame perfect equilib-

rium. Each bookmaker k ∈ K can assure a final payoff of at least zero by

setting πHk = πAk = 1. Hence, no bookmaker receives a negative payoff. We

will prove that each bookmaker receives zero. Assume, on the contrary, that

there exists some bookmaker with a positive final payoff. W.l.o.g., we take

1 ∈ K and u1 > 0. Let πHmin = mink∈K π
H
k and πAmin = mink∈K π

A
k . Taking

into account the optimal strategy of the bettors, any k ∈ K with πHk > πHmin

implies hk = 0. Analogously, πAk > πAmin implies ak = 0. Since bookmaker

1 gets a positive payoff, we deduce that either πH1 = πHmin or πA1 = πAmin or

both. Any other bookmaker k ∈ K \{1} with uk = 0 would find it profitable

to change her bets to πAk = πA1 − ε and πHk = πH1 − ε, for ε small enough, in

order to get a positive payoff. Hence, uk > 0 for all k ∈ K, which implies

hk+ak > 0 for all k ∈ K. This implies that it is profitable for bookmaker 1 to

change her odds to π̃A1 = πA1 −ε and π̃H1 = πH1 −ε, in order to attract to herself

all the (k, ·)-bettors and change her final payoff to at least
∑

k∈K uk −O(ε).

For for ε small enough, this payoff is strictly larger than u1. This contradic-

tion shows that no bookmaker can get a positive payoff. On the other hand,

for any k ∈ K, there exists l ∈ K \ {k} with hl + al > 0, because otherwise

bookmaker k would get a positive payoff by setting monopolistic odds.

The rest of the proof depends on the bookmakers’ risk attitude:

Risk-adverse case: By an analogous argument to that used in the proof

of Proposition 3.1 to prove equation (4), we deduce

1

πHk
hk =

1

πAk
ak (15)

for all k ∈ K. Hence, πHk = πHmin and πAk = πAmin for all k ∈ K with

hk + ak > 0. There are then at least two bookmakers that propose the

optimal odds in equilibrium, πH = πHmin and πA = πAmin, and clear the

market. Let h =
∑

k∈K hk and a =
∑

k∈K ak. Then,

0 =
∑
k∈K

uk = (1− ρ)

(
(1− υ)(h+ a)− 1

πH
h

)
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which implies

(1− υ)(h+ a) =
h

πH
. (16)

Analogously,

(1− υ)(h+ a) =
a

πA
. (17)

From (16) and (17), we deduce h
πH

= a
πA

, which is equivalent to equation

(4), and
(
πH + πA

)
(1− υ) = 1, which is equivalent to πH + πA = 1

1−υ .

We now prove the existence of a (bettor-strong) subgame perfect equi-

librium. Take πH , πA satisfying equation (4) and xH + xA = 1
1−υ .

Consider the following strategy profile: For all k ∈ K, sk =
(
πH , πA

)
.

Given s̃K =
(
π̃Hk , π̃

A
k

)
k∈K , let sB be defined as follows. For all i ∈ K,

si(s̃K) = D if 1− π̃Amin < xi < π̃Hmin, si(s̃K) = (k,H) if xi ≥ π̃Hk = π̃Hmin,

and si(s̃K) = (k,A) if xi ≤ 1 − π̃Ak = 1 − π̃Amin. In case of more than

one minimizing k, bettor i chooses the first one in a predefined order.

It is straightforward to check that this strategy profile constitutes a

bettor-strong subgame perfect equilibrium.

Risk-neutral case: For all k ∈ K, we know that πHk = πHmin if hk > 0 and

πAk = πAmin if ak > 0. Each bookmaker k ∈ K looks to maximize (2),

which sums up zero and has two terms. The first term only depends

on πHk and the second one only on πAk . Hence, the maximal odds are

obtained independently, which implies both terms should be zero in

equilibrium, or otherwise the bookmaker could increase the odd in the

negative term in order to turn the correspondent volume into zero. This

implies that the optimal odds satisfy 1 − υ − q
πH

= 1 − υ − 1−q
πA

= 0,

yielding πH = q
1−υ and πA = 1−q

1−υ .

