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Abstract

In bargaining problems, a rule satisfies ordinal invariance if it does

not depend on order-preserving transformations of the agents’ utili-

ties. In this paper, a non-cooperative game for three agents, based on

bilateral offers, is presented. The ordinal Shapley-Shubik rule arises

in subgame perfect equilibrium as the agents have more time to reach

an agreement.

Keywords: ordinal bargaining, ordinal Shapley-Shubik rule.

1 Introduction

In bargaining problems, a rule satisfies ordinal invariance if it does not depend

on order-preserving transformations of the agents’ utilities. For two agents,

Shapley (1969) shows that no efficient rule, apart from the dictatorial one,
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satisfies ordinal invariance. However, this negative result does not hold any

more for more than two agents. Shubik (1982) first documents an efficient,

symmetric, and ordinal invariant rule for three agents. Even though there is

no reference on the origin of this rule in Shubik (1982), Pérez-Castrillo and

Wettstein (2006, p. 297) attribute it to Shapley (1969). Furthermore, Roth

(1979, p. 72-73) mentions a three-agent ordinal bargaining rule proposed

by Shapley and Shubik in a 1974 working paper. Following Kıbrıs (2004a,

2004b), we refer to it as the Shapley-Shubik rule.

Kıbrıs (2004b) describes a class of three-agent problems which generate all

bargaining problems. On this class, the ordinal Shapley-Shubik rule coincides

with the Egalitarian rule (Kalai, 1977) and the Kalai-Smorodinsky rule (Kalai

and Smorodinsky, 1975), and moreover it is the only symmetric member

of a class of ordinal monotone path rules. Kıbrıs (2004a) also shows that

the ordinal Shapley-Shubik rule is deeply related to a family of solutions

defined by Bennett (1997) for the class of multilateral bargaining problems.

Moreover, Kıbrıs (2012) characterizes the ordinal Shapley-Shubik rule using

a weaker version of Independence of Irrelevant Alternatives (Nash, 1950).

On the other hand, Samet and Safra (2005) extend the ordinal Shapley-

Shubik rule for more than three agents using constructions similar to O’Neill

et at. (2004). Safra and Samet (2004) provide yet another family of ordinal

solutions.

Following a different approach, Pérez-Castrillo and Wettstein (2006) and

Zhang and Zhang (2008) use the underlying physical environment generating

the utility possibilities frontier. This allows Pérez-Castrillo and Wettstein

(2006) to define an ordinal extension for the Shapley value for an arbitrary

number of agents. We will call this value the ordinal Shapley value.

Finally, a mixed approach is given by Calvo and Peters (2005), who study

situations where there exist ordinal and cardinal agents.

The definitions of these values take a cooperative point of view, in the

sense that it does not inquire about how the agents interact in order to agree

on them. A complementary approach is to specify the details of negotiation
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by proposing non-cooperative games whose equilibria yield the desired val-

ues. This is the basis of the so-called Nash program, first suggested by Nash

(1953), and also related to the theory of implementation. Implementation in

general environments is addressed by Moore and Repullo (1988) and Mani-

quet (2003). See also Serrano (2005, 2008) for two recent surveys on the

Nash program.

A non-cooperative game yielding the ordinal Shapley value in subgame

perfect equilibria for three agents is presented in Pérez-Castrillo and Wettstein

(2005). This non-cooperative game is based on a bidding mechanism by

Pérez-Castrillo and Wettstein (2001, 2002). Another implementation for

the three-player case is provided by Serrano (1993) for the nucleolus. See

Binmore (1985), Houba and Bennett (1997) and Buskens (2003) for other

three-player non-cooperative models.

In this paper, we present a non-cooperative game whose unique subgame

perfect equilibrium payoff allocation approaches the ordinal Shapley-Shubik

rule as the agents have more time to reach an agreement. As far as we know,

no other similar result has been found for a purely ordinal rule.

Informally, the idea of the non-cooperative game is as follows: First, two

of the agents decide a payoff allocation a la Rubinstein, i.e. by an alternating-

offer procedure, with no discount and with one round passing by each time

an offer is rejected. However, each time an offer is rejected, the third agent

has the choice to replace the agent that made the rejection. Once an offer (if

any) is agreed upon, it constitutes a pre-agreement between the two agents

who reached it. The other agent can then choose one of them and make her

a counter-proposal, which in case of being accepted would cancel the pre-

agreement. However, if the counter-proposal is rejected, the unchosen agent

makes a last offer with the pre-agreement remaining as a status quo in case of

rejection. Moreover, before either the counter-proposal or the pre-agreement

is implemented, the agent that did not participate in it has an option of

renegotiation, which makes the process to be repeated in the next round. If

no agreement is reached after a pre-specified number of rounds, the process
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finishes with the status quo as the final payoff allocation.

As the number of rounds increases, there exists a subgame perfect equi-

librium whose payoff allocation approaches the ordinal Shapley-Shubik rule.

Under reasonable assumptions on the behavior of the agents when they are

indifferent (tie-breaking rules), this equilibrium is unique.

Notice also that random moves (such as a random choice of proposers) are

never used. This is because we are working in a purely ordinal environment,

where the set of feasible payoff allocations may be nonconvex. As opposed, in

a cardinal environment, agents are usually assumed to follow von Neumann-

Morgenstern utility functions. Under them, each point in a segment between

two feasible payoff allocations is also feasible because it can be achieved by

a lottery.

The paper is organized as follows: In Section 2, we present the basic

notation and definitions, as well as some preliminary results. In Section 3 we

formally describe the non-cooperative game and provide the main results, as

well as an overview of the proofs. In Section 4 we briefly study a possible

extension to more than three agents. We present the main formal proofs in

Section 5 (Appendix).

2 Preliminaries

Let N = {1, 2, 3} be the set of agents. Given x, y ∈ RN , x ≤ y means xi ≤ yi

for all i ∈ N , x� y means xi < yi for all i ∈ N , and x < y means x ≤ y and

x 6= y. Let Π be the set of all permutations of N , with generic element π.

A pair (S, d) ∈ 2RN × RN is a bargaining problem if {x ∈ S : y ≤ x} is

compact for all y ∈ RN and d belongs to the interior of S. A point x ∈ S is

Pareto optimal in S if there is no y ∈ S such that x < y. Let P (S) denote

the set of Pareto optimal points in S. A point x ∈ S is weakly Pareto optimal

in S if there is no y ∈ S such that x � y. Let WP (S) denote the set of

weakly Pareto optimal points in S.

