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Abstract

We study minimum cost spanning tree problems and de�ne a cost sharing rule

that satis�es many more properties than other rules in the literature. Furthermore,

we provide an axiomatic characterization based on monotonicity properties.

Keywords: Spanning tree. Cost allocation. Monotonicity.

JEL Classi�cation Numbers: C71, D63, D7.

1 Introduction

Many problems involving network formation have been studied in operations research

and economics literature. Two particular issues have been extensively explored in

operations research, namely e¢ cient algorithm designs and computational complex-

ity, whereas the economic literature focuses on aspects such as cost sharing within

networks and the design of mechanisms which attempt to explain how networks are

formed.

In this paper we focus on the cost sharing aspect. Our contribution can be con-

sidered against the background of the well-known literature on cost allocation. We

assume that there are no external forces (for example, the market) which determine

�nal allocation. Agreements can be reached directly between individual agents, or in-

directly by leaving the �nal decision to a neutral referee. In both cases the important

issue is to achieve a "fair allocation" of cost.

In particular we study minimum cost spanning tree problems (mcstp). Consider

a group of agents located at di¤erent geographical points who want some particular

service which can only be provided by a common supplier, called the source. Agents

will be served through connections which entail some cost. However, they do not

care whether they are connected directly or indirectly to the source.
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There are many economic situations that can be modeled in this way. For in-

stance, several towns may draw power from a common power plant, and hence have

to share the cost of the distribution network. This example appears in Dutta and

Kar (2004). Bergantiños and Lorenzo (2004) studied a real situation where villagers

had to pay the cost of constructing pipes from their respective houses to a water sup-

plier. Other examples include communication networks, such as telephone, Internet,

or cable television.

The literature on mcstp starts by de�ning algorithms for constructing minimal

cost spanning trees (mt). We can mention, for instance, the papers of Kruskal (1956)

and Prim (1957). However, constructing an mt is only part of the problem. Another

important issue is how to allocate the cost associated with mt among agents.

Bird (1976) associated a cooperative game with any mcstp. Moreover, for cases

when the mcstp has a single mt, Bird proposed a rule called the Bird rule. Granot

and Huberman (1981, 1984) studied the core and the nucleolus of this cooperative

game. Sharkey (1995) has surveyed most of this literature. More recently, Kar (2002)

studied the corresponding Shapley value (which we denote as K); Dutta and Kar

(2004) extended the Bird rule to more than one mt (an extension we denote as B),

and proposed a new rule (which we denote as DK).

We will now discuss the allocation proposed by K, B, and DK in a very simple

example. The �rst non-trivial case in mcstp occurs when two agents wish to be

connected to the source and the optimal choice is for one of the agents to connect

through the other. The following example describes a particular case of such a

situation.

Example 1.1 There are two agents. The connection cost between agent 1 and the

source is 10, between agent 1 and 2 is 2, and between agent 2 and the source is 10+x,
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where x � 0. This situation can be represented by the following �gure:

1 2

0

10 + x

2

10

1 2

0

10 + x

2

10

where 0 is the source.

If x = 0, the agents are symmetric. The three rules propose symmetric allocation

(6; 6).

If x > 0, the agents are asymmetric. The unique mt is f(0; 1) ; (1; 2)g. We can

proceed in one of two ways. First of all, we can ignore x because the arc (0; 2)

will not be constructed. Hence, (6; 6) is still valid. Secondly, since the problem is

asymmetric we can use the information provided by x. Hence, (6; 6) is wrong.

The three rules proceed according to the second alternative. The following table

shows the allocation proposed by each of the rules when x > 0:

Agent 1 Agent 2

B 10 2

DK 2 10

K 6� x
2

6 + x
2

B and DK propose the same allocation independently of x (as long as x > 0).

Moreover, minor changes in the cost of the arc (0; 2) produce major changes in

the proposal. We consider this to be unfair, and claim that the rule should be a

continuous function of the cost.

K is a continuous function of the cost. However, if we take x = 100, then

K = (�44; 56). This means that agent 2 pays 44 units to agent 1 in addition to the

cost of the network. Again, we believe that this allocation is unfair. We claim that

the rule should be positive, i.e. agents should not make a pro�t on the transaction.

Our conclusion, in Example 1.1, is that (6; 6) is a better allocation than those

proposed by K, B, and DK, even when the problem is asymmetric. Note that (6; 6)
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can be obtained through a two-stage procedure. First of all, we argue that when

x > 0, the allocation should coincide with the allocation when x = 0. Secondly, we

argue that (6; 6) is the correct allocation when x = 0.

Something similar happens with bargaining problems. Consider the bargaining

problems (d; S) and (d; S 0) where d = (0; 0) ; S = f(x1; x2) : x1 + x2 � 1g, and S 0 =

f(x1; x2) : x1 + x2 � 1 and x1 � 0:5g. Even though both problems are di¤erent �

because of the property of independence of irrelevant alternatives �the Nash solution

to both problems is (0:5; 0:5). In Example 1.1 we consider x to be irrelevant.

In this paper we generalize this idea to the entire class of mcstp. Given an

mcstp modelled by a matrix C, we �rst associate a matrix C� with C; secondly,

we compute an allocation in C�; and thirdly, we de�ne the allocation in C as the

allocation obtained in C�.

Take an mcstp de�ned through a matrix C. Given an mt t, Bird (1976) de�ned

the minimal network associated with C and t. It is known that this minimal network

does not depend on the chosen mt. Hence, it makes sense to de�ne the matrix C�,

referred to as an irreducible matrix, as the minimal network associated with some

mt t.

We introduce a procedure to associate a corresponding irreducible matrix C� with

each arbitrary matrix C. In Propositions 3.1, 3.2, and 3.3 we present new results

regarding irreducible matrices and the procedure. These results will be crucial to

the rest of the proofs in this paper.

In Proposition 3.4 we prove that B and K coincide in irreducible matrices. Thus,

we de�ne the rule ' in the matrix C as the Bird rule (or the Kar rule) of its irreducible

matrix C�.

Our next step is to explain why ' is a fair rule. We draw up a list of "basic

properties" and prove that ' satis�es many more basic properties than the other

three rules. The list of basic properties includes, from our point of view, those

properties that provide the best way to proceed with this type of problems. For

instance, assume that two agents are symmetric. The best thing that a fair rule can
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do is to allocate the same cost to both agents. The list of basic properties include

properties which have already been used in the existing literature on mcstp, and

others introduced in this paper.

Our �nal step is to present two characterizations of '. If we restrict ourselves

to irreducible problems, ' is the only rule satisfying Symmetry (SYM) and Inde-

pendence of Other Costs (IOC). IOC says that the amount paid by an agent only

depends on the cost of the arcs to which he belongs.

We also provide a characterization of ' for the entire class of mcstp. This charac-

terization uses Solidarity (SOL), Population Monotonicity (PM) and Equal Share

of Extra Costs (ESEC).

SOL says that if a network connection cost increases, no agent should pay less.

PM says that if we add new agents, no agent will be worse o¤.

The idea of ESEC is the following: consider a problem where the most expensive

connection cost for any agent is the cost of connecting to the source. Moreover, the

connection cost to the source is the same for all agents. Assume that this connection

cost increases by x > 0. ESEC says that if agent i pays fi in the original problem,

he must pay fi + x
n
when the cost increases (where n is the number of agents).

SOL and PM are standard properties often used often in economic models. We

believe that these properties are very natural and that any fair rule should satisfy

both. ESEC is a property de�ned explicitly for mcstp. We believe that it is a

natural property with a clear meaning. We do not claim that every fair rule should

satisfy ESEC. However, we do see it as a property that selects a rule from among

the set of �fair rules�(rules that satisfy SOL and PM).

Feltkamp, Tijs and Muto (1994) introduced a rule for mcstp called the Equal

Remaining Obligations rule (ERO). They introduced ERO through Kruskal�s al-

gorithm. In Bergantiños and Vidal-Puga (2004b) we proved that ' coincides with

ERO, and moreover, presented other alternative de�nitions for '.

This rule has been studied in other papers. Brânzei, Moretti, Norde and Tijs

(2004) and Bergantiños and Vidal-Puga (2004a) obtained other axiomatic charac-
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terizations of ' using an additivity property. On the other hand, in Bergantiños and

Vidal-Puga (2006c) we proved that ' is the Shapley value of the cooperative game

(N; v+) where v+ (S) represents the cost of connecting agents of S to the source and

assuming that the rest of agents are already connected. Moreover, in Bergantiños

and Vidal-Puga (2006a) we proved that ' can be obtained as the equilibrium payo¤

of a non-cooperative game.