In order to prove the existence of a (bettor-strong) subgame perfect

equilibrium, we take the same strategy profile as in the risk-adverse

case, but with πHk = q
1−υ and πAk = 1−q

1−υ for all k ∈ K. It is straight-

forward to check that this strategy profile constitutes a bettor-strong

subgame perfect equilibrium.
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Proof of Lemma 3.1. Bettors will always choose k ∈ K with minimum πk

so that their expected utility is maximized. We can then focus on one k ∈ K
that minimizes πk. Assume w.l.o.g. ‖Bk‖ = 1. For simplicity, we write c and

π instead of ck and πk, respectively. In Step 2 of the game, it is optimal for

any bettor i ∈ B to bet for the home team at odds π when π is such that

(1− c)
(

1

π
− 1

)
xi + (−1) (1− xi) > 0

which is equivalent to:

xi >
π

1− (1− π) c
.

Analogously, it is optimal for any bettor i ∈ B to bet for the away team at

odd 1− π when π is such that

(−1)xi + (1− c)
(

1

1− π
− 1

)
(1− xi) > 0

which is equivalent to:

xi <
(1− c) π
1− cπ

.

Then, the unique odd πc that clears the market is characterized as in (9) by

γc =
1

πc

∫ 1

πc

1−(1−πc)c

f (t) dt =
1

1− πc

∫ (1−c)πc
1−cπc

0

f (t) dt. (18)

To see that πc exists and it is unique, let φ, ψ : (0, 1) −→ R be two functions

defined as φ(π) = 1
π

∫ 1
π

1−(1−π)c
f (t) dt and ψ(π) = 1

1−π

∫ (1−c)π
1−cπ

0 f (t) dt for all

π ∈ (0, 1), respectively. It is clear that φ is continuous and strictly decreasing

with φ(0+) = ∞ and φ(1−) = 0+, and that ψ is continuous and strictly

increasing with ψ(0+) = 0+ and ψ(1−) =∞. Hence, there exists a unique πc

satisfying φ(πc) = ψ(πc).

Proof of Corollary 3.1. From Lemma 3.1, h =
∫ 1

π
1−(1−π)c

f (t) dt is the

volume of bettors that bet for the home team, whereas a =
∫ (1−c)π

1−cπ
0 f (t) dt

is the volume of bettors that bet for the away team. No other bettor has

positive probability of betting. When the home team wins, the gross profit
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of the bookmaker is
(
1
π
− 1
)
ch. When the away team wins, the gross profit

of the bookmaker is
(

1
1−π − 1

)
ca. Moreover, we have 1

π
h = 1

1−πa. Hence,

the bookmakers prefers the home (away) team to win when h < a (h > a).

Equivalently, the bookmaker prefers the home (away) team to win when
h
a
< 1 (h

a
> 1). Since h

a
= π

1−π , it only happens when π
1−π < 1 ( π

1−π > 1), i.e.

π < 1
2

(π > 1
2
). The result for π = 1

2
is straightforward.

Proof of Proposition 3.3. Assume w.l.o.g. ‖B‖ = 1 and K = {k}. For

simplicity, and since there is a unique bookmaker, we write c and π instead

of ck and πk, respectively. Under Lemma 3.1, for each c ∈ [0, 1], odds πc and

1− πc that clear the market are characterized by (9). Notice that, with this

πc, ratios

∥∥∥BHk ∪BHk ∥∥∥
πc

and

∥∥∥BAk ∪BAk ∥∥∥
1−πc coincide, so that the set of bettors whose

probability of betting is in (0, 1) has volume zero. Moreover, a subgame

perfect equilibrium strategy with undominated strategies is characterized as

follows:

• Each bettor i ∈ B with xi >
πc

1−(1−πc)c chooses si(c) = (k,H, πc).

• Each bettor i ∈ B with xi <
(1−c)πc
1−cπc chooses si(c) = (k,A, 1− πc).

• Any other bettor i ∈ B chooses si(c) = D.