A bargaining problem (S, d) is strongly comprehensive if WP (S) = P (S)
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and for each x ∈ S, y ≤ x implies y ∈ S. Let B denote the set of all strongly

comprehensive bargaining problems.

For each (S, d) ∈ B, x, y ∈ RN and N = {i, j, k}, agent i’s aspiration

payoff restricted to xj and yk is

ai (S, 〈xj, yk〉) ≡ max {si : (si, xj, yk) ∈ S}

and her aspiration payoff allocation restricted to xj and yk is

a (S, 〈xj, yk〉) ≡ (ai (S, 〈xj, yk〉) , xj, yk) .

Let (S, d) ∈ B. Define p0 (S, d) ≡ d and p0,ij (S, d) ≡ a (S, 〈di, dj〉) for all

i, j ∈ N . For each t = 1, 2, ..., there exists a unique pt (S, d) ∈ RN such that

pt,12 (S, d) ≡
(
pt1 (S, d) , pt2 (S, d) , pt−13 (S, d)

)
∈ P (S)

pt,13 (S, d) ≡
(
pt1 (S, d) , pt−12 (S, d) , pt3 (S, d)

)
∈ P (S)

pt,23 (S, d) ≡
(
pt−11 (S, d) , pt2 (S, d) , pt3 (S, d)

)
∈ P (S) .

For simplicity, we write pt,ij instead of pt,ij (S, d). For notational conve-

nience, pt,12 = pt,21 and so on.

Given {i, j, k} = {1, 2, 3}, and in order to check the existence and unique-

ness of each p1,ij (case t > 1 follows an analogous reasoning), we consider

the six functions Gij
k defined as Gij

k (xi) ≡ ak (S, 〈xi, dj〉) for each xi ∈
[di, ai (S, 〈dj, dk〉)]. Notice that di < ai (S, 〈dj, dk〉) because d belongs to the

interior of S. Strong comprehensiveness of (S, d) implies that these functions

are well-defined, continuous and strictly decreasing. Analogously, the func-

tions H ij
k defined as H ij

k (xi) ≡ ak
(
S, 〈di, Gik

j (xi)〉
)

are continuous and strictly

increasing. Hence, the combined functions H ij
k −G

ij
k are strictly increasing.

They start with a value of dk − ak(S, 〈di, dj〉), which is strictly negative, and

go up to ak(S, 〈di, dj〉) − dk, which is strictly positive. Therefore they have

precisely one zero point each, that is p1k(S, d), respectively.
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Figure 1: Position of the first points pt,ij. Points pt are at the vertices (of

the polyhedrons) that do not lie on the frontier of S.

It is easily checked (see Figure 1) that, given {i, j, k} = {1, 2, 3} and

t > 0,

pt−1,iji = pt−1,iki = pt,jki . (1)

Let pt−1,·ii ≡ pt−1,iji = pt−1,iki . We also have

pt−1,·ii < pt−1,jki if t is odd

pt−1,·ii > pt−1,jki if t is even
(2)

and
pt,·ii < pt−1,jki if t is odd

pt,·ii > pt−1,jki if t is even
(3)

and
pt−1,·ii < pt,·ii if t is odd

pt−1,·ii > pt,·ii if t is even.
(4)

Moreover, notice that,

pt−1,ij = a
(
S,
〈
pt−1,·ii , pt−1,·jj

〉)
. (5)

The sequence {pt}∞t=0 is uniquely defined and it is convergent. Also, for

each i, j ∈ N ,

lim
t→∞

pt = lim
t→∞

pt,ij.
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A bargaining rule F : B → RN assigns to each bargaining problem

(S, d) ∈ B a feasible point F (S, d) ∈ S. For each (S, d) ∈ B, the ordinal

Shapley-Shubik rule, Sh : B → RN assigns the limit of the sequence {pt}∞t=0,

namely:

Sh (S, d) ≡ lim
t→∞

pt.

This bargaining rule is Pareto optimal, symmetric and ordinal invariant.

3 The non-cooperative game

We describe in detail the non-cooperative game depicted in the Introduction.

There are at most T negotiation rounds. If no agreement is reached after

round T , the disagreement payoff allocation d is implemented1. At each

round, the agents play the roles of first proposer, first responder, and pivot.

Say, w.l.o.g., that, in the first round, agent 1 is the first proposer, agent 2

is the first responder, and agent 3 is the pivot. Agent 1 proposes a payoff

allocation x ∈ S. Agent 2 can then accept or reject this proposal.

A round passes by if agent 2 rejects this proposal. In this case, agent 3

can choose to replace agent 2, so that in the next round agent 1 keeps playing

the role of first proposer, whereas agent 3 becomes the first responder and

agent 2 becomes the pivot. In case agent 3 does not replace agent 2, then

agent 2 plays the role of first proposer and agent 1 plays the role of first

responder.

Notice that this protocol simply states that agents 1 and 2 alternate

proposals until agent 3 decides (after a rejection) to replace the responder.

In case agent 2 accepts the proposal x, then agent 3 makes a counter-

proposal y ∈ S to either agent 1 or agent 2 (whoever agent 3 chooses). Let i

be this agent and let j be the other one. Agent i should choose between the

counter-proposal y and the pre-agreement x. Two cases are possible:

1Finiteness of the game (T < ∞) is needed so that players can anticipate the exact

moment when disagreement becomes definitive.
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1. If agent i chooses y, then agent j can still ask for a renegotiation. If

agent j does not ask for a renegotiation, y is implemented and the game

finishes. If agent j asks for a renegotiation, a round passes by.

2. If agent i chooses x, then agent j makes a last proposal z ∈ S. Agent

i should choose between z and x. In case z is chosen and agent 3 does

not veto, this payoff allocation is implemented and the game finishes. If

agent 3 vetoes, the final payoff is d. In case x is chosen, agent 3 can still

ask for a renegotiation. If agent 3 does not ask for a renegotiation, x is

implemented and the game finishes. If agent 3 asks for a renegotiation,

a round passes by.

In case of renegotiation, in the next round agent 3 plays the role of first

proposer, agent i plays the role of first responder, and agent j plays the role

of pivot.

At round T + 1, the game finishes and the final payoff allocation is d.