Our paper is organized as follows. In Section 2 we introduce the mcstp, along

with the rules and properties considered in the paper. In Section 3 we introduce

the rule ' and study the irreducible form of an mcstp. In Section 4 we study the

properties satis�ed by ' and provide the axiomatic characterizations. Finally, in

Section 5 we brie�y comment on some of the results obtained for ' in other papers.

Most of the proofs are in Section 6 (Appendix).

2 The minimum cost spanning tree problem

This section is divided into three subsections. In the �rst subsection, we introduce

the problem. In the second subsection, we introduce some rules of the literature,

and �nally, in the third subsection, we present some properties of the rules.

2.1 The problem

Let N = f1; 2; :::g be the set of all possible agents. Given a �nite subset N � N ,

let �N denote the set of all orders in N . Given � 2 �N , let Pre (i; �) denote the set

of elements of N which come before i in the order given by �, i.e.

Pre (i; �) = fj 2 N j � (j) < � (i)g :

For notational simplicity, given � 2 �N , we denote the agent i 2 N with � (i) = s

as �s. Moreover, given � 2 �N and S � N , let �S denote the order induce by �

among agents in S:
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We are interested in networks whose nodes are elements of a set N0 = N [ f0g,

where 0 is a special node called the source. Usually we take N = f1; :::; ng. Our

interest lies on networks where each node in N is (directly or indirectly) connected

to the source.

A cost matrix C = (cij)i;j2N0 in N represents the cost of a direct link between

any pair of nodes. We assume that cij = cji � 0 for all i; j 2 N0 and that cii = 0 for

all i 2 N0. Since cij = cji we will work with undirected arcs, i.e. (i; j) = (j; i).

We denote the set of all cost matrices over N as CN . Given C; C 0 2 CN we say

that C � C 0 if cij � c0ij for all i; j 2 N0.

A minimal cost spanning tree problem, more brie�y referred to as an mcstp, is a

pair (N0; C) where N � N is a �nite set of agents, 0 is the source, and C 2 CN is

the cost matrix.

A network g over N0 is a subset of f(i; j) j i; j 2 N0g : The elements of g are

called arcs:

Given a network g and a pair of di¤erent nodes i and j, a path from i to j (in

g) is a sequence of di¤erent arcs f(is�1; is)gps=1 that satisfy (is�1; is) 2 g for all

s 2 f1; 2; :::; pg, i = i0 and j = ip. We say that i; j 2 N are linked (in g) if there

exists a path from i to j which does not include the source. If (i; j) 2 g, we say that

i and j are directly linked (in g). We say that the node i is connected to the source

(in g) if there exists a path from i to the source.

A tree is a network where there is a unique path from i to the source for all

i 2 N . If t is a tree, we usually write t = f(i0; i)gi2N , where i0 represents the �rst

node in the unique path in t from i to the source.

We denote the set of all networks over N0 as GN and the set of networks over N0
in such a way that every agent in N is connected to the source as GN0 .

Given an mcstp (N0; C) and g 2 GN , we de�ne the cost associated with g as

c (N0; C; g) =
X
(i;j)2g

cij:
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When there is no ambiguity, we write c (g) or c (C; g) instead of c (N0; C; g).

A minimum cost spanning tree for (N0; C), more brie�y referred to as an mt, is

a tree t 2 GN0 such that c (t) = min
g2GN0

c (g). It is well established in the literature

on mcstp that an mt exists, even though it does not necessarily have to be unique.

Given an mcstp (N0; C) we denote the cost associated with any mt t in (N0; C) as

m (N0; C).

Given an mcstp (N0; C), we denote the mcstp induced by C in S � N as (S0; C).

Bird (1976) associated a cooperative game (N; vC) with eachmcstp (N0; C) where

vC (S) = m (S0; C) for each S � N .

We will now introduce some well-known results of cooperative games which will

be used throughout the paper. We introduce them considering the cooperative game

as a cost sharing problem.

We de�ne the core of the cooperative game (N; v) as

core (N; v) =

(
x 2 RN j

X
i2N

xi = v (N) and
X
i2S

xi � v (S) , 8S � N

)
:

We say that (N; v) is concave if, for all S; T � N and i 2 N such that S � T

and i =2 T ,

v (S [ fig)� v (S) � v (T [ fig)� v (T ) :

The Shapley value (Shapley, 1953) of the cooperative game (N; v) is de�ned as

Shi (N; v) =
1

n!

X
�2�N

[v (Pre (i; �) [ fig)� v (Pre (i; �))] :

It is well-known that the Shapley value belongs to the core when the cooperative

game is concave.

2.2 Rules

One of the most important issues addressed in the literature about mcstp is how to

divide the cost of connecting agents to the source. We will now brie�y introduce

some of the rules studied in the literature.
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A (cost allocation) rule is a function  such that  (N0; C) 2 RN for each mcstp

(N0; C) and
P
i2N

 i (N0; C) = m (N0; C). As usual,  i (N0; C) represents the cost

allocated to agent i.

Notice that we implicitly assume that the agents build an mt. As far as we know,

all the rules proposed in the literature make this assumption.

Given an mcstp, Prim (1957) provides an algorithm for solving the problem of

connecting all agents to the source such that the total cost of creating the network is

minimal. The idea of this algorithm is simple: starting from the source we construct

a network by sequentially adding arcs with the lowest cost and without introducing

cycles.

Formally, Prim�s algorithm is de�ned as follows. We start with S0 = f0g and

g0 = ;:

Stage 1 : Take an arc (0; i) such that c0i = min
j2N

fc0jg. If there are several arcs

satisfying this condition, select just one. Now, S1 = f0; ig and g1 = f(0; i)g.

Stage p + 1: Assume that we have de�ned Sp � N0 and gp 2 GN . We now

de�ne Sp+1 and gp+1. Take an arc (j; i) with j 2 Sp and i 2 N0nSp such that

cji = min
k2Sp;l2NonSp

fcklg. If there are several arcs satisfying this condition, select just

one. Now, Sp+1 = Sp [ fig and gp+1 = gp [ f(j; i)g.

This process is completed in n stages. We say that gn is a tree obtained following

Prim�s algorithm. Notice that this algorithm leads to a tree, but that this is not

always unique.

We will now introduce three rules from the literature: the Bird rule, the Kar rule,

and Dutta-Kar�s rule.

The Bird rule (Bird, 1976) and Dutta-Kar�s rule (Dutta and Kar, 2004) are

de�ned through Prim�s algorithm. We �rst assume that there is a unique mt t.

Given i 2 N , let i0 be the �rst node in the unique path in t from i to the source.

The Bird rule (B) is de�ned for each i 2 N as

Bi (N0; C) = ci0i:
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The idea of this rule is simple. Agents connect sequentially to the source following

Prim�s algorithm and each agent pays the corresponding connection cost.

Dutta-Kar�s rule (DK) is de�ned in a more elaborate way. The agents connect

to the source via Prims�s algorithm, but with a pivotal switch in the allocation cost

at each step. See Dutta and Kar (2004) for a formal de�nition.

Now assume that there is more than one mt. In this case, the Bird rule and

Dutta-Kar�s rule can be de�ned as an average of the trees associated with Prim�s

algorithm.

Dutta and Kar (2004) proceeded as follows. Given � 2 �N they de�nedB� (N0; C)

as the allocation obtained when they applied the previous protocol to (N0; C) and

solved the indi¤erences by selecting the �rst agent given by �. Then they de�ned

B (N0; C) =
1

n!

X
�2�N

B� (N0; C) :

They de�ned DK (N0; C) in a similar way.

The game theory approach can also be used for de�ning rules. Bird (1976) asso-

ciated a cooperative game (N; vC) with each mcstp (N0; C). Later, several authors

de�ned rules using this cooperative game. For instance, Granot and Huberman

(1981, 1984) studied the core and the nucleolus, and Kar (2002) studied the Shapley

value.

The Kar rule (K) is de�ned as

K (N0; C) = Sh (N; vC) :

2.3 Properties

We will now introduce several properties of rules. Some of these properties are known

in the literature while others are introduced in this paper.

Given a rule  , we consider the following properties:
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Core Selection (CS) For all mcstp (N0; C) and all S � N , we haveX
i2S

 i (N0; C) � m (S0; C) :

This property implies that no group of agents would be better o¤by constructing

their own network instead of paying what the rule  proposes for each of them. Notice

that CS is equivalent to saying that  (N0; C) 2 core (N; vC).

Cost Monotonicity (CM) For all mcstp (N0; C) and (N0; C 0) such that cij < c0ij

for some i 2 N , j 2 N0 and otherwise ckl = c0kl, we have

 i (N0; C) �  i (N0; C
0) :

This property implies that if a particular connection cost increases for agent i

but the rest of the connection costs remain the same, then agent i cannot be better

o¤.