This strategy profile induces π = πc, and it is a strong equilibrium because

no set of bettors can modify π in its own benefit, and any other equilibria

will also satisfy π = πc. In general,

BHk ∪ B
H

k = BHk =

{
i ∈ B : xi ≥

πc

1− (1− πc) c

}
(19)

BAk ∪ B
A

k = BAk =

{
i ∈ B : xi ≤

(1− c) πc

1− cπc

}
(20)

hk + hk
ak + ak

=
hk
ak

=
πc

1− πc
. (21)

The (bettor-strong) subgame perfect equilibrium is then completely charac-

terized in Step 1 by the maximization of the bookmaker’s payoff:
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Risk-adverse case: The bookmaker’s payoff is

max
c∈[0,1]

(1− ρ) (min{α, β}c− (α + β)υ)

where

α = min

{
1− πc

πc
(
h+ h

)
, a+ a

}
(21)
=

1− πc

πc
(
h+ h

) (19)
=

1− πc

πc

∫ 1

πc

1−(1−πc)c

f(t)dt
(18)
= (1− πc)γc.

Analogously,

β
(21)(20)

=
πc

1− πc

∫ πc(1−c)
1−cπc

0

f(t)dt
(18)
= πcγc

from where the maximization problem becomes

max
c∈[0,1]

(1− ρ) (min{1− πc, πc}c− υ) γc.

Moreover, term 1− ρ is unnecesary since it does not depend on c.

Risk-neutral case: The bookmaker’s payoff is

max
c∈[0,1]

(1− ρ) ((qα + (1− q)β) c− (α + β)υ)

where α and β are defined as in the risk-adverse case. Since 1− ρ does

not depend on c, it is unnecesary and hence the maximization problem

becomes

max
c∈[0,1]

((q(1− πc)γc + (1− q)πcγc) c− ((1− πc)γc + πcγc)υ)

= max
c∈[0,1]

((q + πc − 2qπc) c− υ) γc.

Proof of Proposition 3.4. The bettors’ profiles in Step 2 are the same

as in the proof of Proposition 3.3. Moreover, the chosen bookmakers will be

among those with minimum commission. Assume, on the contrary, that some

positive volume Bk of bettors choose a bookmaker k ∈ K with non-minimum

commission. Then,
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• If the equilibrium is bettor-strong, bettors in Bk would improve by

choosing a commission-minimizing bookmaker, which is a contradic-

tion.

• If the equilibirum uses undominated strategies, then any bettor in Bk
would improve by choosing a commission-minimizing bookmaker with

positive volume of bettors. Such a bookmaker exists, because otherwise

some positive volume of bettors would abstain. Their strategy would

be dominated by another one that chooses a commission-minimizing

bookmaker.

Following a similar reasoning as that on the proof of Proposition 3.2, no

bookmaker k can get a positive final payoff because otherwise another book-

maker k′ would improve by undercutting ck. Since each bookmaker gets zero

in equilibrium, following the same reasoning as in the proof of Proposition

3.3, the minimal commission c = mink∈K ck is characterized as follows:

Risk-adverse case: 0 = uk = (1− ρ) (min{1− π, π}c− υ) γ

Risk-neutral case: 0 = uk = (1− ρ) ((q + π − 2qπ)c− υ) γ

where c, π and γ satisfy (9). Equality arises when c = υ
min{1−π,π} in the

risk-adverse case and when c = υ
q+π−2qπ in the risk-neutral case. They will

determine the minimal commission unless larger than 1, in which case c = 1

would suffice because in that case (9) would imply γ = 0. Moreover, this

minimal commission should be offered by at least two bookmakers. If, on the

contrary, only one bookmaker k offers it, she could improve increasing it.

Proof of Proposition 3.5. Assume w.l.o.g. K = {k}. For ck small

enough, no strategy profile by the bettors inducing
∥∥BHk ∥∥ =

∥∥BAk ∥∥ = 0 can be

part of a bettor-strong subgame perfect equilibrium in Step 2. The reason is

that we can always find ε > 0 such that bettors in {i ∈ B : xi < ε or xi > 1− ε}
would find it profitable to bet. We can then assume that

∥∥BHk ∥∥ ,∥∥BAk ∥∥ > 0.

In Step 2, an equilibrium profile s is characterized by ui ≥ 0 for all i ∈ B.

That is:
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• si(ck) = H iff
‖BHk ∪BAk ‖
‖BHk ‖

(1− ck)xi ≥ 1. Analogously, i ∈ BHk iff xi ≥

1
(1−ck)

‖BHk ‖
‖BHk ∪BAk ‖

, which implies that πH = 1
(1−ck)

‖BHk ‖
‖BHk ∪BAk ‖

satisfies BHk ={
i ∈ B : xi ∈

[
πH , 1

]}
.