In order to fully formalize the non-cooperative game, a formal description

is presented as follows (see also Figure 2). We denote the game as Bt (π),

where t is the number of rounds left (hence, we begin with BT (π)) and π ∈ Π

is the order that specifies the roles: π1 is the first proposer, π2 is the first

responder, and π3 is the pivot. For simplicity, we write Bt [π1π2π3] instead

of the more cumbersome Bt ([π1π2π3]).

The non-cooperative game is defined inductively on t. B0 (π) is the trivial

game with d as final payoff allocation.

Assume Bs (σ) is defined for all s < t and all σ ∈ Π. Assume w.l.o.g.

that π = [123], i.e. πi = i for all i ∈ N . We define Bt [123] as follows:

Agent 1 proposes x ∈ S. Agent 2 can accept or reject.

If agent 2 rejects, agent 3 chooses between playing gameBt−1 [132]

or Bt−1 [213]. If agent 2 accepts, agent 3 chooses i ∈ {1, 2} and

proposes y ∈ S. Let j ∈ {1, 2} \ {i} be the other agent.

Agent i can choose x or y.
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y Bt−1[3ij]
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z

3

x

3

z d x Bt−1[3ij]

Figure 2: The non-cooperative game Bt [123] with t > 0.
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If agent i chooses y, then agent j can ask for a renegotiation.

If agent j asks for a renegotiation, then Bt−1 [3ij] is played. If

agent j does not ask for a renegotiation, y is implemented and

the game finishes.

If agent i chooses x, then agent j proposes z ∈ S. Agent i can

choose z or x. If agent i chooses z, then agent 3 can veto or not

veto. If agent 3 does not veto, z is implemented and the game

finishes. If agent 3 vetoes, d is implemented and the game finishes.

If agent i chooses x, then agent 3 can ask for a renegotiation. If

agent 3 does not ask for a renegotiation, x is implemented and the

game finishes. If agent 3 asks for a renegotiation, then Bt−1 [3ij]

is played.

Notice that, in each round, any agreement (x, y or z) should be first

achieved by two agents (x by agents 1 and 2, y by agents 3 and i, and z

by agents 1 and 2 again). Once two agents have agreed upon a proposal,

the third one has the choice to ask for a renegotiation and move to the next

round. The only exception is given by agent 3 when z is chosen. In this

case, agent 3 cannot ask for a renegotiation, but she can veto z and force the

implementation of d.

Theorem 3.1 For any T > 0 and π ∈ Π, there exists a subgame perfect

equilibrium for the non-cooperative game BT (π) whose equilibrium payoff

allocation is pT,π1π3.

An immediate corollary is the following:

Corollary 3.1 As T increases, there exists a subgame perfect equilibrium in

the non-cooperative game whose final payoff allocation approaches the payoff

allocation given by the ordinal Shapley-Shubik rule.

In general, there can be more than one subgame perfect equilibrium. How-

ever, the above subgame perfect equilibrium is unique under the following

Assumptions:
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Assumption 1 The agents strictly prefer to finish in the earliest round.

Assumption 2 If the pivot (say k) is indifferent when choosing i, and x is

such that k is bound to ask for renegotiating it, then k would choose

the most harmful choice for the first proposer.

Assumption 1 follows from the fact that either a rejection or a renego-

tiation implies a delay. Hence, it seems natural that an agent would prefer

to reach an agreement as soon as possible. Following this idea, Assumption

1 implies that, when an agent is due to receive the same final payoff when

accepting or rejecting x, or whether she asks or not for a renegotiation, then

she accepts and does not ask for a renegotiation. An equivalent assumption

is to assume that all the agents have a lexicographic preference for the game

ending in the first round. See Bag and Winter (1999, p. 79) for the intuition

behind this assumption, which is also used in Mutuswami and Winter (2002).

Another similar assumption is used in Moldovanu and Winter (1994), who

assume that an agent prefers agreements which involve larger rather than

smaller coalitions (provided her final payoff is the same in both agreements).

Hart and Mas-Colell (1996) also assumed that agents “break ties in favor of

quick termination of the game”2.

Assumption 2 is needed for T > 1 and it has the following justification:

since x comes from the first proposer, and it is not satisfactory for the pivot

(in the sense that she would prefer to ask for a renegotiation), the threat of

harming the first proposer is justifiable and hence credible. Moreover, the

payoff allocation would be strictly smaller for the pivot in subgame perfect

equilibria not satisfying Assumption 2. If fact, if we assume a “cheap talk”

along the negotiation process, so that players can announce their intended

strategies, it would be optimal for the pivot to announce that she would

harm the first proposer in case x is not satisfactory, and to adhere to this

announcement. Following Farrell and Rabin (1996), such an announcement

is self-committing in the sense that it creates incentives for the speaker to

2However, tie-breaking rules are not needed in Hart and Mas-Colell’s model.
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fulfill it. With this cheap talk, Assumption 2 is equivalent to the assumption

that the agents strictly prefer to adhere to their own announcements.

Theorem 3.2 Under Assumptions 1 and 2, for any T > 0 and π ∈ Π,

pT,π1π3 is the unique subgame perfect equilibrium payoff allocation for the

non-cooperative game BT [π].

An immediate corollary is the following:

Corollary 3.2 Under Assumptions 1 and 2, as T increases the only equi-

librium payoff allocation in the non-cooperative game BT [π] approaches the

payoff allocation given by the ordinal Shapley-Shubik rule.

The formal proofs of Theorem 3.1 and Theorem 3.2 are located in the

Appendix. We provide here the idea. Assume π = [123]. Basically, there are

two cases to consider: x3 ≥ pT,123 and x3 < pT,123 .

In the first case (x3 ≥ pT,123

(1)
= pT−1,·33 ), and under an induction hypothe-

sis, agent 3 is bound to accept x in case agent i chooses x twice. From this,

the optimal z for agent j is a (S, 〈xi, d3〉) and that would be the final payoff

allocation in the subgame that begins when agent j proposes z. Knowing

that, the optimal y for agent 3 would be a
(
S,
〈
xi, p

T−1,·j
j

〉)
and that would

be the final payoff allocation in the subgame that begins when agent 3 pro-

poses y. This implies that an optimal x for agent 1 satisfies x ∈ P (S),

x3 = pT−1,·33 and a3

(
S,
〈
x1, p

T−1,·2
2

〉)
= a3

(
S,
〈
x2, p

T−1,·1
1

〉)
. These condi-

tions imply x = pT,12, which will make agent 2 indifferent between accepting

or rejecting. The final payoff allocation will then be

a
(
S,
〈
pT,121 , pT−1,·22

〉)
(1)
= a

(
S,
〈
pT,·11 , pT,132

〉)
(5)
= pT,13.

