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Abstract

We provide, in minimum cost spanning tree problems, a general framework to

identify the family of rules satisfying monotonicity over cost and population. We

also prove that the set of allocations induced by the family coincides with the so-called

irreducible core, that results from decreasing the cost of the arcs as much as possible,

without reducing the minimal cost.
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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp, for short). A group

of agents (denoted by N), located at different geographical places, want a particular ser-

vice which can only be provided by a common supplier, called the source (denoted by 0).

Agents will be served through connections which involve some cost. However, they do not

care whether they are connected directly or indirectly to the source. This situation is de-

scribed by a symmetric matrix C, where cij denotes the connection costs between i and j

(i, j ∈ N ∪ {0}). Many real situations can be modeled in this way. For instance communica-

tion networks, such as telephone, Internet, wireless telecommunication, or cable television.

The first issue addressed inmcstp is the definition of polynomial algorithms for construct-

ing minimum cost spanning trees (mcst). We can mention, for instance, Kruskal (1956).

But constructing a mcst is only the first step. Another important issue is how to divide

the cost associated with the mcst among the agents. Some authors study the problem from

∗The authors wish to thank Aninbar Kar for his contribution to earlier versions of this paper. Financial

support from the Spanish government through grants ECO2008-03484-C02-01/ECON and ECO2011-23460

and the Xunta de Galicia through grant 10PXIB362299PR is gratefully acknowledged.
†Corresponding author. Email: vidalpuga@uvigo.es

1



a non-cooperative perspective trying to provide a decentralized mechanism for dividing the

cost among the agents. Some papers following this approach are Bergantiños and Lorenzo

(2004), Bergantiños and Vidal-Puga (2010), Hougaard and Tvede (2012), and Hernández

et al (2013). Other authors study the problem from a cooperative perspective providing a

centralized mechanism. It is assumed that a planner should decide how to divide the cost

among the agents following some fairness criteria. The idea is to propose desirable properties

and to find out which of them characterize each rule. Properties often help the planner to

compare different rules and to decide which rule is preferred in a particular situation. Some

examples of papers following the axiomatic approach are Bird (1976), Kar (2002), Branzei et

al (2004), Bergantiños and Vidal-Puga (2007, 2009), Bogomolnaia and Moulin (2010), and

Trudeau (2012a, 2012b).

In this paper we follow the axiomatic approach and we focus on two monotonicity prop-

erties. Population monotonicity claims that if new agents join a "society" no agent from the

"initial society" can be worse off; and cost monotonicity claims that if connection costs weakly

increase, no agent can be better off. Population monotonicity in mcstp has been studied,

among others, by Bergantiños and Gómez-Rúa (2010), Bergantiños and Vidal-Puga (2007,

2009), Bogomolnaia and Moulin (2010), Lorenzo and Lorenzo-Freire (2009), and Norde et

al (2004). Cost monotonicity in mcstp has been studied in by Bergantiños and Gómez-Rúa

(2010), Bergantiños et al (2010, 2011), Bergantiños and Vidal-Puga (2007, 2009), Bogomol-

naia and Moulin (2010), and Trudeau (2012a). In the literature there exist two families of

rules satisfying both properties. The optimistic weighted Shapley rules studied by Bergan-

tiños and Lorenzo-Freire (2008a, 2008b) and the obligation rules studied by Tijs et al (2006),

Lorenzo and Lorenzo-Freire (2009) and Bergantiños and Kar (2010).

The main objective of this paper is to study the set of rules satisfying population

monotonicity and cost monotonicity. We focus on two aspects: to characterize the set of

rules satisfying both properties and to characterize the set of allocations induced by these

rules.

Given a mcstp C, Bird (1976) considers the irreducible problem C∗, which is obtained

from C by reducing the cost of the edges as much as possible, but without reducing the

cost of the mcst. Bird (1976) associates to each mcstp C a cooperative cost game with

transferable utility (N, cC). We prove that the set of allocations induced by rules satisfying

population monotonicity and cost monotonicity coincides with the core of the game (N, cC∗),

the so called irreducible core.

A weaker version of population monotonicity is separability, which claims that if two

groups of agents can connect to the source independently of each other, then we can compute

their payments separately. A weaker version of cost monotonicity is reductionism, which

claims that the rule must depend only on the irreducible problem. We identify a necessary

and sufficient condition for a family of rules to cover all the ones satisfying separability

and reductionism. In order to describe this condition, we need to define the so-called,

neighborhoods and extra-costs functions. A neighborhood is a group of agents that are

“closer” to each other than to any of the other agents or to the source. Namely, the largest
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connection cost among agents of the neighborhood is smaller than the smallest connection

cost between an agent in the neighborhood and a node outside the neighborhood. An extra-

costs function is a way of dividing the savings obtained by the agents of a neighborhood when

they connect each other through a mcst. The intuition behind such rules is the following:

Initially each agent is connected to the source in the irreducible problem. Now, agents inside

neighborhoods are connected among them. For each neighborhood, the savings are divided

between the agents in the neighborhood following the extra-costs function.

We characterize the set of rules satisfying population monotonicity and cost monotonicity,

which is a subset of the previous set. We need to select the extra-costs functions satisfying the

so called aggregate neighborhood monotonicity, which says that for each agent, the aggregate

sum of the savings given by the extra-costs function should not decrease when the connection

cost between two consecutive neighborhoods is increased.

In particular, we show how optimistic weighted Shapley rules and obligation rules can be

defined using the extra-costs functions. Hence, we provide a general framework to identify the

monotonic rules. Besides, our results can be applied to identify new classes of rules satisfying

both monotonicity properties. We do it by introducing a class of rules that generalize the

obligation rules.

The paper is organized as follows. In Section 2 we introduce the model and the notation.

In Section 3 we characterize the set of allocations induced by the rules satisfying population

and cost monotonicity. In Section 4 we characterize the set of rules satisfying separability and

reductionism. In Section 5 we characterize the set of rules satisfying population monotonicity

and cost monotonicity and we apply these results to some known rules in the literature. Some

concluding remarks appear in Section 6. The proofs are presented in the Appendix.

2 Minimum cost spanning tree problems

We first introduce minimum cost spanning tree problems and some notation used throughout

the paper.

Let U = {1, 2, ... |U |} be the finite set of possible agents, and let 0 be a special node

called the source.

A graph is a pair (V,E) where ∅ �= V ⊂ U ∪ {0} and E = {{i, j} : i, j ∈ V, i �= j} .

The elements of V are called nodes (or vertices) and the elements of E are called edges.

Given g ⊂ E, a path in g between i and j is a sequence of nodes i = i1, ..., ik = j such that

{is, is+1} ∈ g for each s = 1, ..., k − 1. A path is simple if is �= is′ for each s, s′ ∈ {1, ..., k}

with s �= s′. We say that g ⊂ E is a spanning tree in V if for each pair of nodes i, j ∈ V

there exists exactly one simple path in t between i and j. Let T (V ) (or simply T) denote
the set of all spanning trees in V .