• si(ck) = A iff
‖BHk ∪BAk ‖
‖BAk ‖

(1− ck) (1− xi) ≥ 1. Analogously, i ∈ BAk iff

xi ≤ 1− 1
(1−ck)

‖BAk ‖
‖BHk ∪BAk ‖

, which implies that πA = 1
(1−ck)

‖BAk ‖
‖BHk ∪BAk ‖

satisfies

BAk =
{
i ∈ B : xi ∈

[
0, 1− πA

]}
.

Moreover, πH + πA = 1
1−ck

. Hence, these πH and πA are characterized by:

πH
∫ 1−πA

0

f(t)dt = πA
∫ 1

πH
f(t)dt

πH + πA =
1

1− ck

which are equivalent to (11) and (12). These conditions characterize the

strong equilibrium because no subset of bettors can get advantage by chang-

ing their bets. In order to prove existence of πH and πA, note first that these

conditions are not possible when ck >
1
2
. In that case, the only equilibrium

is achieved with si = D for all i ∈ B, which gives the bookmaker a payoff

of zero. In case ck = 1
2
, the unique solution is πH = πA = 1, which again

gives the bookmaker a payoff of zero. Assuming ck <
1
2
, let d = 1

1−ck
∈ (1, 2).

We define φ : (d − 1, 1) −→ R as φ(π) = 1
π

∫ 1−π
0

f(t)dt − 1
d−π

∫ 1

d−π f(t)dt.

It is straightforward to check that φ is continuous, strictly decreasing, and

satisfies φ(1− d−) > 0, and φ(1−) < 0. Hence, there exists a unique π = πA

such that φ(π) = 0 and, moreover, the bookmaker gets a positive payoff.

Proof of Proposition 3.6. The bettors’ subgame perfect equilibrium pro-

files in Step 2 are the same as in the proof of Proposition 3.5. No bookmaker

k ∈ K can get a negative final payoff because by offering ck = 1
2

she assures∥∥BHk ∪ BAk ∥∥ = 0 and hence a final payoff of zero. Following a similar reasoning

as that on the proof of Proposition 3.2 and Proposition 3.4, no bookmaker

k can get a positive final payoff because otherwise another bookmaker k′

would improve by undercutting ck. This implies that some bookmaker offers
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a commission υ (or between 1
2

and υ when 1
2
< υ) min

{
1
2
, υ
}

. Moreover,

when υ < 1
2

at least two bookmakers should offer this commission. Other-

wise, there would exists k ∈ K with ck = 0 < minl∈K\{k} cl and bookmaker

k would obtain a positive payoff by setting 0 < c̃k < minl∈K\{k} cl. Following

the same reasoning as in the proof of Proposition 3.5, thresholds πH , πA are

characterized by (11) and (13).

Proof of Proposition 3.7. Equation (12) can be rewritten as c = 1 −
1

πH+πA
, from where it is straightforward to check that (3) is equivalent to

(10)-(12). Moreover, (4) is equivalent to (11) and hence the result holds

for the monopolistic case. For the competitive case, Proposition 3.2) and

Proposition 3.6 provide the same characterization for πH and πA.

Proof of Proposition 4.1. Since ρ does not play any role in the charac-

terization of odds and commissions in equilibrium, it follows that it leaves

them unaffected. The equilibrium strategies of the bettors only consider odds

and commissions, and hence their utilities will also not be affected by ρ. By

definition, ρ decreases linearly the bookmaker’s payoff. From these results,

no ρ < 1 would maximize tax income, since any ρ′ = ρ − ε, with 0 < ε < ρ

would increase it. Hence, the maximum tax income is achieved for ρ = 1 and

the bookmaker choosing optimal odds/commission.

Proof of Theorem 4.1.

a) Odds, commissions and utilities do not depend on ρ because it does not

play any active role in the characterization of the equilibria. Tax income

is not affected because in the competitive market the bookmakers’ profit

is zero.

b) In all cases, the utility of bookmakers remains zero because the com-

petitive market. For the fixed-odds case, it follows from (4) that the

larger πH the larger πA. Hence, πH + πA = min
{

2, 1
1−υ

}
implies that

an increase in υ leads to an increase in both πH and πA. Thus, the util-

ity of bettors and the volume of bets decrease as υ increases. For the

parimutuel case, the reasoning for bettors’ utilities is the same as in the

fixed-odds case. The commission that clears the market increases with
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υ because it coincides with υ when υ < 1
2
. For the spread case, π in

