

Decentralized multilateral bargaining

Yuan Ju (University of York)
Juan Vidal-Puga (Universidade de Vigo)

Motivation and contribution

- 1. A decentralized mechanism of multilateral negotiation:
 - a. Generalizing the alternating-offer bargaining to n-player coalitional environment
 - b. Counteroffers, partial agreements, local unanimity, no one excluded
- 2. Implement the Shapley NTU value
- 3. A solution theory synthesizes the Nash solution and Shapley value

Outline

- 1. Introduction: Nash program and NTU games
- 2. Non-cooperative game and the Shapley NTU value
- 3. Conclusion

Section 1: Introduction

Nash program and NTU games

Game theory

Cooperative game theory

Non-cooperative game theory

Game theory

Cooperative game theory

Non-cooperative game theory

- Implementation
- Nash program: Survey by Serrano (2005, 2021)
- Non-cooperative approach

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Bargaining problems

- Unanimity required
- Non-transferable utility
- Nash solution (1950)

Non transferable utility (NTU) games

- Partial agreements
- Non-transferable utility
- Harsanyi value (1963), Shapley NTU value (1969), consistent value (1989, 1992)

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Bargaining problems

- Unanimity required
- Non-transferable utility
- Nash solution (1950)

A **Non-Transferable Utility (NTU) game** is a pair (N, V) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $V: S \subseteq N \rightarrow V(S) \subset \mathbb{R}^S$ correspondence satisfying:
 - \circ V(S) non-empty, closed, convex, comprehensive, and bounded-above.
 - Superadditivity: $V(S) \times V(T) \subset V(S \cup T)$ for all $S, T \subset N, S \cap T = \emptyset$.
 - \circ V(S) nonlevel: For each x in the frontier of V(S), there exists a unique normalized vector λ orthogonal to V(S) on x with all its coordinates positive.

A **rule** is a function Φ that assigns to each NTU game (N,V) a payoff allocation Φ $(N,V) \in V(N)$.

Example

Pure exchange economy with three players.

Coffee beans and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee beans, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Example

Pure exchange economy with three players.

Coffee beans and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee beans, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

$$V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \le 0\}$$

$$V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : 2x_1 + x_2 \le 1\}$$

$$V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1, x_3 \le 0\}$$

$$V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2, x_3 \le 0\}$$

$$V(N) = \{x \in \mathbb{R}^N : x_1 + x_2 + x_3 \le 1\}$$

A **Transferable Utility (TU) game** is a pair (N, v) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

A **Transferable Utility (TU) game** is a pair (N, v) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

Shapley value for TU games: It can be obtained from many different approaches:

- Axiomatic
- Marginalistic
- Potential
- Dividends

A Transferable Utility (TU) game is a pair (N, v) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

Shapley value for TU games: It can be obtained from many different approaches:

- Axiomatic (too loose)
- Marginalistic
- Potential (too strict)
- Dividends

A **Transferable Utility (TU) game** is a pair (N, v) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

Shapley value for TU games:

$$Sh_i(N,v) = \sum_{S \subset N: i \in S} d_v(S)/|S|$$

where $d_{v}(S) \subseteq \mathbb{R}$ are the Harsanyi dividends of v.

$$Sh_i(N,v) = \sum_{\pi \in \Pi} m_i^{\pi}(v)/|\Pi|$$

where $m^{\pi}(v) \subseteq \mathbb{R}^{N}$ are the marginal contributions vectors of v under order π .

```
v({i})=0

v({1,2})=6

v({1,3})=6

v({2,3})=0

v(N)=6
```

```
v(\{i\})=0

v(\{1,2\})=6

v(\{1,3\})=6

v(\{2,3\})=0

v(N)=6
```

$$v(\{i\})=0 V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \le 0\}$$

$$v(\{1,2\}) = 6 V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \le 6\}$$

$$v(\{1,3\}) = 6 V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \le 6\}$$

$$v(\{2,3\}) = 0 V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \le 0\}$$

$$v(N) = 6 V(N) = \{x \in \mathbb{R}^{N} : x_1 + x_2 + x_3 \le 6\}$$

$$Sh(N,v) = \{4,1,1\}$$

$$v(\{i\})=0 V(\{i\}) = \{x \in \mathbb{R}^{\{i\}}: x_i \le 0\}$$

$$v(\{1,2\}) = 6 V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}}: x_1 + x_2 \le 6\}$$