Given x, y ∈ RV we say that x ≤ y if xi ≤ yi for all i ∈ V . As usual, R+ denotes the

set of non-negative real numbers. Let ∆(V ) =

{
(xi)i∈V ∈ R

V
+ :

∑

i∈V

xi = 1

}
be the simplex

in RV .
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Let ΠV denote the set of all orders in V. Given π ∈ ΠV , let Pre (i, π) denote the set of ele-

ments of V which come before i in the order given by π, i.e., Pre (i, π) = {j ∈ V | π (j) < π (i)}.

Given π ∈ ΠV and S ⊂ V, πS denotes the order induced by π among nodes in S.

A cost matrix on V is a matrix C = (cij)i,j∈V such that cii = 0 and cij = cji for all

i, j ∈ N0. As usual, cij denotes the cost of constructing the edge {i, j} connecting agents i

and j.

Given g ⊂ E, the cost of g in (V,C) is defined as c (g, C) =
∑

{i,j}∈g

cij . A minimum

cost spanning tree (mcst) in (V,C) is a spanning tree t in V with minimum cost, namely

c (t, C) = min
t′∈T(V )

c (t′, C). A mcst is not necessarily unique. However, all mcst in (V,C) have

the same cost, that we denote as m (V,C).

Given a pair (V,C) we denote max (V,C) := max
i,j∈V

cij . Given ∅ �= S ⊂ V , we denote as

(S,CS) the restriction of (V,C) to S. Given i, j ∈ V and α ∈ R+, we denote as αIij the
matrix C given by ckl = 0 for all {k, l} �= {i, j} and cij = α.

Given a pair (V,C) and a mcst t, following Bird (1976) we define the minimal network

(V,Ct) associated with t as follows:

ctij = max
{il,il+1}⊂τ ij

cilil+1 (1)

where τ ij = {i1, ..., ik} denotes the unique simple path in t from i to j. Bird (1976) used this

minimal network to study a subset of the core of a mcstp.

Even though this definition is dependent on the choice of mt t, it is independent of the

chosen t. Proof of this can be found, for instance, in Aarts and Driessen (1993).

We define the irreducible form of (V,C) as the minimal network (V,C∗) associated with

a particular mcst t. We say that (V,C) is an irreducible problem if C = C∗. We denote as

C∗0 the set of all irreducible problems such that 0 ∈ V and as C∗ the set of all irreducible

problems such that 0 /∈ V.

It is well known that if (V,C) is an irreducible problem and we reduce any of the costs

of C, then the total cost of connecting all agents with the source is also reduced.

A minimum cost spanning tree problem (mcstp) is a pair (V,C) where 0 ∈ V and ∅ �=
V \ {0} ⊂ U . Usually we denote it as (N0, C) where N = V \ {0} and N0 = N∪ {0}. For

simplicity, when N is clear, we write C instead of (N0, C). Let C0 be the set of all mcstp.

Besides, let C be the set of all pairs (V,C) such that 0 /∈ V.

A rule is a function f that assigns to each mcstp (N0, C) ∈ C a vector f (N0, C) ∈ RN

such that
∑

i∈N

fi (N0, C) = m (N0, C). As usual, fi (N0, C) represents the payoff assigned to

agent i ∈ N .

We now introduce some properties of rules, which we will use in this paper.

Population Monotonicity (PM) For all mcstp (N0, C), S ⊂ N , and i ∈ S, we have

fi (N0, C) ≤ fi (S0, CS0) .
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This property says that if new agents join a network, no agent from the initial network

can be worse off.

Cost Monotonicity (CM) For all mcstp (N0, C) and (N0, C
′) such that C ≤ C ′, we have

f (N0, C) ≤ f (N0, C
′) .

This property says that if a number of connection costs increase and the rest of connection

costs (if any) remain the same, no agent can be better off. This property is also called

solidarity or strong cost monotonicity in some papers such as Bergantiños and Vidal-Puga

(2007) and Bergantiños and Kar (2010).

Separability (SEP ) For allmcstp (N0, C) and S ⊂ N satisfyingm (N0, C) = m (S0, CS0)+

m
(
(N\S)0 , C(N\S)0

)
, we have

fi (N0, C) =

{
fi (S0, CS0) if i ∈ S

fi
(
(N\S)0 , C(N\S)0

)
if i ∈ N\S.

Two subsets of agents, S and N\S, can be connected to the source either separately or

jointly. If there are no savings when they are jointly connected to the source, this property

says that the agents will pay the same in both circumstances. This property is also called

decomposition in some papers such as Megiddo (1978) and Granot and Huberman (1981).

Reductionism (RED) For all mcstp (N0, C),

f (N0, C) = f (N0, C
∗) .

If a rule satisfies this property, then it only depends on irreducible matrices. RED

appears in Bogomolnaia and Moulin (2010) and it is introduced in Bergantiños and Vidal-

Puga (2007) where it is called independence of irrelevant trees.

Bergantiños and Vidal-Puga (2007) study the relationships between these properties.

They prove that PM implies SEP , SEP does not imply PM , CM implies RED, and RED

does not imply SEP .

3 The irreducible core

Bird (1976) introduces the irreducible core of amcstp (N0, C). We define the set of monotonic

allocations as the set of allocations induced by rules satisfying CM and PM. In this section

we prove that the set of monotonic allocations coincides with the irreducible core.

A cost game with transferable utility, briefly a cost game, is a pair (N, c) where∅ �= N ⊂ V
and c : 2N → R satisfies c (∅) = 0.
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The core of a cost game (N, c) is defined as

core (N, c) =

{

(xi)i∈N :
∑

i∈N

xi = c (N) and
∑

i∈S

xi ≤ c (S)∀S ⊂ N

}

.

Bird (1976) associates with each mcstp (N0, C) the cost game (N, cC). For each coalition

S ⊂ N, cC (S) = m (S0, CS) .

The irreducible core of a mcstp (N0, C), denoted as IC (N0, C), is the core of the cost

game (N, cC∗) where (N0, C
∗) is the irreducible problem associated with (N0, C).

Even though the core of a cost game could be empty, there are some class of situations

where it is always non empty. For instance, Bird (1976) proved that the core of any mcstp

(N0, C) is non empty. Besides he realizes that the core contains “many” allocations. Thus,

he introduced the irreducible core, which is a non-empty set of the core. One advantage

of the irreducible core is its nice structure, it is the convex hull of the vector of marginal

contributions of (N, cC∗) .

Given a mcstp (N0, C), let AM (N0, C) denote the set of allocations induced by the

rules satisfying CM and PM . Namely, x ∈ AM (N0, C) if and only if there exists a rule f

satisfying CM and PM such that x = f (N0, C).

In the next theorem we prove that any rule f satisfying CM and PM gives, for any

mcstp (N0, C), an element f (N0, C) in the irreducible core of (N0, C).

Theorem 3.1 For each mcstp (N0, C) , AM (N0, C) = IC (N0, C) .

Nevertheless, given a rule f such that, for each mcstp (N0, C) , f (N0, C) ∈ IC (N0, C) ,

it could be the case that f does not satisfy both monotonicity properties. We now provide a

rule f that does not satisfy PM (a similar example could be provided for CM). Let πid ∈ ΠU

as in the proof of Theorem 3.1. We define π′ ∈ ΠU such that π
′ (i) = |U | − i for all i ∈ U.