Assumption 1 is needed in order for agent 2 to accept x = pT,12, since there

is no possibility for agent 1 to find another x around pT,12 which breaks this in-

difference. Inducing agent 2 to reject would be also harmful for agent 1, since

agent 3 would choose the best (for her) between Bt−1 [132] and Bt−1 [213],

which will coincide with the worst for agent 1.
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In the second case (x3 < pT,123

(1)
= pT−1,·33 ), agent 3 is bound to ask for a

renegotiation in case agent i chooses x twice. Under the induction hypothesis,

the final payoff would be pT−1,j3 when T > 1, and d when T = 1. From

this, the optimal z for agent j is a
(
S,
〈
pT−1,j3i , d3

〉)
when T > 1, and

a (S, 〈di, d3〉) = p0,i3 when T = 1. That would be the final payoff in the

subgame that begins when agent j proposes z. Knowing that, the optimal

y for agent 3 would be a
(
S,
〈
pT−1,j3i , pT−1,·jj

〉)
(5)
= pT−1,j3 when T > 1, and

a
(
S,
〈
p0,·ii , p0,·jj

〉) (5)
= p0,ij when T = 1. That would be the final payoff in the

game that begins when agent 3 proposes y. Notice that, under (1), agent 3

is indifferent of the choice of i.

At this point, Assumption 2 is needed for T > 1 so that agent 3 makes

the most harmful choice of i for agent 1, so that it is not profitable for agent

1 to choose x with x3 < pT,123 . If this happens, the final payoff for agent 3

would be strictly lower than pT,·33 , which gives an additional justification for

Assumption 2 to hold.

Notice that Assumption 2 is not needed for T = 1 because the final payoff

for player 1 would be d1 (irrespectively of the choice of i) and d1 < p1,·11 .

As a result, the equilibrium path in these results is the following: Agent 1

proposes x = pT,12, agent 2 accepts, agent 3 chooses to negotiate with agent

1 and proposes y = pT,13, agent 1 chooses y, and agent 2 does not ask for a

renegotiation.

4 The general case

In this section we briefly discuss what may happen if there are more than

three agents. In general, there are many ways the non-cooperative game

can be extended for N = {1, · · · , n} with n > 3. We informally analyze the

following one-shot (T = 1) n-player case in which there are one first proposer

(agent 1), one pivot (agent n), and the rest of the agents are first responders:

Agent 1 proposes a payoff allocation x. Agent 2 though n− 1
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sequentially either accept or reject this proposal. The disagree-

ment payoff allocation d is implemented in case some rejection

occurs.

In case all the responders accept x, then agent n makes a

counterproposal y ∈ S to some agent i ∈ N \ {n} (chosen by

agent n). Agent i should choose between the counter-proposal y

and the pre-agreement x.

If agent i chooses y, then any of the other agents (they are

asked sequentially) can veto the agreement, in which case d is

implemented. If nobody vetoes, y is implemented.

If agent i chooses x, then an agent j, randomly chosen among

those in N \ {i, n}, makes a last proposal z ∈ S. Agent i should

choose either x or z. If agents in N \ {i, j} (or in N \ {i} in case

x is chosen) do not veto (they are asked sequentially), this payoff

allocation is implemented. If some veto occurs, the final payoff

allocation is d.

This game coincides with B1[123] when N = {1, 2, 3}. Assume d = 0N

and S =
{
x ∈ RN :

∑
i∈N xi ≤ 1

}
. Then, there exists a subgame perfect

equilibrium (unique under Assumption 1) in which agent 1 proposes x =(
1

n−1 , · · · ,
1

n−1 , 0
)
. This payoff allocation coincides with Λn in Step 2 of the

four-step construction of an ordinal rule defined by Samet and Safra (2005).

Moreover, it is the projection on the hyperplane
{
x ∈ RN : xn = dn

}
of the

ground point a1 = Φ(d, S) defined in Safra and Samet (2004).

The final subgame perfect equilibrium payoff allocation is given by y =(
1

n−1 , 0, · · · , 0,
n−2
n−1

)
. Hence, an efficient ordinal payoff allocation is achieved,

even though it does not coincide (for n > 3) with any of the payoff allocations

presented by Safra and Samet.
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5 Appendix

In this section we formally prove Theorem 3.1 and Theorem 3.2. We will use

the following lemmas:

Lemma 5.1 Let x ∈ S such that x3 ≥ pt,123 for some t ≥ 0. Then,

max
{
a3
(
S,
〈
x1, p

t,13
2

〉)
, a3
(
S,
〈
x2, p

t,23
1

〉)}
≥ pt,123

and, moreover, equality holds iff x = pt,12.

Proof. Define three functions f 1, f 2, f :
{
y ∈ S : y3 ≥ pt,123

}
→ R as follows:

f 1 (y) = a3
(
S,
〈
y1, p

t,13
2

〉)
f 2 (y) = a3

(
S,
〈
y2, p

t,23
1

〉)
f (y) = max

{
f 1 (y) , f 2 (y)

}
.

We will compute the minimum of f . Under our hypothesis on S, f 1 (y)

is strictly decreasing in y1, whereas f2 (y) is strictly decreasing in y2. Hence,

f reaches a minimum when y ∈ P (S), y3 = pt,123 and f 1 (y) = f 2 (y), i.e.

y ∈ P (S)

y3 = pt,123

a3
(
S,
〈
y1, p

t,13
2

〉)
= a3

(
S,
〈
y2, p

t,23
1

〉)
.

which has a unique solution: y = pt,12, so that f (pt,12) = pt,123 .

Lemma 5.2 Given t > 0,

max
{
x1 : x ∈ S, a3

(
S,
〈
x1, p

t−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

t−1,·1
1

〉)
, x3 ≥ pt−1,·33

}
= pt,·11

and, moreover, this maximum is only achieved when x = pt,12.