Solidarity (SOL) For all mcstp (N0; C) and (N0; C 0) such that C � C 0, we have

 (N0; C) �  (N0; C
0) :

This property implies that if a number of connection costs increase and the rest

of connection costs (if any) remain the same, no agent can be better o¤. Notice

that SOL demands agents�contribution to move in the same direction irrespective

of their locations on minimum cost spanning trees.

This property is called Strong Cost Monotonicity (SCM) in Bergantiños and

Vidal-Puga (2006a, 2006b).

Population Monotonicity (PM) For all mcstp (N0; C), S � N , and i 2 S, we

have

 i (N0; C) �  i (S0; C) :

This property implies that if new agents join a "society" no agent from the "initial

society" can be worse o¤.
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Continuity (CON) For all N � N ,  (N0; �) is a continuous function of CN .

This property implies that minor changes in agents�connection costs cannot lead

to major changes in the amount they have to pay.

Positivity (POS) For all mcstp (N0; C) and all i 2 N , we have

 i (N0; C) � 0:

This property implies that agents should not make a pro�t.

Separability (SEP ) For all mcstp (N0; C) and S � N satisfying m (N0; C) =

m (S0; C) +m ((N n S)0 ; C), we have

 i (N0; C) =

8<:  i (S0; C) if i 2 S

 i ((N n S)0 ; C) if i 2 N n S:

Two subsets of agents, S and N n S, can be connected to the source either

separately or jointly. If there are no savings when they are jointly connected to the

source, this property implies that agents will pay the same in both circumstances.

SEP appears in Megiddo (1978), Granot and Huberman (1981), and Granot and

Maschler (1998). They used the name Decomposition. They studied its relationship

with the core and the nucleolus of (N; vC).

Symmetry (SYM) For allmcstp (N0; C) and all pair of symmetric agents i; j 2 N ,

 i (N0; C) =  j (N0; C) :

We say that i; j 2 N are symmetric if for all k 2 N0 n fi; jg, cik = cjk.

Independence of Other Costs (IOC) For all mcstp (N0; C) and (N0; C 0), and

all i 2 N such that cij = c0ij for all j 2 N0 n fig, we have

 i (N0; C) =  i (N0; C
0) :
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This property implies that the amount paid by agent i depends only on the cost

of the arcs to which he belongs.

Equal Share of Extra Costs (ESEC) Let (N0; C) and (N0; C 0) be two mcstp.

Let c0; c00 � 0. Assuming c0i = c0 and c00i = c00 for all i 2 N , c0 < c00, and

cij = c0ij � c0 for all i; j 2 N , we have

 i (N0; C
0) =  i (N0; C) +

c00 � c0
n

for all i 2 N .

This property is interpreted as follows: a group of agents N faces a problem

(N0; C) in which all of them have the same connection cost to the source (ci0 = c0)

and in which this cost is greater than the connection costs between agents (cij � c0).

Under these circumstances, an optimal network implies that any one agent connects

directly to the source, and that the rest connect to the source through this agent.

Moreover, they agree that the correct solution is  (N0; C). Assume that an error

was made and that the connection cost to the source is c00 > c0. ESEC states that

agents should share this extra cost c00 � c0 equally.

We say that two mcstp (N0; C) and (N0; C 0) are tree-equivalent if there exists

a tree t such that, �rstly, t is an mt for both (N0; C) and (N0; C 0), and secondly,

cij = c0ij for all (i; j) 2 t.

Independence of Irrelevant Trees (IIT ) If two mcstp (N0; C) and (N0; C 0) are

tree-equivalent,

 (N0; C) =  (N0; C
0) :

Remark 2.1 Dutta and Kar (2004) de�ned the property of Tree Invariance. This

property says that the rule must depends only on the set of mt. Both B and DK

satisfy Tree Invariance.

Notice that if a rule satis�es IIT it also satis�es Tree Invariance. However, Tree

Invariance does not imply IIT . This can be easily checked in Example 1.1 by taking

x = 0 and x = 100.
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CON , SYM , and POS are standard properties. CS, CM , PM , and SEP

already appeared in other papers from the literature on mcstp, whereas SOL, IOC,

ESEC, and IIT are introduced in this paper.

Certain relationships exist between these properties. It is not di¢ cult to see that

SOL implies CM and that PM implies CS. The reciprocal statements are false.

PM implies SEP . Let  be a rule satisfying PM and S � N as in the de-

�nition of SEP . Under PM we know that  i (N0; C) �  i (S0; C) for all i 2 S

and  i (N0; C) �  i ((N n S)0 ; C) for all i 2 N n S. Since m (N0; C) = m (S0; C) +

m ((N n S)0 ; C), it is not di¢ cult to see that  satis�es SEP . The reciprocal is

false.

In Section 3 (Proposition 3.5) we prove that SOL implies IIT .

3 The irreducible form

This section is devoted to the study of the irreducible form of an mcstp, which

already appeared in Bird (1976). The irreducible form has the property that, if we

reduce the cost of any arc, then the cost of connecting agents to the source is also

reduced.

We obtain new results regarding the irreducible form. We also present a procedure

to associate eachmcstp with its irreducible form. The procedure and the new results

will be crucial in proving the main results of the paper.

We prove that the Bird rule and the Kar rule coincide in irreducible forms. This

allows us to de�ne the rule ' for a general mcstp as the Kar rule (or the Bird rule)

of the irreducible form of the original problem.

We also study the rules that only depend on the irreducible form. We prove that

they coincide with the rules satisfying IIT . Finally, we obtain that if a rule does

not only depend on the irreducible form, it does not satisfy SOL. This allows us

to argue that if we decide to use the information from an mcstp which is not in the

irreducible form, we will almost certainly miss something.
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Given an mcstp (N0; C) and an mt t, Bird (1976) de�ned the minimal network

(N0; C
t) associated with t as follows: ctij = max

(k;l)2gij
fcklg, where gij denotes the unique

path in t from i to j. Bird (1976) used this minimal network to de�ne the irreducible

core of an mcstp, which is a subset of the core.

Even though this de�nition is dependent on the choice of mt t, it is independent

of the chosen t. Proof of this can be found, for instance, in Aarts and Driessen

(1993).

We de�ne the irreducible form of an mcstp (N0; C) as the minimal network

(N0; C
�) associated with a particular mt t. Sometimes we write Ct instead of C� to

indicate the mt t. If (N0; C�) is an irreducible form, we say that C� is an irreducible

matrix.

Remark 3.1 We see that the de�nition of the irreducible form associated with a

particular mt only depends on this mt. Hence, if two mcstp (N0; C) and (N0; C 0)

are tree-equivalent, we have C� = C 0�.

On the other hand, given an mt t in (N0; C), t is also an mt in (N0; C�). Hence,

C and C� are tree-equivalent.

It is well-known that (N0; C�) is an irreducible form if and only if, by reducing

the cost of an arc, is the cost of connecting agents to the source also reduced. Thus,

we have the following result:

Lemma 3.1 a) For all i; j 2 N0 there exists an mt t in (N0; C�) such that (i; j) 2 t.

b) For all mcstp (N0; C), C� � C.

In the next proposition we prove that an mcstp is irreducible if and only if we

can �nd a "linear tree" such that the direct link between two nodes represents the

maximum cost of the arcs that connect them in the linear tree.

Proposition 3.1 (N0; C�) is irreducible if and only if there exists a tree t in (N0; C�)

that satis�es the following two conditions:
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(A1) t = f(�s�1; �s)gns=1 where �0 = 0 (the source).

(A2) Given �p; �q 2 N0 with p < q, c��p�q = max
sjp<s�q

�
c��s�1�s

	
.

Moreover, t is an mt.

Proof. See Appendix.

Example 3.1 The following �gures represent an mcstp (N0; C) with N = f1; 2; 3g

and its associated irreducible form (N0; C
�):

1 2

0

15

2

10

3

20
4 8

1 2

0

15

2

10

3

20
4 8

1 2

0

10

2

10

3

10
4 4

1 2

0

10

2

10

3

10
4 4

(N0,C) (N0,C*)

In this case, t = f(0; 1) ; (1; 2) ; (2; 3)g satis�es (A1) and (A2).

We now introduce a procedure to associate an irreducible matrix C� 2 CN with

each arbitrary matrix C 2 CN , and an mt t that satis�es (A1) and (A2). This

procedure will be crucial to most of the proofs of our results.

Let t0 = f(i0; i)gi2N be an mt in (N0; C) and let � 2 �N . For notational conve-

nience, we denote �0 = 0.