Let fπ
id

and fπ
′

be as in the proof of Theorem 3.1. We define the rule f as follows:

f (N0, C) =

{
fπ

id

(N0, C) if |N | is even

fπ
′

(N0, C) if |N | is odd.

Let (N0, C) be amcstp where |N | is even (the case where |N | is odd is similar and we omit

it). Then, f (N0, C) = f
πid (N0, C) . Since f

πid satisfies PM and CM (we have proved it in

the proof of Theorem 3.1), fπ
id

(N0, C) ∈ IC (N0, C) . Nevertheless, f does not satisfy PM.

Let N = {1, 2, 3}, c01 = c02 = c03 = 9, and c12 = c13 = c23 = 5. Then, f3
(
{1, 3}0 , C{13}

)
= 5

but f3 (N0, C) = 9.

In Theorem 3.1 above we have stated that the set of allocations induced by monotonic

rules coincide with the irreducible core. A natural question that arises is if we can obtain

all allocations in the irreducible core with a smaller set of rules. The answer is affirmative.

From the proof of Theorem 3.1 we can deduce that any allocation in the irreducible core

could be obtained as an allocation induced by the convex hull of the “order induced” rules

{fπ}π∈ΠU .

6



4 The set of rules satisfying separability and reduc-

tionism

In this section we characterize the set of rules satisfying SEP and RED. For doing it we

need some new definitions. A neighborhood is a group of agents that are “closer” to each

other than to any of the other agents or to the source. An extra-costs function is a way of

dividing the savings obtained by the agents of a neighborhood when they connect among

themselves. The rules satisfying both properties could be described as follows. Initially each

agent is connected to the source in the irreducible matrix. Now, agents inside neighborhoods

are connected among them. For each neighborhood, the savings are divided among the

agents in the neighborhood following the extra-costs function.

We first introduce the concepts which will be crucial in our results.

Given a mcstp (N0, C) and S ⊂ N , we define

δS =






min
j∈N0\{i}

cij if S = {i}

min
i∈S,j∈N0\S

cij − max
{i,j}∈τ(S)

cij if |S| > 1

where τ (S) is a mcst in (S,CS) connecting all the agents in S.

Even though τ (S) is not necessarily unique, as in the case of the irreducible problem max
{i,j}∈τ(S)

cij

does not depend on the particular τ (S) and hence δS is well defined.

Roughly speaking, δS may be interpreted, when positive, as some kind of "distance"

between S and N0\S.

Definition 4.1 Let (N0, C) be a mcstp. We say that S ⊂ N , |S| > 1, is a neighborhood

in (N0, C) if δS > 0. We denote the set of all neighborhoods in (N0, C) as Ne (N0, C).

Sometimes we will write Ne (C) instead of Ne (N0, C) .

Example 4.1 Let N = {1, 2, 3, 4, 5, 6} and C be such that c01 = 50, c12 = 20, c13 = 40,

c34 = 10, c15 = 60, c36 = 70, and cij > 70 otherwise. There are exactly two neighborhoods

containing node 1: {1, 2} because δ{1,2} = c13 − c12 = 20, and {1, 2, 3, 4} because δ{1,2,3,4} =

c01 − c13 = 50 − 40 = 10. Notice that {1, 2, 3} is not a neighborhood because δ{1,2,3} =

c34 − c13 = −30.

Some comments about neighborhoods.

1. From the definition of the irreducible problem (N0, C
∗) we deduce that neighborhoods

of (N0, C) and (N0, C
∗) coincide.

2. In general, (C∗)S �= (CS)
∗. Take for example N = {1, 2, 3}, c12 = c13 = 1, c23 = 2 and

S = {2, 3}. Then, c∗23 = 1 and hence C
′ = (C∗)S satisfies c

′
23 = 1 whereas C

′′ = (CS)
∗

satisfies c′′23 = 2. Later on (Proposition 1.1) we will prove that the equality holds when

S is a neighborhood.
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The next proposition gives some results about neighborhoods.

Proposition 4.1 1. S ⊂ N is a neighborhood in (N0, C) if and only if S is a neighborhood

in (N0, C
∗). Besides, (CS)

∗ = (C∗)S and

δS = min
i∈S,j∈N0\S

c∗ij −max
i,j∈S

c∗ij.

2. If S is a neighborhood in (N0, C) and i ∈ S, then

S =

{
j ∈ N : c∗ij < min

k∈S,l∈N0\S
c∗kl

}
.

3. If S, S ′ are two neighborhoods in (N0, C), (N0, C) is an irreducible problem, and S∩S ′ �=

∅, then either S ⊂ S ′ or S ′ ⊂ S.

4. For each i ∈ N , there exists a unique family of subsets of N , S1, S2, ..., Sq with q ≥ 01

such that {S1, ..., Sq} is the set of neighborhoods in (N0, C) that contain i, and S1 ⊂

S2 ⊂ ... ⊂ Sq.

5. There exist no neighborhood in (N0, C) if and only if {{0, i}}i∈N is a mcst in (N0, C).

Under Proposition 1.1, for each neighborhood S ⊂ N , we have (C∗)S = (CS)
∗. We denote

this matrix as C∗S.

We now introduce the family of extra-costs functions, which will be used in the definition

of the rules we characterize.

Definition 4.2 An extra-costs function is a function e : C∗ × R+ → RU
+ satisfying:

(E1) ei ((N,C) , x) = 0 for all (N,C) ∈ C∗, x ∈ R+, and i ∈ U\N .

(E2)
∑

i∈N

ei ((N,C) , x) = x for all (N,C) ∈ C∗ and x ∈ R+.

Definition 4.3 For each extra-costs function e we define the rule f e as follows. Given a

mcstp (N0, C) and i ∈ N,

f ei (N0, C) := c
∗
0i −

∑

S ∈Ne(N0,C),i∈S

(δS − ei ((S,C
∗
S) , δS)) .

When no confusion arises we write ei (C
∗
S, δS) instead of ei ((S,C

∗
S) , δS)

The intuition behind such rules is the following. Initially each agent i pays c∗0i. Now,

agents inside neighborhoods are connected among them. For each neighborhood S, the

savings are divided among the agents in S following e. The larger is ei (C
∗
S, δS) , the smaller

is the saving (δS − ei (C∗S, δS)) corresponding to agent i in neighborhood S.

We compute f e in two examples.

1Case q = 0 covers the situation in which agent i has no neighborhoods.
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Example 4.2 Let N = {1, 2} , c01 = 10, c02 = 15, and c12 = 2. Then, c∗10 = c
∗
20 = 10 and

c∗12 = 2. Let e be such that for each irreducible problem (N,C
′) and each x ∈ R+, e1 (C ′, x) =

3x
4
and e2 (C

′, x) = x
4
. There is a unique neighborhood S = N with δN = 10− 2 = 8. Now,

f e1 (C0) = c∗01 − (δN − e1 (C
∗, 8)) = 10−

(
8−

3

4
8

)
= 8 and

f e1 (C0) = c∗02 − (δN − e2 (C
∗, 8)) = 10−

(
8−

1

4
8

)
= 4.