$$v(\{1,3\}) = 6 V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}}: x_1 + x_3 \le 6\}$$

$$v(\{2,3\}) = 0 V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}}: x_2 + x_3 \le 0\}$$

$$v(N) = 6 V(N) = \{x \in \mathbb{R}^{N}: x_1 + x_2 + x_3 \le 6\}$$

$$Sh(N,v) = \{4,1,1\} Sh(N,v) = \{4,1,1\}$$

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$$\begin{array}{lll} v(\{i\}) = 0 & V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} \colon x_i \leq 0\} \\ v(\{1,2\}) = 6 & V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} \colon x_1 + x_2 \leq 6\} \\ v(\{1,3\}) = 6 & V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} \colon x_1 + x_3 \leq 6\} \\ v(\{2,3\}) = 0 & V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} \colon x_2 + x_3 \leq 0\} \\ v(N) = 6 & V(N) = \{x \in \mathbb{R}^{N} \colon x_1 + x_2 + x_3 \leq 6\} \\ \end{array}$$

$$Sh(N,v) = (4,1,1)$$
 $Sh(N,V) = (4,1,1)$

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$$v(\{i\}) = 0 \qquad V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \le 0\}$$

$$v(\{1,2\}) = 6 \qquad V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \le 6\}$$

$$v(\{1,3\}) = 6 \qquad V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \le 6\}$$

$$v(\{2,3\}) = 0 \qquad V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \le 0\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : x_1 + x_2 + x_3 \le 6\}$$

$$v(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : \lambda_1 x_1 + \lambda_2 x_2 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : \lambda_2 x_2 + \lambda_3 x_3 \le 0\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$$

$$v(\{2,3\}) = \{x \in \mathbb{R}^{N} :$$

1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.

- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^{λ}) .

- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^{λ}) .
- 3. We compute $Sh(N, v^{\lambda})$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.

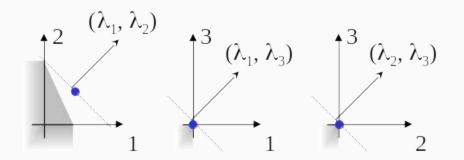
- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^{λ}) .
- 3. We compute $Sh(N,v^{\lambda})$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.
- 4. If $Sh(N, v^{\lambda}) \subseteq V(N)$, we say that $Sh(N, v^{\lambda})$ is a **Shapley NTU** value of (N, V).

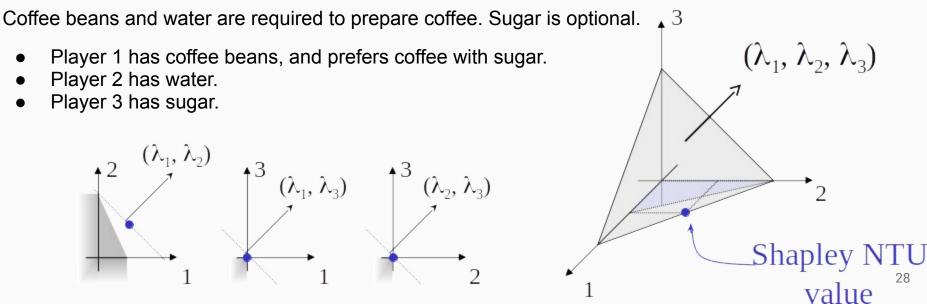
The Shapley NTU value (Shapley, 1969)

Pure exchange economy with three players.

Player 1 has coffee beans, and prefers coffee with sugar.

- Player 2 has water.
- Player 3 has sugar.





Money as utility (alternative 1)

- 1. We give players money with exchange rates given by $(\lambda^S)_{S\subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S\subseteq N$.
 - (Exchange rates depend on which players participate).

Money as utility (alternative 1)

- We give players money with exchange rates given by (λ^S)_{S⊆N} with λ^S∈Δ^S for all S⊆N.
 (Exchange rates depend on which players participate).
- 2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^N in order to compute a payoff allocation $H(N, v^{\lambda})$.