Proof. Let x ∈ S such that a3
(
S,
〈
x1, p

t−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

t−1,·1
1

〉)
and

x3 ≥ pt−1,·33 .
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Assume first x /∈ P (S). Under the strict comprehensiveness of S, we

can find some ε1, ε2 > 0 such that xε := (x1 + ε1, x2 + ε2, x3) ∈ S and

a3
(
S,
〈
xε1, p

t−1,·2
2

〉)
≥ a3

(
S,
〈
xε2, p

t−1,·1
1

〉)
. Hence, x ∈ P (S) is necessary to

achieve the supremum.

Assume now x ∈ P (S) and x3 > pt−1,·33 . Under the strict comprehen-

siveness of S, we can find some ε1 > 0 such that xε :=
(
x1 + ε1, x2, p

t−1,·3
3

)
satisfies x ∈ S, xε3 ≥ pt−1,·33 and a3

(
S,
〈
xε1, p

t−1,·2
2

〉)
≥ a3

(
S,
〈
xε2, p

t−1,·1
1

〉)
.

Hence, x3 = pt−1,·33 is necessary to achieve the supremum.

Assume now x ∈ P (S), x3 = pt−1,·33 and a3
(
S,
〈
x1, p

t−1,·2
2

〉)
> a3

(
S,
〈
x2, p

t−1,·1
1

〉)
.

Under the strict comprehensiveness of S, we can find some δ1, δ2 > 0 such

that xδ := (x1 + δ1, x2 − δ2, x3) satisfies xδ ∈ S and a3
(
S,
〈
xδ1, p

t−1,·2
2

〉)
≥

a3
(
S,
〈
xδ2, p

t−1,·1
1

〉)
. Hence, a3

(
S,
〈
x1, p

t−1,·2
2

〉)
= a3

(
S,
〈
x2, p

t−1,·1
1

〉)
is neces-

sary to achieve the supremum.

Assume x ∈ P (S), x3 = pt−1,·33 and a3
(
S,
〈
x1, p

t−1,·2
2

〉)
= a3

(
S,
〈
x2, p

t−1,·1
1

〉)
.

We have to prove that x = pt,12. Under (1), these conditions are equivalent

to

x ∈ P (S)

x3 = pt,123

a3
(
S,
〈
x1, p

t,13
2

〉)
= a3

(
S,
〈
x2, p

t,23
1

〉)
.

which has a unique solution: x = pt,12.

We now prove Theorem 3.1 and Theorem 3.2. For any t ≥ 0 and i, j ∈ N ,

i 6= j, let qt,ij ∈ RN be defined as q0,ij ≡ d and qt,ij ≡ pt,ij otherwise. We

will prove the following (stronger) result:

For any T ≥ 0 and π ∈ Π, there exists a subgame perfect

equilibrium for the non-cooperative game BT (π) whose payoff

allocation is qT,π1π3 . Moreover, this subgame perfect equilibrium

payoff allocation is unique under Assumption 1 and Assumption

2.

Notice that, by definition, qt,kji = pt,jki unless t = 0 and i /∈ {j, k}. Hence,

we write pt,jki instead of qt,jki unless case q0,jki with i /∈ {j, k} is possible.
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Assume w.l.o.g. that, in the first round, agent 1 is the first proposer,

agent 2 is the first responder, and agent 3 is the pivot. The proof is by

induction on T . For T = 0, B0 ([123]) is a trivial game and the unique final

payoff allocation is d = q0,13.

Assume the result is true for less than T rounds, T > 0. The subgame

that arises in the second round of the game with T rounds is strategically

equivalent to the game with T − 1 rounds. Hence, the continuation payoff in

the second round is known by the agents. Under the induction hypothesis,

qT−1,π1π3 is the continuation payoff in the second round when the order is

given by π ∈ Π.

We first prove that there exists a subgame perfect equilibrium whose final

payoff allocation is pT,13.

Consider the following strategic profile in BT [123]:

• At the beginning of the round, agent 1 proposes x = pT,12.

• Agent 2 rejects x iff x3 ≥ pT−1,·33 , a3

(
S,
〈
x1, p

T−1,·2
2

〉)
< a3

(
S,
〈
x2, p

T−1,·1
1

〉)
and x2 < pT−1,·22 .

• If agent 2 rejects x , agent 3 choosesBT−1 [132] if T is odd andBT−1 [213]

if T is even.

• If agent 2 accepts x, agent 3 chooses i and proposes y following the

next rule:

– If x3 < pT−1,·33 , she chooses i = 1 if T is even and i = 2 if T is odd,

and proposes y = pT−1,j3.

– If x3 ≥ pT−1,·33 , she chooses i = 1 if a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

T−1,·1
1

〉)
and i = 2 if a3

(
S,
〈
x1, p

T−1,·2
2

〉)
< a3

(
S,
〈
x2, p

T−1,·1
1

〉)
, and pro-

poses y = a
(
S,
〈
xi, p

T−1,·j
j

〉)
.

• After agent 3 chooses i and proposes y, agent i chooses either x or y

following the next rule:
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– If x3 < pT−1,·33 and yj < pT−1,·jj , she chooses x.

– If x3 < pT−1,·33 and yj ≥ pT−1,·jj , she chooses x iff qT−1,j3i > yi.

– If x3 ≥ pT−1,·33 and yj < pT−1,·jj , she chooses x iff xi > qT−1,j3i .

– If x3 ≥ pT−1,·33 and yj ≥ pT−1,·jj , she chooses x iff xi > yi.

• If agent i chooses y, then agent j asks for renegotiation iff yj < pT−1,·jj .

• If agent i chooses x, then agent j proposes z following the next rule:

– If x3 < pT−1,·33 , she proposes z = a
(
S,
〈
qT−1,j3i , d3

〉)
.

– If x3 ≥ pT−1,·33 , she proposes z = a (S, 〈xi, d3〉).

• After agent j proposes z, agent i chooses either z or x following the

next rule:

– If z3 < d3 and x3 < pT−1,·33 , she chooses z iff di ≥ qT−1,j3i .

– If z3 < d3 and x3 ≥ pT−1,·33 , she chooses z iff di ≥ xi.

– If z3 ≥ d3 and x3 < pT−1,·33 , she chooses z iff zi ≥ qT−1,j3i .

– If z3 ≥ d3 and x3 ≥ pT−1,·33 , she chooses z iff zi ≥ xi.

• After agent i chooses z, agent 3 vetoes iff z3 < d3.