(9) does not depend on υ, so either commission c = min
{

1, υ
min{1−π,π}

}
or c = min

{
1, υ

q+π−2qπ

}
strictly increases with υ. As c increases, the

bettors’ utilities decrease.

c) It follows from b) that the bet volume decreases with υ. This decrease

is strict for υ close to zero. Since the utilitarian social welfare strictly

decreases with the bet volume, we conclude that the unique maximum

is achieved at υ = 0.

d) For parimutuel and fixed-odds with risk-adverse bookmakers, υ ≥ 1
2

induces a zero bet volume and hence the market is empty, so the max-

imum tax income should be achieved for υ ∈
(
0, 1

2

)
. For fixed-odds

with risk-neutral bookmakers, υ ≥ max {q, 1− q} implies 1 ≤ q
1−υ and

1 ≤ 1−q
1−υ . By Proposition 3.2, these imply πH = πA = 1, so again

the bet volume is zero and the market empty, so the maximum tax

income should be achieved for υ ∈ (0,max {q, 1− q}). Assume now

we are in a spread market. In the risk-adverse case, υ ≥ 1
2

implies

υ ≥ min{1−π, π} and hence c = 1, which induces a zero volume. Thus,

the maximum tax income should be achieved for υ ∈
(
0, 1

2

)
. In the

risk-neutral case, the reasoning is analogous. It suffices to check that

υ ≥ max {q, 1− q} implies υ ≥ q+π−2qπ. Assume υ ≥ max {q, 1− q}.
We have two cases:

– If q ≥ 1
2
, then 1 − 2q ≤ 0 and thus π − 2qπ = (1 − 2q)π ≤ 0.

Hence,

υ ≥ max {q, 1− q} = q ≥ q + π − 2qπ.

– If q ≤ 1
2
, then 1− q ≥ 1

2
and, taking into account that π ≤ 1

2
,

υ ≥ max {q, 1− q} = 1− q ≥ 1

2

= (1− 2π)
1

2
+ π ≥ (1− 2π) q + π = q + π − 2qπ.
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Proof of Lemma 4.1. We need to find q∗ such that

1

q∗

∫ 1

q∗
f(t)dt =

1

1− q∗

∫ 1−(1−q∗)

0

f(t)dt

equivalently,
1− q∗

q∗

∫ 1

q∗
f(t)dt = 1−

∫ 1

q∗
f(t)dt

from where q∗ =
∫ 1

q∗
f(t)dt is easily deduced. To see that q∗ is unique, notice

that φ(q) =
∫ 1

q
f(t)dt is a continuously decreasing function with φ(0) = 1

and φ(1) = 0, so there exists a unique q∗ such that q∗ = φ (q∗).

Proof of Proposition 5.1. a) We focus first on the fixed-odds case

characterized in Proposition 3.1. Under symmetry, (4) becomes

1

πH

∫ 1

πH
f (t) dt =

1

πA

∫ 1

πA
f (t) dt.

This equality holds when πH = πA. Since F (x) = 1
x

∫ 1

x
f (t) dt is a strictly

decreasing function, we deduce that, for each πA, there exists a unique πH

that satisfies F
(
πH
)

= F
(
πA
)
. Hence, (4) is equivalent to πH = πA. The

other restrictions are πH , πA ∈ [0, 1] and πH + πA ≥ 1, which become πH =

πA ∈
[
1
2
, 1
]
. The maximization problem given in Proposition 3.1 becomes

max
π∈[ 12 ,1]

(1− ρ)

(
1− υ − 1

2π

)(∫ 1

π

f(t)dt+

∫ 1

π

f(t)dt

)
= max

π∈[ 12 ,1]
(1− ρ)

(
2(1− υ)− 1

π

)∫ 1

π

f(t)dt

which coincides with the characterization of πH and πA in the risk-neutral

case when q = 1
2
.

We now focus on the spread bets market characterized in Proposition 3.3.