We say that the nodes in C connect to the source via t0 in the order � following

Prim�s algorithm if t0 is obtained through Prim�s algorithm and in stage p, the arc

selected is
�
�0p; �p

�
, for each p. This is the equivalent of stating that p < q for all

�p; �q 2 N0 such that �p = �0q and, moreover, for each �s 2 N ,

c�0s�s = min
(p;q)jp<s�q

c�p�q : (1)

In Example 3.1, the only mt is t0 = f(0; 1) ; (1; 2) ; (1; 3)g. Moreover, the nodes in

C connect to the source via t0 following Prim�s algorithm only in the order [123]. In

C� there are several mt, and the nodes can connect to the source following Prim�s

algorithm in the orders [123], [213], [312], and [321].
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Assume the nodes in C connect to the source via t0 in the order � following Prim�s

algorithm.

From (1) it is not di¢ cult to check that, given �p = �0q,

c�0s�s � c�0q�q 8s j p < s � q: (2)

We de�ne C 0 as follows: for all �p; �q 2 N0 with p < q;

c0�p�q = max
sjp<s�q

�
c�0s�s

	
: (3)

Hence, for all �s 2 N;

c0�s�1�s = c�0s�s ; and (4)

c0�0s�s = c�0s�s : (5)

Proposition 3.2 Given a particular mcstp (N0; C), the matrix C 0 obtained as above

is the irreducible matrix associated with C, i.e. C 0 = C�. Moreover, t = f(�s�1; �s)gns=1
is an mt in (N0; C�) that satis�es (A1) and (A2).

Proof. See Appendix.

In the next proposition we provide three properties of irreducible matrices, that

will be used frequently throughout the rest of the paper. Parts (a) and (b) are new

results. Part (c) is already known.

Proposition 3.3 Let (N0; C�) be an irreducible form and let � 2 �N be such that

t = f(�s�1; �s)gns=1 with �0 = 0 is an mt in (N0; C�) that satis�es (A1) and (A2).

Take S � N . We can assume that S =
�
�s(1); :::; �s(jSj)

	
with s (q � 1) < s (q) for

all q 2 f1; :::; jSjg and s (0) = 0. Hence:

(a) t0 =
��
�s(q�1); �s(q)

�	jSj
q=1

is an mt of (S0; C�) and vC� (S) =
jSjP
q=1

c��s(q�1)�s(q);

(b) vC� (S) � vC�
�
S n

�
�s(p)

	�
= min

n
c��s(p�1)�s(p) ; c

�
�s(p)�s(p+1)

o
if p < jSj and

vC� (S)� vC�
�
S n

�
�s(jSj)

	�
= c��s(jSj�1)�s(jSj);

(c) (N; vC�) is concave.
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Proof. See Appendix.

If we compute the rules K, B, and DK in Example 3.1 we obtain K (N0; C) =

(�0:5; 6:5; 10), B (N0; C) = (10; 2; 4), andDK (N0; C) = (2; 4; 10). Moreover,K (N0; C�) =

B (N0; C
�) = (5; 5; 6) and DK (N0; C�) = (4; 4; 8). Hence, B and K coincide in this

example for the irreducible form. We now prove that this result holds in general.

Proposition 3.4 If (N0; C�) is an irreducible form, K (N0; C�) = B (N0; C
�).

Proof. See Appendix.

Proposition 3.4 results in the following de�nition:

De�nition 3.1 Given an mcstp (N0; C) we de�ne the rule ' as

' (N0; C) = K (N0; C
�) = B (N0; C

�)

where C� is the irreducible matrix associated with C.

As already mentioned in the discussion in relation to Example 1.1, we de�ne

the rule through the irreducible form. Moreover, we de�ne it as K and B because

the fact that these rules, which are very di¤erent in general, coincide in irreducible

matrices might be of signi�cance. In the next section we will provide more arguments

that justify this approach.

We say that a rule  depends only on the irreducible form if and only if  (N0; C) =

 (N0; C
�) for all mcstp (N0; C). In the next proposition we study this class of rules

(notice that ' is one of them).

Proposition 3.5 (a) A rule  depends only on the irreducible form if and only if

 satis�es IIT .

(b) SOL implies IIT .
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Proof. See Appendix.

When we de�ne a rule through the irreducible form there is certain important

information regarding the problem that we choose to ignore. We also believe that

something is missing when we use information that is not in the irreducible form.

Proposition 3.5 provides a strong argument supporting this. Any rule that does not

depend on the irreducible form does not satisfy SOL either.

From our point of view, an interesting issue is whether it is possible to de�ne a

rule such that: (i) it does not depend on the irreducible form; (ii) it satis�es good

properties; and (iii) no rule depending only on the irreducible form satis�es these

properties. In the next section we will see that this is not a trivial question. In

particular, no rule has yet been studied that satis�es (i)-(ii)-(iii).

4 Properties and axiomatic characterizations

In this section we prove that ' satis�es all the properties stated in the paper but

IOC. If we compare ' with the other rules, it satis�es many more properties.

We also present an axiomatic characterization in irreducible problems and an

axiomatic characterization in the general class of mcstp.

Lemma 4.1 (a) No rule satis�es IOC.

(b) ' satis�es IOC in irreducible problems.

Proof. See Appendix.

We now prove a property of irreducible matrices, which will be used later.

Lemma 4.2 Given C;C 0 2 CN such that C � C 0; then C� � C 0�:

Proof. See Appendix.

In the next theorem we prove that ' satis�es all the properties mentioned in the

paper but IOC.

20



Theorem 4.1 (a) ' satis�es CS, CM , SOL, PM , CON , POS, SEP , SYM ,

ESEC, and IIT .

Proof. See Appendix.

In the next table we summarize the properties satis�ed by the above-mentioned

rules. Some of the results for K, B, and DK are well-known in the literature while

others can be found in Bergantiños and Vidal-Puga (2006b).

K B DK '

CS no YES YES YES

CM YES no YES YES

PM no no no YES

CON YES no no YES

POS no YES YES YES

SEP no no no YES

SYM YES YES YES YES

IOC no no no no

SOL no no no YES

ESEC no no no YES

IIT no no no YES

This table clearly shows that ' satis�es many more properties than the other

rules.

From our point of view, this table contains two kinds of properties. Some of these

properties are what we referred to in the introduction as basic properties. These are

CS, CM , PM , CON , POS, SEP , and SYM . We call them basic properties

because the statements pertaining to these properties propose the best thing that a

fair rule should do in particular circumstances.

IOC could also be considered a basic property. However, no rule satis�es it.

SOL proposes a reasonable way to proceed, but in some cases other ways are also

reasonable. For instance, in the �rst example, SOL implies that the solution to the
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problem with x = 0 and x = 80 should be the same. This means that the solution

in which agent 1 pays 5 (half of the cost of arc (0; 1)) and agent 2 pays 7 (half of the

cost of arc (0; 1) plus the cost of the arc (1; 2)) is not possible under SOL:

ESEC also proposes a reasonable way to proceed (to divide the extra cost equally

among the agents). However, we do not claim that this is clearly the best way to

proceed. For instance, we may also �nd it reasonable to divide this extra cost in

proportion to what the agents paid before this cost arose.

IIT is computationally nice in the sense that it makes it easier to compute the

rule. Note that, under IIT , we only need to know an mt in order to compute the

rule.

K, B, and ' coincide in irreducible problems. In general, however, they are

di¤erent. B and K use information which is not in the irreducible form, unlike '.

This table, together with Proposition 3.5, would suggest that we should be careful

when de�ning rules which do not depend exclusively on the irreducible form.

We now present two characterizations of '. The �rst only applies to the subclass

of irreducible forms.

Proposition 4.1 In the class of irreducible forms, ' is the unique rule that satis�es

SYM and IOC.

Proof. See Appendix.

The properties used in Proposition 4.1 are independent. The equal division rule

Edi (N0; C) =
m(N0;C)

n
for all i 2 N satis�es SYM but fails IOC. B�N , where �N

is the order induced in N by the index of the agents (i:e: �Np < �Nq if and only if

p < q), satis�es IOC but fails SYM .

In the next theorem we provide a characterization of ' in the class of all mcstp.

Theorem 4.2 ' is the unique rule satisfying IIT , SEP , and ESEC.
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Proof. See Appendix.

Since SOL implies IIT , PM implies SEP , and ' satis�es PM and SOL, the

following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.1 ' is the only rule that satis�es SOL, PM , and ESEC.

Even though Corollary 4.1 is a trivial consequence of Theorem 4.2, we state it

explicitly because we believe that PM and SOL are more appealing properties than

SEP and IIT .

Theorem 4.2 and Corollary 4.1 are tight characterization results. Let  be de�ned

as

 i (N0; C) =
1

j�0N j
X
�2�0N

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

for all i 2 N , where �0N is the subset of orders in which the agents with the cheapest

cost to the source connect �rst, i:e:

�0N =
�
� 2 �N j c0�q � c0�p when q < p

	
:

This rule satis�es PM (and hence SEP ) and ESEC, but fails IIT (and hence

SOL).