• After agent i chooses x, agent 3 asks for a renegotiation iff x3 < pT−1,·33 .

In each BT−1 (σ), we apply the induction hypothesis and assume the

agents play a subgame perfect equilibrium profile that gives as final payoff

qT−1,σ1σ3 .

Under (1) and the induction hypothesis, a backward reasoning shows that

the above strategies constitute a subgame perfect equilibrium after agent i

chooses y and after agent j proposes z.

To see that the proposed choice of z is optimal for agent j, we distinguish

two cases:
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1. If x3 < pT−1,·33 , then agent i can assure herself qT−1,j3i by choosing x.

Thus, the maximum that agent j can get by making an acceptable

offer is aj

(
S,
〈
qT−1,j3i , d3

〉)
. This is what she would get by choosing

z = a
(
S,
〈
qT−1,j3i , d3

〉)
, because it would induce agent i to choose z

and agent 3 not to veto.

2. If x3 ≥ pT−1,·33 , then agent i can assure herself xi by choosing x. Thus,

the maximum that agent j can get is aj (S, 〈xi, d3〉). This is what she

gets by choosing z = a (S, 〈xi, d3〉), because it would induce agent i to

choose z and agent 3 not to veto.

Hence, the final payoff allocation in this subgame (when agent j proposes

z) is given by a
(
S,
〈
qT−1,j3i , d3

〉)
when x3 < pT−1,·33 and by a (S, 〈xi, d3〉)

when x3 ≥ pT−1,·33 .

Moreover, it is straightforward to check that, given y, the strategy of

agent i is optimal for her.

We now check that the proposed choice of i and y is optimal for agent

3. Notice that, in case agent i chooses x, the strategies imply that the final

payoff for agent 3 will be d3.

We have two cases:

1. If x3 < pT−1,·33 , then y = pT−1,j3 and the strategies determine that agent

i chooses y and agent j does not ask for a renegotiation, so that the final

payoff for agent 3 is y3 = pT−1,·33 . Hence, for such an x, the choice of i

is indifferent. Moreover, this choice of y is optimal among those that

induce agent i to choose y and agent j not to ask for a renegotiation.

2. If x3 ≥ pT−1,·33 , then y = a
(
S,
〈
xi, p

T−1,·j
j

〉)
and the strategies deter-

mine that agent i chooses y and agent j does not ask for a renegotiation,

so that the final payoff for agent 3 is y3 = a3

(
S,
〈
xi, p

T−1,·j
j

〉)
. Hence,

for this y, the choice of i is optimal, so that the final payoff for agent

3 is max
{
a3

(
S,
〈
x1, p

T−1,·2
2

〉)
, a3

(
S,
〈
x2, p

T−1,·1
1

〉)}
. Moreover, this

choice of y is optimal among those that induce agent i to choose y
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and agent j not to ask for a renegotiation. Under Lemma 5.1 and (1),

max
{
a3

(
S,
〈
x1, p

T−1,·2
2

〉)
, a3

(
S,
〈
x2, p

T−1,·1
1

〉)}
≥ pT−1,·33 .

Hence, in both cases, agent 3 gets at least pT−1,·33 . There are two possible

deviations: To induce agent i to choose y and agent j to ask for a renego-

tiation, and to induce agent i to choose x. In the first case, the induction

hypothesis implies that the final payoff for agent 3 is pT−1,·33 , so she does not

improve. In the second case, the strategies imply that the final payoff for

agent 3 is d3, which is again not higher than pT−1,·33 .

We now check that the proposed strategy for agent 3, after agent 2 rejects

x, is optimal. Under the induction hypothesis, the final payoff for agent 3

is qT−1,123 if she chooses BT−1 [132], and pT−1,·33 if she chooses BT−1 [213]. If

T = 1, agent 3 is indifferent (she gets d3 in either case). If T > 1, under (2),

it is optimal to choose BT−1 [132] if T is odd and BT−1 [213] is T is even.

We now check that the proposed rule followed by agent 2 to reject x is

optimal. Under the induction hypothesis, the final payoff for agent 2 in case

of rejection is pT−1,·22 , irrespectively of T being odd or even. For the payoff

in case of acceptance, we have two cases:

1. If x3 < pT−1,·33 , the final payoff for agent 2 in case of acceptance is

pT−1,·22 if T is even, pT−1,132 if T is odd and T > 1, and d2 if T = 1.

Hence, agent 2 is indifferent when T is even or (since p0,·22 = d2) when

T = 1. Under (2), she is strictly better by accepting when T is odd

and T > 1.

2. If x3 ≥ pT−1,·33 , we have two subcases:

(a) If a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

T−1,·1
1

〉)
, the final payoff for

agent 2 is pT−1,·22 . Hence, agent 2 is indifferent between accepting

or rejecting. In particular, accepting is optimal.

(b) If a3

(
S,
〈
x1, p

T−1,·2
2

〉)
< a3

(
S,
〈
x2, p

T−1,·1
1

〉)
, the final payoff for

agent 2 is x2. Hence, it is optimal to reject iff x2 < pT−1,·22 .
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We now check that x = pT,12 is an optimal proposal for agent 1. If

she does not deviate, then agent 2 will accept, agent 3 will choose i = 1

and y = a
(
S,
〈
x1, p

T−1,·2
2

〉)
, agent i = 1 will choose y and agent j = 2

will not ask for a renegotiation, so that the final payoff for agent 1 will be

y1 = x1 = pT,·11 .

Assume agent 1 deviates by proposing x with x3 < pT,123

(1)
= pT−1,·33 . Then

her final payoff becomes pT−1,231 if T is even or pT−1,·11 if T is odd. Under (3),

agent 1 is strictly worse off when T is even. Under (4), agent 1 is strictly

worse off when T is odd.

Assume now agent 1 deviates by proposing x with x3 ≥ pT,123

(1)
= pT−1,·33

and a3

(
S,
〈
x1, p

T−1,·2
2

〉)
< a3

(
S,
〈
x2, p

T−1,·1
1

〉)
. Under (1) and Lemma 5.1,

a3

(
S,
〈
x2, p

T−1,·1
1

〉)
> pT−1,·33 which implies x2 < pT−1,132 .