Under symmetry, (9) becomes

1

π

∫ 1

π
1−(1−π)c

f (t) dt =
1

1− π

∫ 1

1− (1−c)π
1−πc

f (t) dt

equivalently,
1

π

∫ 1

π
1−(1−π)c

f (t) dt =
1

1− π

∫ 1

1−π
1−πc

f (t) dt
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or

G(π) = G(1− π)

where G(x) = 1
x

∫ 1
x

1−(1−x)c
f (t) dt. This equality holds when π = 1

2
. It is

straightforward to check that G is a strictly decreasing function on [0, 1], and

so π = 1
2

is the only solution to G(π) = G(1−π). Hence, (9) is equivalent to

π = 1
2

and γ = 2
∫ 1

1
2−c

f(t)dt. The maximization problem given in Proposition

3.3 becomes

max
c∈[0,1]

(1− ρ)

(
cmin

{
1− 1

2
,
1

2

}
− υ
)
γ

= max
c∈[0,1]

(1− ρ)
( c

2
− υ
)
γ

= max
c∈[0,1]

(1− ρ)
( c

2
− υ
)

2

∫ 1

1
2−c

f(t)dt

which coincides with the characterization of c in the risk-neutral case when

q = 1
2
. We now proceed by a change of variable: π = 1

2−c , so that c ∈ [0, 1]

is equivalent to π ∈
[
1
2
, 1
]

and the maximization problem becomes

max
π∈[ 12 ,1]

(1− ρ)

(
2− 1

π

2
− υ
)

2

∫ 1

π

f(t)dt

= max
π∈[ 12 ,1]

(1− ρ)

(
2(1− υ)− 1

π

)∫ 1

π

f(t)dt.

For parimutuel market, we apply Proposition 3.5 and Corollary 3.7. It follows

from (12) that c = 1− 1
πH+πA

= 1− 1
2π∗ is the optimal commission.

b) For competitive fixed-odds and parimutuel markets, we deduce, anal-

ogously to case a), that πH = πA. From Proposition 3.2 and Proposi-

tion 3.6, in the risk-adverse case we have πH + πA = min
{

2, 1
1−υ

}
, so

πH = πA = min
{

1, 1
2(1−υ)

}
. Moreover, these equalities also arise in the

risk-neutral case with q = 1
2
.

For competitive spread markets, we deduce, analogously to case a), that

π = 1
2
. From Proposition 3.4, the optimal commission is

c = min

{
1,

υ

min {1− π, π}

}
= min

{
1,

υ

min
{

1− 1
2
, 1
2

}} = min {1, 2υ}
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for the risk-adverse case and, taking q = 1
2
,

c = min

{
1,

υ

q + π − 2qπ

}
= min

{
1,

υ
1
2

+ 1
2
− 21

2
1
2

}
= min {1, 2υ}

for the risk-neutral case. In both cases, the optimal commission is c =

min{1, 2υ}. With the change of variable c = 2− 1
π∗ , we get

π∗ =
1

2− c
=

1

2−min{1, 2υ}
= min

{
1,

1

2(1− υ)

}
.

Proof of Proposition 5.2. For the monopolistic case, by Proposition 5.1,

odds and commission are given by

arg max
π∈[ 12 ,1]

(
2 (1− υ)− 1

π

)
(1− π) = min

{
1,

√
1

2(1− υ)

}
. (22)

a) For the competitive case, the result follows from part b) in Proposition

4.1. For the monopolistic case, by (22) it is straightforward to check

that, for υ < 1
2
, an increase in υ increases the odds and commissions,

and decreases the bettors’ payoffs as well as the bookmaker’s payoff

when ρ < 1. For υ ≥ 1
2
, the bet market in empty and so any further

increase is irrelevant.

b) For the competitive case, the result follows from part c) in Proposition

4.1. For the monopolistic case, (22) implies that an increment in υ

decreases the bet volume, strictly for υ small, and hence the maximum

welfare is achieved for υ = 0.

c1) ρ = 1 follows from Proposition 4.1 and υ = 0 follows from (22) by the

same reasoning as in the proof of part b).

c2) By Theorem 4.1b we can assume υ ∈
(
0, 1

2

)
. By Proposition 5.1b the

bet volume is given by∫ 1

1
2(1−υ)

f(t)dt+

∫ 1− 1
2(1−υ)

0

f(t)dt = 2− 1

1− υ
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and hence the tax income is G(υ) =
(
2− 1

1−υ

)
υ. It is straightforward

to check that G is a concave function on
(
0, 1

2

)
with unique maximum

in υ = 2−
√
2
2

.
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