Example 4.3 (continuation of Example 4.1) Let e be defined as ej (C
′, x) = x

|N ′|
for all

(N ′, C ′) ∈ C and j ∈ N ’. We compute f e1 (C) . There are two neighborhoods containing agent

1: S1 = {1, 2} and S2 = {1, 2, 3, 4}. Besides c∗01 = 50, δS1 = 20 and δS2 = 10.

Then,

fe1 (C0) = 50−
(
δS2 − e2

(
C∗S2 , 10

))
−
(
δS1 − e1

(
C∗S1, 20

))

= 50− (10− 2.5)− (20− 10) = 32.5.

Under (E2), for each i ∈ N, f ei can be computed as

f ei (N0, C) = c
∗
0i −

∑

S ∈Ne(N0,C),i∈S




∑

j∈S\{i}

ej (C
∗
S, δS)



 .

In Proposition 4.2 below we prove that each f e is a rule, namely,
∑

i∈N

f ei (N0, C) =

m (N0, C) .

Proposition 4.2 For each extra-costs function e, f e is a rule.

In Theorem 4.1 below we characterize this family of rules.

Theorem 4.1 A rule f satisfies separability and reductionism if and only if f = f e for some

extra-costs function e.

We give the idea of the proof of Theorem 2. See Appendix for a formal proof. It is easy

to see that each f e satisfies separability and reductionism. Given a rule f satisfying both

properties, we need to find e such that f = fe. Given an irreducible problem (N,C) and

x ∈ R+ we define the mcstp (N0, C ′) and (N0, C ′′) where

c′ij =

{
cij if 0 /∈ {i, j}

max (N,C) if 0 ∈ {i, j}
and

c′′ij =

{
cij if 0 /∈ {i, j}

max (N,C) + x if 0 ∈ {i, j} .

Now, for each i ∈ N we define ei (N,C) = fi (N0, C
′′) − fi (N0, C ′) . We then prove

that e is an extra-costs function. Finally, using an induction argument over the number of

neighborhoods, we prove that f = f e.
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5 The set of rules satisfying population monotonicity

and cost monotonicity

In this section we characterize the set of rules satisfying both monotonicity properties. Since

PM implies SEP and CM implies RED, this set of rules will be a subset of the set charac-

terized in the previous section. This subset is proper, since not all the rules characterized in

the previous section satisfy PM or CM . Take for example the extra-cost function given as

ei ((N,C
∗) , x) =






x
|N |

if x < 1 or |N | = 1

0 if x ≥ 1, |N | > 1 and i = minj∈N j
x

|N |−1
if x ≥ 1, |N | > 1 and i �= minj∈N j

for all (N,C∗) ∈ C∗, x ∈ R+ and i ∈ N . The resulting rule fe proposes an egalitarian share
as long as the cost is small (less than 1). Otherwise, the agent with the lowest index should

pay nothing (unless |N | = 1). This rule does not satisfy PM nor CM .

We will prove that the set of rules satisfying PM and CM coincides with the set of rules

induced by extra-costs functions satisfying a neighborhood monotonicity property.

We first introduce the concepts we will use. Given (N1, C1) , (N2, C2) ∈ C, N1 ∩N2 = ∅,

and a ∈ R+, we define (
N1 ∪N2, C1 ⊕a C

2
)

as the pair (N1 ∪N2, C) where cij = c
α
ij if i, j ∈ N

α for some α ∈ {1, 2}, and cij =

a+max (N1, C1) for all i ∈ N1, j ∈ N2.

For convenience, we write C1 ⊕a C
2 ⊕b C

3 instead of (C1 ⊕a C
2)⊕b C

3, and so on.

Given a = (a1, ..., aΓ) ∈ RΓ+,
(
C1, ..., CΓ

)
∈ CΓ, and γ ≤ Γ we denote

Cγ (a) = C1 ⊕a1 C
2 ⊕a2 ...⊕aγ−1 C

γ.

Notice that, given γ > 1,

Cγ (a) = Cγ−1 (a)⊕aγ−1 C
γ . (2)

Definition 5.1 We say that an extra-costs function e satisfies the Aggregated Neighborhood

Monotonicity (ANM) property if for all disjoint sequences {(Nγ, Cγ)}Γγ=1 ⊂ C
∗, Γ ≥ 1, i ∈

Nγi with γi �= 2, a ∈ R
Γ
+ with aγ ≥ max (N

γ+1, Cγ+1)−max (Nγ, Cγ) for all γ = 1, ...,Γ−1,

and y ∈ [0, a2] (y ≥ 0 when Γ = 1), we have

Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)
≥

Γ∑

γ=γi

ei (C
γ (a) , aγ)

where a′ = (a1 + y, a2 − y, a3, ..., aΓ) (a
′ = (a1 + y) when Γ = 1).

Let us clarify the implications of this property in the following example.
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0
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0

6060
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C C’

Figure 1: Irreducible cost matrices C and C ′ with y ∈ [0, 1]. The remaining costs can

be derived from (1) taking any mcst. For example, c02 = max {c01, c12} = 60 when t =

{{0, 1} , {1, 2} , {1, 3} , {3, 4} , {4, 5}}.

Example 5.1 Let (N0, C) and (N0, C
′) be such that N = {1, 2, 3, 4, 5} and C and C ′ are

described in Figure 1.For bothmcstp we can find a sequence {(Nγ, Cγ)}Γγ=1 as in the definition

of ANM . Let Γ = 3, N1 = {1, 2} , c112 = 10, N
2 = {3} , N3 = {4, 5}, c345 = 0, a = (25, 5, 20) ,

a′ = (25 + y, 5− y, 20), and y ∈ [0, 5] .We are under the conditions imposed on the definition

of ANM because a1 = 25 ≥ 0 − 10 = max (N2, C2) − max (N1, C1), a2 = 5 ≥ 0 − 0 =

max (N3, C3)−max (N2, C2).

Cγ (a) and Cγ (a′) are described in Figure 2.

2

1

2

1

2

1

3

2

1

3

5

4

2

1

3

10

10

10

10

35

35

35 + y

35 + y

10

35 + y

35 + y
40

40

40

40

0
40

40

Cγ(a)

Cγ(a’)

γ = 1 γ = 2 γ = 3

5

4

2

1

310

35

35
40

40

40

40

0
40

40

Figure 2: Cγ (a) and Cγ (a′) for γ = 1, 2, 3.

Given i ∈ N1, ANM says that

ei
(
C1 (a′) , 25 + y

)
+ ei

(
C2 (a′) , 5− y

)
+ ei

(
C3 (a′) , 20

)

≥ ei
(
C1 (a) , 25

)
+ ei

(
C2 (a) , 5

)
+ ei

(
C3 (a) , 20

)
.

Given i ∈ N2, ANM says nothing (since we assume γi �= 2).
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Given i ∈ N3, ANM says that

ei
(
C3 (a′) , 20

)
≥ ei

(
C3 (a) , 20

)
.