We have two cases:

1. If x2 < pT−1,·22 , then agent 2 rejects x. If T is odd, agent 3 chooses

BT−1 [132] and, under the induction hypothesis, the final payoff for

agent 1 will be pT−1,·11 . Under (4), pT−1,·11 < pT,·11 and agent 1 does

not improve. If T is even, agent 3 chooses BT−1 [213] and, under the

induction hypothesis, the final payoff for agent 1 will be pT−1,231 . Under

(3), pT−1,231 < pT,·11 and agent 1 does not improve.

2. If x2 ≥ pT−1,·22 , then the final payoff allocation is a
(
S,
〈
x2, p

T−1,·1
1

〉)
.

If T is odd, under (4), pT−1,·11 < pT,·11 and agent 1 does not improve.

If T is even, under (2), pT−1,132 < pT−1,·22 but this not possible because

x2 < pT−1,132 and x2 ≥ pT−1,·22 .

Assume now agent 1 deviates by proposing x 6= pT,12 with x3 ≥ pT−1,·33

and a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

T−1,·1
1

〉)
. Then agent 2 accepts x,

agent 3 chooses i = 1 and proposes y = a
(
S,
〈
xi, p

T−1,·j
j

〉)
, agent 1 finds it

optimal to choose y so that agent 2 does not ask for a renegotiation and her

final payoff is x1. Under Lemma 5.2, x1 < pT,·11 and hence agent 1 does not

improve.
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We know prove that pT,13 is the only subgame perfect equilibrium payoff

allocation when Assumption 1 and Assumption 2 hold.

Assume we are in a subgame perfect equilibrium that satisfies Assumption

1 and Assumption 2. We proceed by a series of Claims:

Claim 5.1 Assume x3 < pT,123 . In the subgame that begins when j chooses

z ∈ S, the final payoff allocation is a
(
S,
〈
qT−1,j3i , d3

〉)
.

Proof. Since x3 < pT,123 , agent i can induce qT−1,j3 by choosing x, knowing

that agent 3 is bound to ask for a renegotiation and hence force BT−1 [3ij].

Notice that, under the induction hypothesis, agent 3 would get pT−1,·33

(1)
= pT,123

by asking for a renegotiation and x3 by not doing so. In particular, agent i

can assure herself qT−1,j3i .

On the other hand, agent 3 can assure herself a payoff of d3 by vetoing

any proposal (notice also that d3 ≤ pT−1,·33 ).

Hence, agent j can assure herself aj

(
S,
〈
qT−1,j3i , d3

〉)
− εj for all εj > 0

by proposing z = a
(
S,
〈
qT−1,j3i , d3

〉)
+ (εi,−εj, ε3) for appropriate values of

εi > 0 and ε3 > 0. Thus, in subgame perfect equilibrium, agent j gets at

least aj

(
S,
〈
qT−1,j3i , d3

〉)
. Since each agent can assure a

(
S,
〈
qT−1,j3i , d3

〉)
,

this is the only possible payoff allocation in subgame perfect equilibrium.

Claim 5.2 Assume x3 ≥ pT,123 . In the subgame that begins when j chooses

z ∈ S, the final payoff allocation is a (S, 〈xi, d3〉).

Proof. Since x3 ≥ pT,123 , agent i can assure herself xi by choosing x, knowing

that agent 3 would not ask for a renegotiation (under Assumption 1 when

x3 = pT,123 ). Notice that, under the induction hypothesis, agent 3 would get

pT−1,·33

(1)
= pT,123 by asking for a renegotiation and x3 by not doing so. On

the other hand, agent 3 can assure herself d3 by vetoing any z. Hence, the

subgame perfect equilibrium payoff for agent j is at most aj (S, 〈xi, d3〉).
Hence, agent j can assure herself aj (S, 〈xi, d3〉) − εj for all εj > 0 by

proposing z = a (S, 〈xi, d3〉) + (εi,−εj, ε3) for appropriate values of εi > 0

and ε3 > 0. Thus, in subgame perfect equilibrium, agent j gets at least
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aj (S, 〈xi, d3〉). Since each agent can assure a (S, 〈xi, d3〉), this is the only

possible payoff allocation in subgame perfect equilibrium.

Claim 5.3 Assume x3 < pT,123 . In the subgame that begins when agent 3

chooses y ∈ S, the final payoff allocation is pT−1,j3 when T > 1, and p0,12

when T = 1.

Proof. Since x3 < pT,123 , under Claim 5.1, agent i can induce a
(
S,
〈
qT−1,j3i , d3

〉)
by choosing x. If agent i chooses y, then, under the induction hypothesis,

agent j can induce qT−1,j3 by asking for a renegotiation.

Hence, agent 3 can assure herself a3

(
S,
〈
qT−1,j3i , pT−1,·jj

〉)
− ε3 for all

ε3 > 0 by proposing z = a
(
S,
〈
qT−1,j3i , pT−1,·jj

〉)
+(εi, εj,−ε3) for appropriate

values of εi > 0 and εj > 0. Thus, in subgame perfect equilibrium, agent 3

gets at least a3

(
S,
〈
qT−1,j3i , pT−1,·jj

〉)
.

When T > 1,

a3

(
S,
〈
qT−1,j3i , pT−1,·jj

〉)
= a3

(
S,
〈
pT−1,j3i , pT−1,·jj

〉)
(5)
= pT−1,j33

and , since each agent k can assure pT−1,j3k , this pT−1,j3 is the only possible

payoff allocation in subgame perfect equilibrium.

When T = 1,

a3

(
S,
〈
qT−1,j3i , pT−1,·jj

〉)
= a3 (S, 〈di, dj〉) = p0,ij3 = p0,123

and, since each agent k can assure p0,12k , this p0,12 is the only possible payoff

allocation in subgame perfect equilibrium.

Claim 5.4 Assume x3 ≥ pT,123 . In the subgame that begins when agent 3

chooses i ∈ arg maxk∈{1,2} a3

(
S,
〈
xk, p

T−1,·kc
kc

〉)
, and the final payoff alloca-

tion is a
(
S,
〈
xi, p

T−1,·j
j

〉)
.