The equal division rule satis�es SOL (and hence IIT ) and ESEC, but fails SEP

(and hence PM).

Let  (N0; C) = B�N (N0; C
�). This rule satis�es SOL (and hence IIT ) and PM

(and hence SEP ), but fails ESEC.

5 Other results for '

Kruskal (1956) introduced an algorithm for computing themt of anmcstp. Feltkamp,

Tijs and Muto (1994) de�ned the ERO rule through Kruskal�s algorithm. Initially,

each agent has an obligation of 1 and the network is empty. Applying Kruskal�s
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algorithm, the obligation of each agent decreases when for each arc added to the

network. This obligation is 1
ni
, where ni is the number of agents linked to agent

i. At each step of the algorithm, each agent pays the proportion of the cost of the

additional arc resulting from the di¤erence between his obligation before the arc was

added, and his obligation after the arc was added. See Feltkamp et al (1994) for a

formal de�nition.

In Bergantiños and Vidal-Puga (2004b) we proved that ' coincides with ERO.

Moreover, two other de�nitions of ' were presented. In the �rst de�nition we pro-

posed a method for dividing the cost of an mt t among the agents, taking into

account the position of agents in t. We proved that this procedure is independent of

the chosen mt, and that the �nal allocation coincides with that proposed by '.

B and DK assign the whole cost of each arc to one agent following some speci�c

protocol. Thus, we can consider B and DK to be rules assigning indivisible goods

(cost of the arcs). This procedure can lead to unfair allocations when x is very small,

as can be seen in Example 1.1. A classical way of ensuring fairness in an order-

dependent allocation is to take the average over the set of all orders. In general,

this approach is incompatible with e¢ ciency. Nevertheless, if (N0; C) is a general

problem, it is possible to generate an e¢ cient and fair allocation for C by averaging

over the orders in C�. This is the second de�nition in Bergantiños and Vidal-Puga

(2004b).

Additivity is quite a standard property in the literature of cost allocation. The

natural formulation of additivity in mcstp is  (C + C 0) =  (C) +  (C 0) for all C

and C 0 matrices. This property, however, is very demanding and no rule satis�es it.

Brânzei, Moretti, Norde, and Tijs (2004) and Bergantiños and Vidal-Puga (2004a)

claimed additivity only for some subclasses of problems. Brânzei et al (2004) char-

acterized ' with an additivity property, Equal Treatment (which is di¤erent from

SYM) and Upper Bound Contributions. Bergantiños and Vidal-Puga (2004a) char-

acterized the rule with a similar additivity property, PM , and SYM .

Bird (1976) associated the cooperative game (N; vC) with each mcstp (N0; C).
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It should be noted that vC (S) is the cost of connecting agents in S assuming that

agents of N nS are not present. In Bergantiños and Vidal-Puga (2006c) we associated

a di¤erent cooperative game (N; v+) with each mcstp (N0; C), where v+ (S) is the

cost of connecting agents in S assuming that agents of N n S are already connected

to the source. We proved that ' is the Shapley value of (N; v+).

In Bergantiños and Vidal-Puga (2006a), we proved that ' can be obtained as the

equilibrium payo¤ in a non-cooperative game.

6 Appendix

In this section we prove the results stated in the paper.

6.1 Proof of Proposition 3.1 and Proposition 3.2

In Claim 1 we prove the �rst part of Proposition 3.1. In Claim 2 we prove Proposition

3.2. In Claim 3 we prove the second part of Proposition 3.1.

Claim 1. If C� and t satisfy (A1) and (A2), then C� is irreducible.

We prove that we cannot reduce the cost of an arc without reducing m (N0; C�).

We assume wlog that �s = s for all s = 0; 1; :::; n. This means that t = f(i� 1; i)gni=1.

Take k; k0 2 N0 (k < k0) and C 0 2 CN such that c0kk0 < c�kk0, otherwise c
0
ij = c�ij.

We need to prove that m (N0; C 0) < m (N0; C
�). It is enough to prove that there

exists a tree t0 such that c (N0; C 0; t0) < m (N0; C
�).

Since C� and t satisfy (A1) and (A2), using Prim�s algorithm we can deduce that

t is an mt:

Under (A2), c�kk0 = c�(i�1)i for some i with k < i � k0. We de�ne t0 = (t n f(i� 1; i)g)[

f(k; k0)g. Thus, t0 is a tree and

c (N0; C
0; t0) = m (N0; C

�)� c�(i�1)i + c0kk0

= m (N0; C
�)� c�kk0 + c0kk0

< m (N0; C
�) :
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Hence, C� is irreducible.

Claim 2. Proposition 3.2.

We �rst prove that t satis�es both (A1) and (A2).

(A1) Trivial.

(A2) Given �p; �q 2 N0 with p < q,

c0�p�q
(3)
= max

sjp<s�q

�
c�0s�s

	 (4)
= max

sjp<s�q

�
c0�s�1�s

	
:

Under Claim 1, C 0 is an irreducible matrix and t is an mt in C 0.

By (4) and (5),

c (N0; C
0; t0) =

nX
s=1

c0�0s�s =

nX
s=1

c0�s�1�s = c (N0; C
0; t) :

Hence, t0 is an mt in C 0 which satis�es that c0i0i = ci0i for all i 2 N: By Remark

3.1, C� = (C 0)� = C 0.

Claim 3. If C� is irreducible, then there exits an mt t that satis�es (A1)-(A2)

Under Claim 2, we can �nd an mt t in (N0; (C�)
�) that satis�es (A1) and (A2).

But we already know (C�)� = C�, which completes the proof.

6.2 Proof of Proposition 3.3

(a) We compute t0 following Prim�s algorithm in (S0; C�). Since t satis�es (A2)

and s (q � 1) < s (q) for all q 2 f1; :::; jSjg we deduce that c�0�s(1) � c�0�s(q) for all

q 2 f1; :::; jSjg. Thus, the arc
�
0; �s(1)

�
will be the �rst arc in Prim�s algorithm.

Since t satis�es (A2) we deduce that c�0�s(2) � c�0�s(q) and c
�
�s(1)�s(2)

� c��s(1)�s(q) for

all q 2 f2; :::; jSjg. Hence,

min
n
c�0�s(2) ; c

�
�s(1)�s(2)

o
� min

n
c�0�s(q) ; c

�
�s(1)�s(q)

o
for all q 2 f2; :::; jSjg. Under (A2), c��s(1)�s(2) � c�0�s(2). Thus, the arc

�
�s(1); �s(2)

�
will be the second arc in Prim�s algorithm.
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If we continue with this process, following Prim�s algorithm, we obtain t0 =��
�s(q�1); �s(q)

�	jSj
q=1

as a tree. This means that t0 is an mt in (S0; C�) and hence,

vC� (S) = m (S0; C
�) = c (S0; C

�; t0) =

jSjX
q=1

c��s(q�1)�s(q) :

(b) Assume �rst p < jSj. Under (a), it is easy to see that

vC� (S)� vC�
�
S n

�
�s(p)

	�
= c��s(p�1)�s(p) + c��s(p)�s(p+1) � c��s(p�1)�s(p+1) :

Since t satis�es (A2) we deduce

vC� (S)� vC�
�
S n

�
�s(p)

	�
= min

n
c��s(p�1)�s(p) ; c

�
�s(p)�s(p+1)

o
:

Under Part (a), it is trivial to see that

vC� (S)� vC�
�
S n

�
�s(jSj)

	�
= c��s(jSj�1)�s(jSj) :

(c) This is an immediate consequence of (b) :

6.3 Proof of Proposition 3.4

Let t = f(�s�1; �s)gns=1 be an mt in C� satisfying (A1) and (A2). For all i 2 N , we

know that

Bi (N0; C
�) =

1

n!

X
�2�N

B�
i (N0; C

�) and

Ki (N0; C
�) =

1

n!

X
�2�N

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] :

We prove that B = K using an induction argument over the number of agents.

If n = 1, it is clear that B = K. Assume that B = K when there are fewer than

n agents.

We prove it when there are n agents. We �rst give an outline of the proof.

We consider two cases. If (0; �1) is not the most expensive arc in t (Case I), we

divide the mcstp in two problems with less than n agents each. Under separability
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and the induction hypothesis, B = K. If (0; �1) is the most expensive arc in t

(Case II), the proof is made through the orders. Given i 2 N , let �iN be the set of

orders � 2 �N such that �1 = i. We prove that the average of the vectors marginal

contributions over �iN is c�0�1 for agent i and Kj ((N n fig)0 ; Ci) for j 6= i, where

((N n fig)0 ; Ci) is the irreducible problem obtained from C� assuming that i is also

a source. We also prove that the average of B�
i over �

i
N is c�0�1 for agent i and

Bj ((N n fig)0 ; Ci) for j 6= i. Under the induction hypothesis, B = K.