We now explain the intuition behind this technical property in the previous example (the

same ideas could be applied to the general case). Consider the sequence of neighborhoods

{1, 2} , {1, 2, 3} , and {1, 2, 3, 4, 5} in (N0, C) and (N0, C ′) as in Proposition 1.4. Notice that

the costs associated with neighborhood {1, 2, 3} are larger in C ′ than in C. The extra-costs

function e tell us how to divide the savings induced by the neighborhoods. If we want a

rule (associated with an extra-costs function) to satisfy PM and CM , some conditions on

this sequence of neighborhoods should be imposed. There are three kind of agents in the

sequence.

• Agents in
Γ⋃

γ=3

Nγ. In this example this set is N3 = {4, 5} . Agent 4 (similar arguments

could be applied to 5) has only a saving derived from neighborhood {1, 2, 3, 4, 5} . The

total saving associated with {1, 2, 3, 4, 5} is 20 in both mcstp. The connection costs

of agent 4 are the same in both mcstp (c4i = c
′
4i for all i ∈ N0). Some agents (5 in

this example) also have the same connection costs in both mcstp. Some other agents

have larger connection costs in C ′ than in C. In this example each agent k ∈ {1, 2, 3}

satisfies that cki ≤ c
′
ki for all i ∈ N0 and cki′ < c

′
ki′ for some i

′ ∈ N0. Nevertheless no

agent decreases her costs (no agent k satisfies cki ≥ c′ki for all i ∈ N0 and cki′ > c
′
ki′

for some i′ ∈ N0). Thus, the relative position of agent 4 has improved from C to C ′

(because others agents are worse off). ANM says that the saving of agent 4 should be

not larger in C than in C ′.

• Agents in N1 = {1, 2} . Agent 1 (similar arguments could be applied to 2) has a saving

derived from the three neighborhoods of the sequence.

In {1, 2} her relative position is the same because the connection costs of agents 1 and

agent 2 are the same in C ′ as in C. The total saving is larger in C ′ than in C (25 + y

instead of 25). Thus, the saving of agent 1 associated with neighborhood {1, 2} should

be not larger in C than in C ′.

In {1, 2, 3} her relative position is similar because the connection costs of agents 1, 2,

and 3 are larger in C ′ than in C. The total saving is smaller in C ′ than in C (5 − y

instead of 5). Thus, the saving of agent 1 associated with neighborhood {1, 2, 3} should

be not larger in C ′ than in C.

In {1, 2, 3, 4, 5} her relative position is worse because the connection costs of agents 1,

2, and 3 are larger in C ′ than in C and the increment (y) is the same for all agents.

Besides, the connection costs of agents 4 and 5 are the same in C ′ than in C. The total

saving is the same in C ′ than in C (20 in both). Thus, the saving of agent 1 associated

with neighborhood {1, 2, 3, 4, 5} should be not larger in C ′ than in C.

12



What should happen with the aggregate saving of agent 1? Since in {1, 2} there are y

units more to be divided between two agents, whereas in {1, 2, 3} there are y units less

to be divided between three agents, the aggregated saving of agent 1 associated with

neighborhoods {1, 2} and {1, 2, 3} should be not larger in C than in C ′. In {1, 2, 3, 4, 5}

the total amount to be divided is the same. Thus, if we give more importance to changes

in the total saving to be divided than in the relative position of each agent (when the

total saving do not change), then the total saving of agent 1 should not be larger in C

than in C ′. That is the way in which ANM works.

• Agents in N2. ANM says nothing.

We now present the characterization.

Theorem 5.1 A rule f satisfies PM and CM if and only if f = f e for some extra-costs

function e satisfying the ANM property.

We give the idea of the proof of Theorem 3. See Appendix for a formal proof. The

most elaborate part is the proof that fe satisfies CM . We do it by considering several cases

depending on the structure of the neighborhoods containing each agent. To prove that f e

satisfies PM is relatively easy and we use that f e satisfies CM. Let f be a rule satisfying

PM and CM. By Theorem 2 we can find an extra-costs function e such that f = f e.Making

some computations we prove that such e satisfies AGM .

In the literature some authors studied families of rules satisfying both monotonicity

properties. The folk rule was originally introduced by Feltkamp et al (1994) and later

studied in Branzei et al (2004) and Bergantiños and Vidal-Puga (2007), among others. The

optimistic weighted Shapley rules are a family of rules defined by Bergantiños and Lorenzo-

Freire (2008a, 2008b). Obligation rules were introduced by Tijs et al (2006) and studied

later in Lorenzo and Lorenzo-Freire (2009) and Bergantiños and Kar (2010). The folk rule is

an optimistic weighted Shapley rule. Besides, optimistic weighted Shapley rules are a subset

of obligation rules.

We now show how these rules can be included in our family.

Proposition 5.1 1. Obligation rules are the rules f e where for each (N,C∗, x) and each

i ∈ N ,

ei (C
∗, x) = oi (N) x

where o is a function that assigns to each N a vector o (N) ∈ ∆(N) such that oi (S) ≥

oi (N) for all i ∈ S ⊂ N .

2. Optimistic weighted Shapley rules are the rules f e such that for each (N,C∗, x) and

each i ∈ N ,

ei (C
∗, x) =

ωi∑
i∈N ωi

x.

where ω ∈ RU
+.
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3. The folk rule is the rule fe where for each (N,C∗, x) and each i ∈ N

ei (C
∗, x) =

1

|N |
x.

From Proposition 3, it is clear that the folk rule is a particular case of an optimistic

weighted Shapley rule, and those are also obligation rules. Hence, our paper provides a

unified framework for all these rules.

Theorem 3 can also be used for identifying classes of rules satisfying PM andCM different

from the class of rules studied in Proposition 3. We do it in the following. Let {ox}x∈R+
be a parametric family of obligation functions, i.e. for each x ∈ R+, ox (N) ∈ ∆(N) and
oxi (S) ≥ o

x
i (N) for all i ∈ S � N . We assume o

x
i (N) is an integrable function of x for all

i ∈ N and ∫ a+c

a

oxi (S) dx ≥

∫ b+c

b

oxi (N) dx (3)

for all i ∈ S � N and a, b, c ∈ R+.

Proposition 5.2 Let {ox}x∈R+ be defined as before. The rule f
e with e defined as

ei (C
∗, x) =

∫ x

0

oti (N) dt

for all (C∗, x) and i ∈ N , satisfies CM and PM.

This family contains the obligation rules (simply take ox = o for all x). Besides, not all

the obligation rules can be defined in this way. Take for example ô = {ôx}x∈R+ defined as

follows:

ôxi (N) :=






1
|N |

if |N | �= 2
1+1x≤1

3
if |N | = 2 and i = minj∈N j

2−1x≤1
3

if |N | = 2 and i = maxj∈N j

for all i ∈ N , where 1x≤1 = 1 if x ≤ 1 and 1x≤1 = 0 otherwise. The resulting rule f ô is not a

obligation rule.

6 Concluding remarks

In this section we summarize the main findings of the paper. Our main objective is to study

in mcstp the rules satisfying PM and CM.