Money as utility (alternative 1)

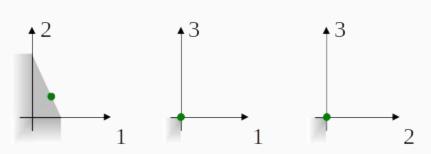
- 1. We give players money with exchange rates given by $(\lambda^S)_{S\subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S\subseteq N$. (Exchange rates depend on which players participate).
- 2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^N in order to compute a payoff allocation $H(N, v^{\lambda})$.
- 3. If $H(N,v^{\lambda}) \subseteq V(N)$, we say that $H(N,v^{\lambda})$ is a **Harsanyi value** of (N,V).

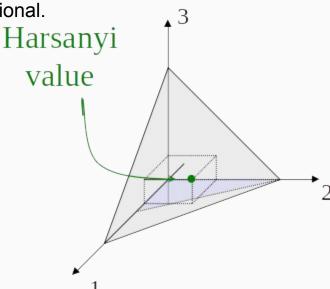
The Harsanyi value (Harsanyi, 1963)

Pure exchange economy with three players.

Coffee beans and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee beans, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.





Money as utility (alternative 2)

- 1. We give players money with exchange rates given by $(\lambda^S)_{S\subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S\subseteq N$.
 - (Exchange rates depend on which players participate).

Money as utility (alternative 2)

- 1. We give players money with exchange rates given by $(\lambda^S)_{S\subseteq \mathbb{N}}$ with $\lambda^S \in \Delta^S$ for all $S\subseteq N$.
 - (Exchange rates depend on which players participate).
- 2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^S in order to compute a payoff allocation $C(N, v^{\lambda})$.

Money as utility (alternative 2)

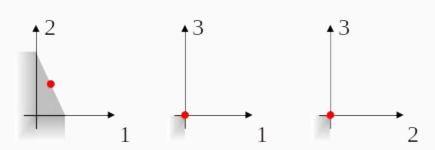
- 1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq \mathbb{N}}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$. (Exchange rates depend on which players participate).
- 2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^S in order to compute a payoff allocation $C(N, v^{\lambda})$.
- 3. If $C(N,v^{\lambda}) \subseteq V(N)$, we say that $C(N,v^{\lambda})$ is a **consistent value** of (N,V).

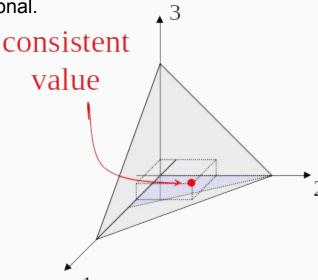
The consistent value (Maschler and Owen, 1992)

Pure exchange economy with three players.

Coffee beans and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee beans, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.





		Exchange rate		
			Coalition dependent $(\lambda^S)_{S \subseteq N}$, $\lambda^S \in \Delta^S \ \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S		
		λ^N		
	average of marginal contributions vectors			

			Exchange rate	
			Coalition dependent $(\lambda^S)_{S \subseteq N}$, $\lambda^S \in \Delta^S \ \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S		Shapley NTU
		λ^N		
	average of marginal contributions vectors			value

		Exchange rate		
			Coalition dependent $(\lambda^S)_{S \subseteq N}$, $\lambda^S \in \Delta^S \ \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^{S}		Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors			value

		Exchange rate		
			Coalition dependent $(\lambda^S)_{S \subseteq N}$, $\lambda^S \in \Delta^S \ \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^{S}		Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors		Consistent value	value

		Exchange rate		
			Coalition dependent $(\lambda^S)_{S \subseteq N}$, $\lambda^S \in \Delta^S \ \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S	(Consistent Harsanyi value)	Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors		Consistent value	value

Section 2

Non-cooperative game

Implementation of the Nash solution in bargaining games

- Nash (Econometrica, 1953)
- Rubinstein (Econometrica, 1982)
- van Damme (JET, 1986)
- Binmore ("The economics of bargaining", ed. by Binmore and Dasgupta,
 1987)
- Maschler, Owen and Peleg ("The Shapley value", ed. by Roth, 1988)
- Hart and Mas-Colell (Econometrica, 1996)

Implementation of the Shapley value in TU games

- Gul (Econometrica, 1989)
- Hart and Moore (J Pol Ec, 1990)
- Winter (ET, 1994)
- Evans (GEB, 1992)
- Hart and Mas-Colell (Econometrica, 1996)
- Dasgupta and Chiu (IJGT, 1998)
- Pérez-Castrillo and Wettstein (JET, 2001)
- Vidal-Puga (EJOR, 2008)
- Ju (JME, 2012)

Common features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...) in N.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition *S*, without possibility to rejoin.
- The risk of these splits is the tool that make players in *N* to reach an agreement in equilibrium.

Alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...) in N, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition *S*.
- The risk of disagreement is the tool that make players in *N* to reach an agreement in equilibrium.

Common and alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in N.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition S, without possibility to rejoin.
- The risk of these splits is the tool that make players in *N* to reach an agreement in equilibrium.

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in N, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition S.
- The risk of disagreement is the tool that make players in *N* to reach an agreement in equilibrium.

The non-cooperative game: Rounds 1 and 2

An order of the players is randomly chosen (assume 12...n).

- 1. Player 1 presents a rule $f^{\{1\}}$: $S \subseteq N \rightarrow f^{\{1\}}(S) \subseteq V(S)$.
- 2. Player 2 either
 - a. agrees on $f^{\{1\}}$ and joins $\{1\}$ (so coalition $\{1,2\}$ is formed), or
 - b. disagrees and proposes a new rule $f^{\{2\}}$ to player 1.
 - i. If player 1 accepts, $\{1,2\}$ forms with rule $f^{\{2\}}$, and the turn passes to player 3.
 - ii. If player 1 rejects, the two player set apart for now, and the turn passes to player 3.

The non-cooperative game: Round r

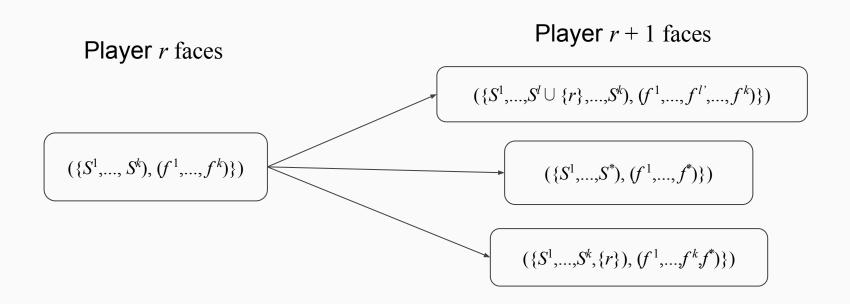
Player r faces $((S^1, f^1), ..., (S^k, f^k))$ where

- $\{S^1,...,S^k\}$ is a partition of $\{1,...,r-1\}$ and
- $(f^1,...,f^k)$ is the vector of rules they have respectively agreed upon.

Player *r* either

- 1. agrees on some (S^l, f^l) and joins S^l , or
- 2. disagrees and proposes a new rule f^* to everyone.
 - a. If some coalitions accept (unanimity required inside), they form a new merged coalition with r and rule f^* , and the turn passes to player r + 1.
 - b. If all coalitions reject, player r does not join any coalition and the turn passes to r+1 with $((S^1, f^1), ..., (S^k, f^k), (\{r\}, f^*))$.

Round r



Last round (n+1)

- If we face $((\{N\}),(f))$, i.e., all coalitions have unanimously agreed on a single rule f, then each $i \in N$ receives f(N) and the game finishes.
- If we face $((S^1, f^1), ..., (S^k, f^k))$ with k > 1, i.e., there is no unanimity, then
 - With $\varrho \in [0,1)$, the whole process is repeated with a (new) random order.
 - With 1ϱ , each $i \in S^l$ receives $f_i^l(S^l)$ and the game ends.

Main result

There exists a stationary subgame perfect equilibrium payoff allocation for each order. Moreover, this payoff allocation is efficient and individually rational.

Furthermore, as ϱ approaches 1, the expected final payoff allocation approaches a Shapley NTU value.

Corollary:

- For TU games, the Shapley value is the unique expected equilibrium payoff.
- For bargaining problems, the unique expected equilibrium payoff approaches the Nash bargaining solution as ϱ approaches 1.

Section 3

Conclusion

Summary

Summary:

- 1. We design a decentralized protocol of bargaining (non-cooperative game) where no players are ever excluded.
- 2. We determine the final payoffs in equilibrium.
- 3. The final payoffs approach the Shapley NTU value.

Non-cooperative approaches

- Consistent value: Hart and Mas-Colell (Econometrica, 1996)
- Shapley NTU value: This research.
- Harsanyi value: Open question.