Case I There exists an arc (�p�1; �p) 2 t with p > 1 such that c��p�1�p � c�0�1.

We take S = f�1; :::; �q�1g where q > 1 satis�es c��q�1�q � c�0�1 and c
�
�s�1�s < c�0�1

for all s 2 f2; :::; q � 1g. Under condition (A2), this implies c��q�1�q = c�0�q .

Under Proposition 3.3(a),

vC� (N) =

q�1X
s=1

c��s�1�s +
nX

s=q0

c��s�1�s

= vC� (S) + c��q�1�q +
nX

s=q+1

c��s�1�s

= vC� (S) + c�0�q +
nX

s=q+1

c��s�1�s

= vC� (S) + vC� (NnS) :

Making some computations we can prove that

Ki (N0; C
�) =

8<: Ki (S0; C
�) if i 2 S

Ki ((N n S)0 ; C�) if i 2 N n S:

We now prove that the last expression also holds with B instead of K: We �rst

prove that, given � 2 �N ;

B�
i (N0; C

�) =

8<: B�S
i (S0; C

�) if i 2 S

B
�NnS
i ((N n S)0 ; C�) if i 2 N n S:
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Take i; j 2 S; i 6= j and k 2 N n S. Since C� is an irreducible matrix, � is the

order satisfying (A1) and (A2), and S = f�1; :::; �q�1g, we have

c�ij < c�0i = c�0j = c�0�1 � c��q�1�q = c�0�q � c�ik = c�jk:

Let j 2 S be such that � (j) � � (i) for all i 2 S n fjg. If we apply Prim�s

algorithm to (N0; C�) solving indi¤erences by � we obtain:

� Agent j is the �rst agent of S to be connected.

For each i 2 Snfjg and k 2 N nS; c�0i = c�0j = c�0�1 � c�ik = c�jk and � (j) � � (i)

for each i 2 S n fjg : If j 2 Sp+1 and j =2 Sp; then Sp � N n S; which means

that agent j is the �rst agent in S to be connected.

� Agents in S n fjg connect to the source through agents in S:

For each i 2 S nfjg and k 2 (N n S)0 ; c�ij < c�ik. Assume that i 2 Sp+1, i =2 Sp,

and gp+1 = gp [ f(k; i)g. Then, k 2 S.

Now it is not di¢ cult to see that B�
i (N0; C

�) = B�S
i (S0; C

�) for all i 2 S:

We now prove that B�
i (N0; C

�) = B
�NnS
i ((N n S)0 ; C�) for all i 2 N nS: Let i1 be

the �rst agent of N nS selected when we apply Prim�s algorithm to (N0; C�) solving

indi¤erences by �. This means that c�0i1 = c��q�1�q and � (i1) � � (i) for all i 2 N n S

such that c�0i = c��q�1�q . Thus, i1 is also the �rst agent of N n S selected when we

apply Prim�s algorithm to ((N n S)0 ; C�) solving indi¤erences by �NnS: Moreover,

B�
i1
(N0; C

�) = B
�NnS
i1

((N n S)0 ; C�) = c��q�1�q :

Assume that i1; :::; ir are the �rst agents selected when we apply Prim�s algorithm

to (N0; C�) by � and ((N n S)0 ; C�) by �NnS: We also assume that B�
i (N0; C

�) =

B
�NnS
i ((N n S)0 ; C�) for all i 2 fi1; :::; irg.

Let i be the (r + 1)th selected agent in N n S when we apply Prim�s algorithm

to (N0; C�) solving indi¤erences by �. Assume that agent i is selected in Stage

p + 1. This means that i 2 Sp+1, i =2 Sp, and gp+1 = gp [ f(k; i)g. If k =2 S, then
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agent i is also selected when we apply Prim�s algorithm to ((N n S)0 ; C�) solving

indi¤erences by �NnS. Moreover, B�
i (N0; C

�) = B
�NnS
i ((N n S)0 ; C�) = c�ki. Assume

that k 2 S. Thus, c�ki = c��s�1�s where s � q and, hence, c��s�1�s � c��q�1�q . Since

c�jk < c��q�1�q when j; k 2 S and c�0k � c��q�1�q , we deduce that c
�
0i = c�ki. Thus, it is

possible to select the arc (0; i) instead of the arc (k; i). Now, agent i is also selected

when we apply Prim�s algorithm to ((N n S)0 ; C�) solving indi¤erences by �NnS and

B�
i (N0; C

�) = B
�NnS
i ((N n S)0 ; C�) = c�0i.

We now prove that

Bi (N0; C
�) =

8<: Bi (S0; C
�) if i 2 S

Bi ((N n S)0 ; C�) if i 2 N n S:

Take i 2 S (the case i 2 N n S is similar and we omit it).

Bi (N0; C) =
1

n!

X
�2�N

B�
i (N0; C)

=
1

n!

X
�2�N ;�S=�0

 X
�02�S

B�0

i (S0; C)

!

=
1

n!

n!

s!

X
�02�S

B�0

i (S0; C) = Bi (S0; C) :

Since S and N nS have fewer than n agents each, under the induction hypothesis

we deduce that B (N0; C�) = K (N0; C
�).

Case II c�0�1 > c��s�1�s for all s 2 f2; :::; ng.

For each i 2 N , we have i = �q for some q 2 f1; :::; ng. Since t satis�es (A2),

c�0i = max
s2f1;:::;qg

�
c��s�1�s

	
= c�0�1 : (6)

Moreover, given S � N with i 2 S, we de�ne the mcstp
�
S�ii ; C

i
�
as the mcstp

where the set of agents is S�i = S n fig ; the source of this problem is agent i; and

the cost matrix is C� (Ci = C�S).
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Moreover, given � 2 �N , we denote as ��i the order induced by � among agents

in N�i.

We now proceed with a series of claims.

Claim 1 For all i 2 N and j 2 N�i,

Bj
�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�iN

B�
j (N0; C

�)

where �iN = f� 2 �N j �1 = ig.

Proof. Take j 2 N�i. Since t satis�es (A2) and c�0�1 > c��s�1�s for all s 2 f2; :::; ng,

we deduce that c�ij < c�0j. By the de�nition of Prim�s algorithm, for all � 2 �iN ,

B�
j (N0; C

�) = B��i

j

�
N�i
i ; Ci

�
:

Note that � 2 �iN if and only if ��i 2 �N�i. Hence,

Bj
�
N�i
i ; Ci

�
=

1

(n� 1)!
X

�2�N�i

B�
j

�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�iN

B�
j (N0; C

�) :

Claim 2 For all S � N and all i 2 S,

m (S0; C
�) = m

�
S�ii ; C

i
�
+ c�0�1 :

Proof. Assume S =
�
�s(1); :::; �s(jSj)

	
such that s (q � 1) < s (q) for all q 2

f1; :::; jSjg (s (0) = 0). Under Proposition 3.3(a), t0 =
��
�s(q�1); �s(q)

�	jSj
q=1

is an

mt in (S0; C�). Under (6), c�0�s(1) = c�0�1.

The graph ti = t0 n
��
0; �s(1)

�	
is a tree in

�
S�ii ; C

i
�
and c

�
S�ii ; C

i; ti
�
=

m (S0; C
�)� c�0�1. Thus, m

�
S�ii ; C

i
�
� m (S0; C

�)� c�0�1.

Assume m
�
S�ii ; C

i
�
< m (S0; C

�)� c�0�1. Thus, there exists a tree bti in �S�i0 ; Ci�
which satis�es c

�
S�ii ; C

i; bti� < c
�
S�ii ; C

i; ti
�
. Hence, bt = bti[f(0; i)g is a well-de�ned

tree in (S0; C�). Under (6),

c
�
S0; C

�;bt� = c�0i + c
�
S�ii ; C

i; bti� < c�0�1 + c
�
S�ii ; C

i; ti
�
= m (S0; C

�)

which is a contradiction. Thus, m
�
S�ii ; C

i
�
= m (S0; C

�)� c�0�1.
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Claim 3 For all i 2 N and j 2 N�i,

Kj

�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�iN

[vC� (Pre (j; �) [ fjg)� vC� (Pre (j; �))] :

Proof. Under Claim 2, for all � 2 �iN and j 2 N�i, we can prove that

vC� (Pre (j; �) [ fjg)�vC� (Pre (j; �)) = vCi
�
Pre

�
j; ��i

�
[ fjg

�
�vCi

�
Pre

�
j; ��i

��
:

But � 2 �iN if and only if ��i 2 �N�i. Hence, Claim 3 holds.