Given a mcstp, its irreducible problem is obtained by reducing the cost of the edges

as much as possible, but without changing the total cost associated with any mcst. The

irreducible core is the core of the irreducible problem and it is a non-empty subset of the

core. Our first result says that the set of allocations induced by the rules satisfying PM and

CM coincides with the irreducible core.

We introduce the concept of neighborhood. We say that a group of agents S are in a

neighborhood if any connection cost between any agent of the neighborhood and any agent
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outside the neighborhood is larger than any connection cost between any pair of agents in the

neighborhood. We define δS as the difference between the previous amounts. Initially each

agent is connected to the source in the irreducible matrix. Now, agents inside neighborhoods

are connected among them. For each neighborhood S, the savings (given by δS) are divided

among the agents in the neighborhood S following the extra-costs function.

Our second result says that the set of rules satisfying SEP and RED coincides with the

set of rules induced by extra-costs functions.

Our third result says the set of rules satisfying PM and CM coincides with the set of

rules induced by extra-costs functions satisfying the ANM property.

We also explain how some rules of the literature satisfying PM and CM can be expressed

in terms of extra-costs functions. Besides, with the help of our result, we identify a new class

of rules satisfying PM and CM .

7 Appendix

We prove the results of the paper.

7.1 Proof of Theorem 3.1

Let (N0, C) be a mcstp. We first prove that IC (N0, C) ⊂ AM (N0, C).

Given π ∈ ΠU we define the rule f
π such that for each mcstp (N ′

0, C
′) and each i ∈ N ′,

fπi (N
′
0, C

′) = cC′∗ (Pre (i, πN ′) ∪ {i})− cC′∗ (Pre (i, πN ′)) .

This rule fπ is well defined because
∑

i∈N ′

fπi (N
′
0, C

′) = cC′∗ (N
′) = m (N ′

0, C
′∗) = m (N ′

0, C
′) .

We now prove that for each π ∈ ΠU , f
π satisfies PM and CM.

Given a mcstp (N ′
0, C

′) and S ⊂ N ′ the next expression appears, for instance, in Lemma

0 (b) of Bergantiños and Gómez-Rúa (2010),

cC′∗ (S ∪ {i})− cC′∗ (S) = min
k∈S∪{0}

{c′∗ik} .

Then,

fπi (N
′
0, C

′) = min
k∈Pre(i,πN ′)∪{0}

{c′∗ik}

Let S ⊂ N ′, and i ∈ S. Since Pre (i, πS) ⊂ Pre (i, πN ′),

min
k∈Pre(i,πN ′)∪{0}

{c′∗ik} ≤ min
k∈Pre(i,πS)∪{0}

{c′∗ik} .

Under (1), C ′∗S ≤ (C
′
S)
∗. Then,

min
k∈Pre(i,πS)∪{0}

{c′∗ik} ≤ min
k∈Pre(i,πS)∪{0}

{
(C ′S)

∗
ik

}
= fπi (S0, C

′
S) .
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Hence, fπ satisfies PM.

Let (N ′
0, C

′) and (N ′
0, C

′′) be such that C ′ ≤ C ′′. Bergantiños and Vidal-Puga (2007)

prove in Lemma 4.2 that C ′∗ ≤ C ′′∗. Then, for each i ∈ N ′,

fπi (N
′
0, C

′) = min
k∈Pre(i,πN ′)∪{0}

{c′∗ik} ≤ min
k∈Pre(i,πN ′)∪{0}

{c′′∗ik } = f
π
i (N0, C

′′) .

Hence, fπ satisfies CM.

It is well known that (N, cC∗) is a concave game. See, for instance Proposition 3.3 (c)

in Bergantiños and Vidal-Puga (2007). Then, core (N, cC∗) is the convex hull of the family

of vector of marginal contributions. Namely, given x = (xi)i∈N ∈ IC (N0, C), there exists

w = (wπ)π∈ΠN ∈ ∆(ΠN) such that for each i ∈ N,

xi =
∑

π∈ΠN

wπ [cC∗ (Pre (i, π) ∪ {i})− cC∗ (Pre (i, π))] .

Given π ∈ ΠN we define πU ∈ ΠU such that we first order agents in N as in π and later

agents in U\N as in the identical order. Formally, let πid ∈ ΠU be such that π
id (i) = i for

all i ∈ U. We now take πU =
(
π, πidU\N

)
.

We define the rule fw =
∑

π∈ΠN

wπf
πU . For each i ∈ N

fwi (N0, C) =
∑

π∈ΠN

wπf
πU

i (N0, C)

=
∑

π∈ΠN

wπ
[
cC∗

(
Pre

(
i, πUN

)
∪ {i}

)
− cC∗

(
Pre

(
i, πUN

))]

=
∑

π∈ΠN

wπ [cC∗ (Pre (i, π) ∪ {i})− cC∗ (Pre (i, π))]

= xi.

It only remains to prove that fw satisfies PM and CM. Let (N ′
0, C

′) and (N ′
0, C

′′) be

such that C ′ ≤ C ′′. Since for each π ∈ ΠN , f
πU satisfies CM, we have that fπ

U

(N ′
0, C

′) ≤

fπ
U

(N ′
0, C

′′) . Now

fw (N ′
0, C

′) =
∑

π∈ΠN

wπf
πU (N ′

0, C
′) ≤

∑

π∈ΠN

wπf
πU (N ′

0, C
′′) = fw (N ′

0, C
′′) .

Similarly, we can prove that fw satisfies PM. Then, IC (N0, C) ⊂ AM (N0, C).

We now prove that AM (N0, C) ⊂ IC (N0, C) . Let x ∈ AM (N0, C). There exists a rule

f satisfying CM and PM such that x = f (N0, C) . Since CM implies RED

f (N0, C) = f (N0, C
∗) .

Bergantiños and Vidal-Puga (2007) prove that if f satisfies PM, then it satisfies core

selection, namely f (N0, C) ∈ core (N, cC) . Therefore,

f (N0, C
∗) ∈ core (N, cC∗) = IC (N0, C) .�
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7.2 Proof of Proposition 4.1

(1) Assume that S is a neighborhood in (N0, C). Because of the definition of the irreducible

problem (N0, C
∗), we have that min

i∈S,j∈N0\S
cij = min

i∈S,j∈N0\S
c∗ij. Let C

1 = (CS)
∗ and let C2 =

(C∗)S. Let τ (S) be a mcst in (S,CS). Since S is a neighborhood in (N0, C), τ (S) is also a

mcst in (S,C1) and (S,C2). Given i, j ∈ S, let τ ij be the unique simple path in τ (S) from

i to j. Then,

c1ij = max
{il,il+1}⊂τ ij

cilil+1 = c
2
ij.

Because of the definition of C∗ we have that max
(i,j)∈τ(S)

cij = max
(i,j)∈τ(S)

c∗ij = max
(i,j)∈S

c∗ij. Now,

δ∗S = min
i∈S,j∈N0\S

c∗ij − max
{i,j}∈τ(S)

c∗ij

= min
i∈S,j∈N0\S

cij − max
{i,j}∈τ(S)

cij = δS

which means that S is a neighborhood in (N0, C
∗).