Proof. Since x3 ≥ pT,123 , under Claim 5.2, agent i can induce a (S, 〈xi, d3〉)
by choosing x. If agent i chooses y, then, under the induction hypothesis,

agent j can induce qT−1,j3 by asking for a renegotiation.
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Hence, agent 3 can assure herself a3

(
S,
〈
xi, p

T−1,·j
j

〉)
− ε3 for all ε3 > 0

by proposing z = a
(
S,
〈
xi, p

T−1,·j
j

〉)
+ (εi, εj,−ε3) for appropriate values of

εi > 0 and εj > 0. Thus, in subgame perfect equilibrium, agent 3 gets at

least maxk∈{1,2} a3

(
S,
〈
xk, p

T−1,·kc
kc

〉)
. Under Lemma 5.1, this payoff is not

lower than pT,123 . Hence it is neither lower than d3, which would be the final

payoff for agent 3 in case she induces agent i to choose x. Since each agent

can assure a
(
S,
〈
xi, p

T−1,·j
j

〉)
, this is the only possible payoff allocation in

subgame perfect equilibrium.

Claim 5.5 In the subgame that begins when agent 2 rejects x, the final payoff

for agent 1 is strictly lower than pT,·11 .

Proof. Under the induction hypothesis, the final payoff allocation is qT−1,12

if agent 3 chooses BT−1 [132], and qT−1,23 if agent 3 chooses BT−1 [213].

If T = 1, the final payoff for agent 1 would be d1 < pT,·11 irrespectively of

agent 3’s choice.

If T is odd and T > 1, then pT−1,233

(2)
< pT−1,123 and hence agent 3

would strictly prefer to play BT−1 [132]. The final payoff for agent 1 will

be pT−1,121

(4)
< pT,·11 .

If T is even, pT−1,233

(2)
> pT−1,123 and hence agent 3 would strictly prefer to

play BT−1 [312]. The final payoff for agent 1 will be pT−1,231

(3)
< pT,·11 .

Claim 5.6 If agent 1 proposes some x with x3 < pT,123 , her final payoff will

be strictly lower than pT,·11 .

Proof. If agent 2 rejects, under Claim 5.5 the final payoff for agent 1 is

strictly lower than pT,·11 . If agent 2 accepts, under Claim 5.3, the final payoff

will be pT−1,j3 when T > 1 and p0,12 when T = 1.

Assume first T = 1. Then, the final payoff for agent 1 is d1 < pT,·11 .

Assume now T > 1. Under (1), agent 3 is indifferent on the choice

of i and j. Under Assumption 2, agent 3 would choose i and j so that

pT−1,j31 < pT−1,i31 . Under (2), this implies that the final payoff is pT−1,13 if T
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is odd, and pT−1,23 if T is even. If T is odd, pT−1,131

(4)
< pT,·11 . If T is even,

pT−1,231

(3)
< pT,·11 . In either case, agent 1 will get less than pT,·11 .

Claim 5.7 If agent 1 proposes some x with x3 ≥ pT,123 and a3

(
S,
〈
x1, p

T−1,·2
2

〉)
<

a3

(
S,
〈
x2, p

T−1,·1
1

〉)
, the final payoff for agent 1 will be strictly lower than

pT,·11 .

Proof. If agent 2 rejects, under Claim 5.5 the final payoff for agent 1 is

strictly less than pT,·11 . Moreover, the induction hypothesis implies that agent

2 gets pT−1,·22 , irrespectively of agent 3’s choice. Assume then agent 2 accepts,

under Claim 5.4, the final payoff allocation is a
(
S,
〈
x2, p

T−1,·1
1

〉)
. Moreover,

x2 ≥ pT−1,·22 (otherwise, agent 2 would not accept).

If T is odd, pT−1,·11

(4)
< pT,·11 and hence the result holds.

Assume T is even. We have x2 ≥ pT−1,·22 and x3 ≥ pT,12
(1)
= pT−1,·33 , which

implies x1 ≤ pT−1,231 and hence

a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
pT−1,231 , pT−1,·22

〉)
(5)
= pT−1,233

(2)
> pT−1,123

(5)
= a3

(
S,
〈
pT−1,·22 , pT−1,·11

〉)
(x2≥pT−1,·2

2 )
≥ a3

(
S, x2, p

T−1,·1
1

)
.

which is impossible.

Claim 5.8 The final payoff allocation is pT,13.

Proof. It is enough to prove that each agent k can get at least pT,13k .

Agent 2: Under the induction hypothesis, agent 2 can assure herself

pT−1,·22

(1)
= pT,132 by rejecting any x.

Agent 1: Given any ε1 > 0, there exists some ε2 > 0 such that x =

pT,12 + (−ε1, ε2, 0) ∈ S. Assume agent 1 proposes this x. Clearly, x3 ≥ pT,123
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and, moreover,

a3

(
S,
〈
x1, p

T−1,·2
2

〉)
= a3

(
S,
〈
pT,·11 − ε1, pT−1,·22

〉)
> a3

(
S,
〈
pT,·11 , pT−1,·22

〉)
= a3

(
S,
〈
pT,·11 , pT,132

〉)
= pT,·33 = a3

(
S,
〈
pT,231 , pT,·22

〉)
> a3

(
S,
〈
pT,231 , pT,·22 + ε2

〉)
= a3

(
S,
〈
pT,231 , x2

〉)
.

If agent 2 rejects x, under the induction hypothesis her final payoff will

be pT−1,·22 . If agent 2 accepts x , under Claim 5.4 the final payoff allocation

will be a
(
S,
〈
x1, p

T−1,·2
2

〉)
. Thus, agent 2 is indifferent between accepting

and rejecting. Under Assumption 1, agent 2 accepts and the final payoff for

agent 1 is x1.

Hence, agent 1 can assure herself pT,·11 −ε1 for all ε1 > 0. Thus, in subgame

perfect equilibrium, agent 1 gets at least pT,·11 .

Agent 3: Under Claim 5.6 and Claim 5.7, agent 1 will propose some

x with x3 ≥ pT,123 and a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
x2, p

T−1,·1
1

〉)
. Since

pT,123

(1)
= pT−1,·33 , under Lemma 5.2, this implies x1 ≤ pT,·11 . Moreover, under

Claim 5.5, agent 2 will accept it. Under Claim 5.4, the final payoff for agent

3 will be a3

(
S,
〈
x1, p

T−1,·2
2

〉)
. Since x1 ≤ pT,·11 ,

a3

(
S,
〈
x1, p

T−1,·2
2

〉)
≥ a3

(
S,
〈
pT,·11 , pT−1,·22

〉)
(1)
= a3

(
S,
〈
pT,·11 , pT,132

〉)
(5)
= pT,133 .

Hence, agent 3 gets at least pT,133 .
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