Claim 4 For all i 2 N and � 2 �iN ,

B�
i (N0; C

�) = vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = c�0�1 :

Proof. It is a trivial consequence of (6).

Claim 5 For all j 2 N , Bj (N0; C�) = Kj (N0; C
�).

Proof. Take j 2 N . Under Claims 1 and 4, making some computations we can

prove that

Bj (N0; C
�) =

1

n
c�0�1 +

1

n

X
i2Nnfjg

Bj
�
N�i
i ; Ci

�
:

Under Claims 3 and 4, making some computations we can prove that

Kj (N0; C
�) =

1

n
c�0�1 +

1

n

X
i2Nnfjg

Kj

�
N�i
i ; Ci

�
:

Under the induction hypothesis we know that B
�
N�i
i ; Ci

�
= K

�
N�i
i ; Ci

�
for all

i 2 N . Thus, Bj (N0; C�) = Kj (N0; C
�).

6.4 Proof of Proposition 3.5

(a) Let (N0; C) be an mcstp. Assume �rst that a rule  satis�es IIT . Since C and

C� are tree-equivalent, we have  (N0; C) =  (N0; C
�).

Assume now that  depends only on the irreducible form. Given that (N0; C) and

(N0; C
0) are two tree-equivalent problems, we have to prove  (N0; C) =  (N0; C

0).
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Since (N0; C) and (N0; C 0) are tree-equivalent problems, there exists some mt

t = f(i0; i)gi2N in both (N0; C) and (N0; C 0) such that ci0i = c0i0i for all i 2 N . Under

Remark 3.1, C� = C 0�. Since  depends only on the irreducible form,  (N0; C) =

 (N0; C
0).

(b) If  satis�es SOL,  (N0; C�) �  (N0; C) because C� � C (Lemma 3.1(b)).

Since m (N0; C) = m (N0; C
�),  (N0; C) =  (N0; C

�). Under (a), we conclude that

 satis�es IIT .

6.5 Proof of Lemma 4.1

(a) Let  be a rule satisfying IOC. Given N = f1; 2g, x > 0 and y > 0 we consider

the four mcstp represented by the following �gures:

1 2

0

0

0

x

1 2

0

0

0

0

1 2

0

y

0

0

1 2

0

y

0

x

(N0,C1) (N0,C2) (N0,C3) (N0,C4)

1 2

0

0

0

x

1 2

0

0

0

x

1 2

0

0

0

0

1 2

0

0

0

0

1 2

0

y

0

0

1 2

0

y

0

0

1 2

0

y

0

x

1 2

0

y

0

x

(N0,C1) (N0,C2) (N0,C3) (N0,C4)

We know that  (N0; C1) = (a;�a) for some a 2 R. Since  satis�es IOC,

 (N0; C
2) =  (N0; C

1),  (N0; C3) =  (N0; C
1),  1 (N0; C

4) =  1 (N0; C
2) = a;

and  2 (N0; C
4) =  2 (N0; C

3) = �a. Thus,  (N0; C4) = (a;�a), which is a contra-

diction because m (N0; C4) = min fx; yg > 0.

(b) In Bergantiños and Vidal-Puga (2004b), for any irreducible form (N0; C
�), we

proved that

'i (N0; C
�) =

1

n!

X
�2�N

c�i�i

where i� 2 Pre (i; �) [ f0g and c�i�i = min
�
c�ji j j 2 Pre (i; �) [ f0g

	
.

Thus, given irreducible C�; C 0� 2 CN ,

'i (N0; C
�) =

1

n!

X
�2�N

c�i�i =
1

n!

X
�2�N

c0�i�i = 'i (N0; C
0�) :
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6.6 Proof of Lemma 4.2

Let k; k0 2 N0 and C�; C� 2 CN such that c�kk0 = � < � = c�kk0, otherwise c
�
ij = c�ij.

It is enough to prove that C�� � C��.

Since C� � C� we deduce that m (N0; C�) � m
�
N0; C

�
�
.

Assume �rst that there exists some mt t in (N0; C�) such that (k; k0) =2 t. Thus,

c (N0; C
�; t) = c

�
N0; C

�; t
�
= m (N0; C

�) :

Hence, m (N0; C�) = m
�
N0; C

�
�
and t is an mt in

�
N0; C

�
�
. Moreover, c�ij = c�ij

for all (i; j) 2 t. Under Remark 3.1, this means that C�� = C��.

Now assume that for all mt t in (N0; C�), (k; k0) 2 t. Let G be the set of trees

which do not contain the arc (k; k0).

Let tG 2 G such that

c
�
N0; C

�; tG
�
= min

t2G
fc (N0; C�; t)g :

Since (k; k0) =2 tG, we deduce that c
�
N0; C

�; tG
�
= c

�
N0; C

�; tG
�
.

We de�ne 
 = c
�
N0; C

�; tG
�
� m (N0; C

�) : Note that, under our hypothesis,


 > 0. We now distinguish two cases:

Case 1: � � � � 
. Let t = f(i0; i)gi2N be an mt in C�. We can assume wlog

that k0 = k0. Since � � � � 
, we have that t is also an mt in C�.

We know that C�� = (C�)t and C�� =
�
C�
�t
: Now, (C�)t �

�
C�
�t
is a trivial

consequence of the de�nition of minimal network.

Case 2: � � � > 
. Thus, tG is an mt in
�
N0; C

�
�
but not t.

Let C 00 2 CN such that c00kk0 = �+
, otherwise c00ij = c�ij. Note that C
� � C 00 � C�.

Moreover, C� and C 00 are under the hypothesis of Case 1, and thus C�� � C 00�.

We know that tG is an mt in both
�
N0; C

�
�
and (N0; C 00), and (k; k0) =2 tG. Thus,

c�ij = c00ij for all (i; j) 2 tG: This means that
�
N0; C

�
�
and (N0; C 00) are tree-equivalent.

Under Remark 3.1, C 00� = C��. Thus, C�� � C��.
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6.7 Proof of Theorem 4.1

Independence of Irrelevant Trees (IIT ). This is a consequence of Proposition

3.5(a).

Solidarity (SOL). Given a mcstp (N0; C), S � N , and i 2 S, under Proposition

3.3(b) it is not di¢ cult to deduce that

vC� (S)� vC� (S n fig) = min
j2S0nfig

c�ij:

Let (N0; C) and (N0; C 0) be such that C � C 0. Under Lemma 4.2, C� � C 0�.

Thus,

vC� (S)� vC� (S n fig) � vC0� (S)� vC0� (S n fig) :

Under the strong monotonicity of the Shapley value (Young, 1985),

' (N0; C) = Sh (N; vC�) � Sh (N; vC0�) = ' (N0; C
0) :

Cost Monotonicity (CM). Since ' satis�es SOL we conclude that ' also satis�es

CM .

Population Monotonicity (PM). We must prove that for all mcstp (N0; C), all

S � N , and all i 2 S, we have 'i (N0; C) � 'i (S0; C). It is enough to prove it for

S = N n fkg for some k 2 N . We assume wlog that k = n.

We �rst prove the following Claim:

Claim. Assuming c0n = �, cin = � for all i 2 N nfng, and � > � > max
i;j2N0nfng

fcijg,

we have

'i (N0; C) =

8<: � if i = n

'i ((N n fng)0 ; C) otherwise.

Proof. Let t be an mt in C and let � 2 �N be an order in which the agents in N

connect to the source via t following Prim�s algorithm. Under the hypothesis of the

Claim, it is clear that n is the last node to be connected to the source, i.e. n = �n,

and moreover, that (0; n) 2 t.
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On the other hand, it is clear that t�n = tn f(0; n)g is also anmt in ((N n fng)0 ; C)

and that �Nnfng is an order in which the agents in N n fng connect to the source via

t�n following Prim�s algorithm.

Under Proposition 3.2, t̂ = f(�s�1; �s)gns=1 is an mt in (N0; C�) satisfying (A1)

and (A2). Analogously, t̂�n = f(�s�1; �s)gn�1s=1 is anmt in ((N n fng)0 ; C�) satisfying

(A1) and (A2).

Let (Nn fng ; v�n) be the cooperative game associated with ((N n fng)0 ; C�).

Under Proposition 3.3(a), vC� (S) = v�n (S n fng) + � if n 2 S and vC� (S) =

v�n (S) if n =2 S.

Consider the cooperative games (N;w1) and (N;w2) where for each S � N ,

w1 (S) =

8<: v�n (S n fng) if n 2 S

v�n (S) if n =2 S:
and

w2 (S) =

8<: � if n 2 S

0 if n =2 S:

It is not di¢ cult to see that

Shi (N;w1) = Shi (N n fng ; v�n) = 'i ((N n fng)0 ; C�) if i 6= n;

Shn (N;w1) = 0;

Shi (N;w2) = 0 if i 6= n; and

Shn (N;w2) = �:

Since vC� (S) = w1 (S) + w2 (S) for all S � N , ' (N0; C) = Sh (N; vC�), and the

Shapley value is additive, the result is concluded.