Similarly we can prove that if S is a neighborhood in (N0, C
∗) , then S is a neighborhood

in (N0, C) .

(2) ”⊃” Let j ∈ N be such that c∗ij < min
k∈S,l∈N0\S

c∗kl. If j /∈ S, then c
∗
ij ≥ min

k∈S,l∈N0\S
c∗kl,

which is a contradiction. Hence, j ∈ S.

”⊂”: Let j ∈ N be such that c∗ij ≥ min
k∈S,l∈N0\S

c∗kl. If j ∈ S, then

δS = min
k∈S,l∈N0\S

c∗kl −max
k,l∈S

c∗kl ≤ c
∗
ij − c

∗
ij = 0

which cannot be true because S is a neighborhood. Hence, j /∈ S.

(3) Let i ∈ S ∩ S′. If min
k∈S,l∈N0\S

c∗kl ≤ min
k∈S′,l∈N0\S′

c∗kl then it follows from Proposition 1.2

that S ⊂ S ′. If min
k∈S′,l∈N0\S′

c∗kl ≤ min
k∈S,l∈N0\S

c∗kl then it follows from Proposition 1.2 that S ′ ⊂ S.

(4) It follows from Proposition 1.3.

(5) Assume that {(0, i)}i∈N is not a mcst. Let {k, l} ⊂ N be such that ckl = min
i,j∈N

cij .

Thus, ckl < min
i∈N
c0i. Then, S = {k} ∪

{
i ∈ N : max

{ilil+1}⊂τik
cilil+1 ≤ ckl

}
is a neighborhood in

(N0, C).

Assume {(0, i)}i∈N is a mcst. Then, given any S ⊂ N , we have min
i∈S,j∈N0\S

cij = min
i∈S
c0i

and max
{i,j}∈τ(S)

cij ≥ min
i∈S
c0i. Hence

δS = min
i∈S,j∈N0\S

cij − max
{i,j}∈τ(S)

cij ≤ 0

and S is not a neighborhood. �
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7.3 Proof of Proposition 4.2

Let (N0, C) be a mcstp. Then,

∑

i∈N

f ei (N0, C) =
∑

i∈N

c∗0i −
∑

i∈N

∑

S ∈Ne(N0,C),i∈S

(δS − ei (C
∗
S, δS))

=
∑

i∈N

c∗0i −
∑

S ∈Ne(N0,C)

(
∑

i∈S

(δS − ei (C
∗
S, δS))

)

=
∑

i∈N

c∗0i −
∑

S ∈Ne(N0,C)

(|S| − 1) δS.

Thus, it is enough to prove that for each mcstp (N0, C),

m (N0, C) +
∑

S ∈Ne(N0,C)

(|S| − 1) δS =
∑

i∈N

c∗0i.

Assume first there exists no neighborhood. Under Proposition 1.5, {{0, i}}i∈N is a mcst

in (N0, C). Hence, {{0, i}}i∈N is also a mcst in (N0, C
∗) and the result is easily checked.

Assume now that there are exactly k > 0 neighborhoods and the result is true when

there exists less than k neighborhoods. Let S′ be a minimal neighborhood (there is no

neighborhood S such that S � S′). Let τ (S ′) denote a mcst in S ′. Since S ′ is minimal,
there exists α ≥ 0 such that cij = α for all (i, j) ∈ τ (S′).

Let t be a mcst in (N0, C). We define C
′ as c′ij = α + δS′ if {i, j} ⊂ S

′ and c′ij = cij
otherwise. Thus,

• t is also a mcst in (N0, C ′);

• c′∗0i = c
∗
0i for all i ∈ N ;

• m (N0, C ′) = m (N0, C) + (|S ′| − 1) δS′; and

• {S : S is a neighborhood in (N0, C ′)} coincides with {S : S is a neighborhood in (N0, C)} \ {S ′

Now, applying the induction hypothesis, we have

m (N0, C) +
∑

S ∈Ne(N0,C)

(|S| − 1) δS

= m (N0, C
′)− (|S ′| − 1) δS′ +

∑

S ∈Ne(N0,C)

(|S| − 1) δS

= m (N0, C
′) +

∑

S ∈Ne(N0,C′)

(|S| − 1) δS

=
∑

i∈N

c′∗0i =
∑

i∈N

c∗0i. �
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7.4 Proof of Theorem 4.1

Let e be any extra-costs function and fe be the associated rule. It is obvious that f e satisfies

RED.

In order to prove that f e also satisfies SEP , let S ⊂ N such thatm (N0, C) = m (S0, CS0)+

m
(
(N\S)0 , C(N\S)0

)
. Then,

Ne (N0, C) = Ne (S0, CS0) ∪Ne
(
(N\S)0 , C(N\S)0

)
.

Hence, f ei (N0, C) = f
e
i (S0, CS0) and this proves that f satisfies SEP .

We now prove that if f satisfies SEP and RED, then f = f e for some extra-costs

function e. Let f be such a rule.

Given (N,C∗) ∈ C∗ and a ∈ R+, we define
(
N0, C

∗(a)
)
as the mcstp given by c

∗(a)
ij = c∗ij

for all i, j ∈ N and c
∗(a)
0i = a for all i ∈ N . Notice that

(
N,C∗(a)

)
is an irreducible problem

when a ≥ max (N,C∗).

For all (N,C∗) ∈ C∗, x ∈ R+, and i ∈ N we define

ei (C
∗, x) = fi

(
N0, C

∗(max(N,C∗)+x)
)
− fi

(
N0, C

∗(max(N,C∗))
)
.

Given i ∈ U\N we define ei (C
∗, x) = 0.

We first prove that e is an extra-costs function. By definition, ei (C
∗, x) = 0 for all

(N,C∗) ∈ C∗, x ∈ R+, i ∈ U\N . Besides,
∑

i∈N

ei (C
∗, x) = m

(
N0, C

∗(max(N,C∗)+x)
)
−m

(
N0, C

∗(max(N,C∗))
)

= m (N,C∗) + max (N,C∗) + x−m (N,C∗)−max (N,C∗)

= x.

Hence, e is an extra-costs function.

We need to prove that f = f e. It is obvious that for any mcstp (N0, C), f
e (N0, C) =

f e (N0, C
∗) . Since f satisfies RED, f (N0, C) = f (N0, C

∗) . Thus, it is enough to prove that

f e (N0, C
∗) = f (N0, C

∗) .

We proceed by induction on the number of neighborhoodsNe (N0, C). Assume |Ne (N0, C)| =

0.

Under Proposition 1.5, {(0, i)}i∈N is amcst in (N0, C). Since f satisfies SEP , fi (N0, C) =

fi
(
{i}0 , C{i}0

)
= c0i. Besides, since {(0, i)}i∈N is a mcst in (N0, C), we have c0i = c

∗
0i for all

i ∈ N and hence fe (N0, C) = f (N0, C).

Assume now the result is true for mcstp with less than |Ne (N0, C)| neighborhoods.