Let � = max
i;j2N0

fcijg + 1 and � = � + 1. Let C0 2 CN be such that c00n = �,

otherwise c0ij = cij. For all k = 1; :::; n � 1, we de�ne Ck 2 CN such that ckkn = �,

otherwise ckij = ck�1ij .

Take i 2 N n fng. Since ' satis�es SOL,

'i (N0; C) � 'i
�
N0; C

0
�
� 'i

�
N0; C

1
�
� :::: � 'i

�
N0; C

n�1� :
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Under the Claim,

'i
�
N0; C

n�1� = 'i
�
(N n fng)0 ; Cn�1

�
= 'i ((N n fng)0 ; C) :

Thus, 'i (N0; C) � 'i ((N n fng)0 ; C).

Separability (SEP ). Since PM implies SEP , ' satis�es SEP:

Core Selection (CS). Since PM implies CS, ' satis�es CS.

Continuity (CON). Clearly, ' (N0; C) = (f � g � h) (C) for all C 2 CN , where

h (C) = C� and g (C) = vC for all C 2 CN , and f (v) = Sh (N; v) for all v. Since f ,

g, and h are continuous functions, ' is also continuous.

Symmetry (SYM). See Bergantiños and Vidal-Puga (2004a).

Equal Share of Extra Costs (ESEC). Let (N0; C) and (N0; C 0) be as in the

de�nition of ESEC. It is straightforward to check that both C� and C 0� also satisfy

the conditions in the de�nition of ESEC. Moreover, c�0 = c0 and c0�0 = c00.

It is not di¢ cult to prove that there exists a tree t satisfying (A1) and (A2) in

C� and C 0�: Hence, for any order � 2 �N , B�
i (N0; C

�) = B�
i (N0; C

0�) if i 6= �1,

B�
�1
(N0; C

�) = c0 and B�
�1
(N0; C

0�) = c00.

Thus, given i 2 N ,

'i (N0; C
0) =

1

n!

X
�2�N

B�
i (N0; C

0�)

=
1

n!

X
�2�N

B�
i (N0; C

�) +
(n� 1)! (c00 � c0)

n!

= 'i (N0; C
0) +

c00 � c0
n

:

Positivity (POS). Given S � N , under Proposition 3.3(b), vC� (S)�vC� (S n fig) �

0 for all i 2 N: Thus, 'i (N0; C) = Shi (N; vC�) � 0.
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6.8 Proof of Proposition 4.1

Under Lemma 4.1, ' satis�es IOC in irreducible forms. Under Theorem 4.1, '

satis�es SYM .

We now prove uniqueness. Let  be a rule satisfying SYM and IOC.

Let (N0; C�) be an irreducible form and let t = f(�s�1; �s)gns=1 be anmt satisfying

(A1) and (A2).

Let � be the number of di¤erent costs in C�, namely

� =
���c�ij j i; j 2 N0	�� :

Let fx1; :::; x�g be the � di¤erent costs in C�. We can assume wlog that x1 <

::: < x�. We prove that  is unique by induction on �.

If � = 1, then c�ij = x1 for all i; j 2 N0. Thus, all agents are symmetric. Under

SYM ,  i (N0; C
�) =  j (N0; C

�) for all i; j 2 N . Thus,  i (N0; C
�) = m(N0;C�)

n
=

'i (N0; C
�) for all i 2 N .

Now assume that  = ' when � < p. We prove it for � = p.

Let N 0 � N be the set of agents whose minimal cost is x1, namely

N 0 =
�
i 2 N j c�ij = x1 for some j 2 N0n fig

	
:

We now apply an induction argument to jN 0j.

If N 0 = fkg, we deduce c�0k = x1 and c�ik > x1 for all i 2 Nn fkg. We de�ne C 0 as

c00k = x2, otherwise c0ij = c�ij. It is straightforward to check that C
0 is an irreducible

matrix. Moreover, for all i 2 N n fkg and j 2 N0; c
0
ij = c�ij: Under the induction

hypothesis applied to �, we have that  (N0; C 0) = ' (N0; C
0). Under IOC, for all

i 2 Nn fkg,

 i (N0; C
�) =  i (N0; C

0) = 'i (N0; C
0) = 'i (N0; C

�) :

Thus,  (N0; C�) = ' (N0; C
�).

Assume  = ' when � = p and jN 0j < n0. We prove it for � = p and jN 0j = n0.

Fix k 2 N 0. We de�ne

Xk = fi 2 N j c�ik = x1g [ fkg :
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Clearly, Xk � N 0. We �rst prove that the agents in Xk are symmetric. Assuming

k = �r, given �q 2 Xk with r < q (the reasoning for q < r is analogous), we have

x1 = c��r�q = max
sjr<s�q

�
c��s�1�s

	
and thus �s 2 Xk for all s 2 fr; :::; qg. From this it is not di¢ cult to deduce that

Xk = f�sgs1s=s0 for some s0; s1. Moreover, c
�
ij = x1 for all i; j 2 Xk.

Let �q 2 Xk, and let �p 2 NnXk with p < s0 (the reasoning for s1 < p is

analogous). We have

c��p�q = max
sjp<s�q

�
c��s�1�s

	
= max

sjp<s�r

�
c��s�1�s

	
= c��p�r

and hence �q and �r are symmetric.

We de�ne C 0 as follows: c0ij = x2 if i; j 2 Xk, otherwise c0ij = c�ij. It is straight-

forward to check that C 0 is an irreducible matrix. Moreover, for all i 2 NnXk and

j 2 N0, c0ij = c�ij. Under the induction hypothesis applied to � (if Xk = N 0) or

jN 0j (if Xk  N 0), we have that  (N0; C 0) = ' (N0; C
0). Under IOC,  i (N0; C

�) =

'i (N0; C
�) for all i 2 NnXk. Since all agents in Xk are symmetric in C�; for all

i 2 Xk;

 i (N0; C
�) =

m (N0; C
�)�

P
j2NnXk

 j (N0; C
�)

jXkj
= 'i (N0; C

�) :

6.9 Proof of Theorem 4.2

Under Theorem 4.1, we know that ' satis�es IIT , SEP , and ESEC.

We now prove its uniqueness. Let  be a rule satisfying these properties. We

apply an induction argument over n. If n = 1, the result is trivial. Assume the result

holds for fewer than n agents. We prove it for n agents.

Since  satis�es IIT , under Proposition 3.5(a), we can restrict ourselves to irre-

ducible matrices. Let t = f(�s�1; �s)gns=1 be an mt in (N0; C�) satisfying (A1) and

(A2). Let �r 2 N be such that c��r�1�r = max
sj0<s�n

�
c��s�1�s

	
. We have two cases:
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1. r > 1. Take S = f�sgr�1s=1. Under Proposition 3.3(a), we know that f(�s�1; �s)g
r�1
s=1

is anmt in (S0; C�) and f(0; �r)g[f(�s�1; �s)gns=r+1 is anmt in ((N n S)0 ; C�).

Moreover, c�0�r = max
0<s�r

�
c��s�1�s

	
= c��r�1�r . Thus,

m (S0; C
�) +m ((N n S)0 ; C�) =

nX
s=1

c��s�1�s = m (N0; C
�) :

Under SEP ,  i (N0; C
�) =  i (S0; C

�) when i 2 S and  i (N0; C�) =  i ((N n S)0 ; C�)

when i =2 S.

We know that S 6= ; and N n S 6= ; because r > 1. Under the induction

hypothesis,  (S0; C�) = ' (S0; C
�) and  ((N n S)0 ; C�) = ' ((N n S)0 ; C�).

Since ' satis�es SEP we conclude that  (N0; C�) = ' (N0; C
�).

2. r = 1. Let p > 1 be such that c��p�1�p = max
1<s�n

�
c��s�1�s

	
. Clearly, c��p�1�p � c�0�1.

We de�ne C 0 as follows: c0ij = c�ij if i; j 2 N and c00i = c�0i � � for all i 2 N ,

where � = c�0�1 � c��p�1�p � 0. Under ESEC, for all i 2 N ,

 i (N0; C
�) =  i (N0; C

0) +
�

n
and

'i (N0; C
�) = 'i (N0; C

0) +
�

n
:

It is straightforward to prove thatC 0 is an irreducible matrix satisfying c0�p�1�p =

max
0<s�n

�
c0�s�1�s

	
. Applying Case 1 toC 0 we conclude that  (N0; C 0) = ' (N0; C

0).

Hence,  (N0; C�) = ' (N0; C
�).
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