Assume first that max (N0, C
∗) ≥ max

i∈N
c∗0i. By Proposition 3.1 in Bergantiños and Vidal-

Puga (2007) we can find a mcstp t in (N0, C
∗) and (i, j) ∈ t such that c∗ij = max (N0, C

∗)

and i is in the unique simple path in t from j to 0. Let S be the set of agents k satisfying

that j is in the unique simple path in t from k to 0. Then, S �= ∅, S �= N and m (N0, C
∗) =

m
(
S0, C

∗
S0

)
+m

(
(N\S)0 , C(N\S)0

)
. Under SEP , fi (N0, C

∗) = fi
(
S0, C

∗
S0

)
for all i ∈ S and
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fi (N0, C
∗) = fi

(
(N\S)0 , C(N\S)0

)
for all i ∈ N\S. Repeating this argument we can find a

partition {S1, ..., Sp} of N satisfying that for each k = 1, ...p max
(
Sk, C

∗
Sk

)
< max

i∈Sk
c∗0i and

fi (N0, C
∗) = fi

(
(Sk)0 , C

∗
(Sk)0

)
for each i ∈ Sk.

Hence, we can assume that max (N0, C
∗) < max

i∈N
c∗0i. Since (N0, C

∗) is irreducible,

max
i∈N
c∗0i = c

∗
0i for all i ∈ N . Hence, N is a neighborhood in (N0, C

∗) and δN = max
i∈N
c∗0i −

max (N0, C
∗). Now, for each i ∈ N ,

fi (N0, C
∗) = fi

(
N0, C

∗(max(N0,C∗)+δN )
)

= ei (C
∗, δN) + fi

(
N0, C

∗(maxC∗)
)
.

We defineC ′ = C∗(max(N0,C
∗)). Then (N0, C

′) is an irreducible problem satisfyingNe (N0, C
∗) =

Ne (N0, C
′) ∪ {N}. For each S ∈ Ne (N0, C ′), δS = δ

′
S, and c

′∗
0i = c

∗
0i − δN . Hence, applying

the induction hypothesis, for each i ∈ N ,

fi (N0, C
∗) = ei (C

∗, δN) + fi (N0, C
′)

= ei (C
∗, δN) + c

′∗
0i +

∑

S∈Ne(N0,C′)

(ei (C
∗
S, δS)− δS)

= ei (C
∗, δN) + c

∗
0i − δN +

∑

S∈Ne(N0,C′)

(ei (C
∗
S, δS)− δS)

= c∗0i +
∑

S∈Ne(N0,C∗)

(ei (C
∗
S, δS)− δS)

= f ei (N0, C
∗) . �

7.5 Proof of Theorem 5.1

We start the proof with the following Lemma.

Lemma 1. (i) Given (N ′, C ′) , (N ′′, C ′′) ∈ C∗ and a ∈ R+ with N ′ ∩ N ′′ = ∅ and

a ≥ max (N ′′, C ′′)−max (N ′, C ′), then C ′ ⊕a C
′′ ∈ C∗.

(ii)Given a disjoint sequence {(Nγ, Cγ)}Γγ=1 ⊂ C
∗, Γ > 1, a ∈ RΓ+ with aγ ≥ max (N

γ+1, Cγ+1)−

max (Nγ, Cγ) for all γ = 1, ...,Γ − 1, and y ∈ [0, a2], then C
γ (a) ∈ C∗ and Cγ (a′) ∈ C∗ for

all γ = 1, ...,Γ, where a′ = (a1 + y, a2 − y, a3, ..., aΓ).

Proof of Lemma 1. (i) Let C = C ′ ⊕a C
′′. Then, a+maxC ′ = maxC. Hence, we can

find amcst t in (N ′ ∪N ′′, C) and (N ′ ∪N ′′, C∗) such that t = t1∪t2∪{(k1, k2)} where t1 is a

mcst in (N ′, C ′) , t2 is a mcst in (N ′′, C ′′), k1 ∈ N1 and k2 ∈ N2. Since ck1k2 = maxC ≥ cij
for all (i, j) ∈ t1 ∪ t2 we can deduce, using the definition of irreducible matrix, that C = C∗.

(ii)We assume γ > 1, since the case γ = 1 is trivial. We proceed by induction on Γ. For

Γ = 2, the result follows from (i) because a′1 = a1 + y ≥ a1 ≥ maxC
2 − maxC1. Assume

the result is true for sequences with less than Γ mcstp’s, Γ ≥ 3. Under the induction

hypothesis, we have Cγ (b), Cγ (b′) ∈ C∗ where γ = 1, ...,Γ − 1, b = (a1, ..., aΓ−1) and

b′ = (a1 + y, a2 − y, a3, ..., aΓ−1). Now, it is clear that Cγ (a) = Cγ (b) and Cγ (a′) = Cγ (b′)
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for all γ = 1, ...,Γ− 1. Hence, the result holds for any γ < Γ. Assume now γ = Γ. We have

CΓ (a)
(2)
= CΓ−1 (a)⊕aΓ−1 C

Γ (a)
(i)
∈ C∗

and

CΓ (a′)
(2)
= CΓ−1 (a′)⊕a′

Γ−1
CΓ (a′) .

In order to apply (i) to this last expression (so that CΓ (a′) ∈ C∗) we have to prove that

a′Γ−1 ≥ maxC
Γ (a′)−maxCΓ−1 (a′) . (4)

By definition,maxCγ (a′) = maxCγ (a) for all γ �= 2, whereasmaxC2 (a′) = maxC2 (a)+

y. Hence, for Γ > 3,

maxCΓ (a′)−maxCΓ−1 (a′) = maxCΓ (a)−maxCΓ−1 (a) ≤ aΓ−1 = a
′
Γ−1

and for Γ = 3,

maxC3 (a′)−maxC2 (a′) = maxC3 (a)−maxC2 (a)− y ≤ a2 − y = a
′
2. �

We now prove that if f = f e with e satisfying ANM , then f satisfies CM and PM .

Following Norde et al (2004), for each N0 we define the set ΣN0 of linear orders on

the edges as the set of all bijections σ :
{
1, ...,

(
n+1
2

)}
→ {{i, j} : i, j ∈ N0}. For each mcstp

(N0, C), there exists at least one linear order σ ∈ ΣN0 such that cσ(1) ≤ cσ(2) ≤ ... ≤ cσ((n+12 ))
.

For any σ ∈ ΣN0 , we define the set

Kσ =

{
(N0, C) : cσ(k) ≤ cσ(k+1) for all k = 1, 2, ...

(
n+ 1

2

)}
,

which we call the Kruskal cone with respect to σ. One can easily see that
⋃

σ∈ΣN0

Kσ coincides

with the set of all mcstp where the set of agents is N.

We say that a non-empty set S ⊂ N is a quasi-neighborhood in (N0, C) if δS ≥ 0. Let

qNe (N0, C) = {S ⊂ N,S �= ∅ : δS ≥ 0} denote the set of quasi-neighborhoods in (N0, C).

Clearly, Ne (N0, C) ⊂ qNe (N0, C).

We now prove that f satisfies CM . It is enough to prove that f (N0, C) ≤ f (N0, C ′)

when there exists {k, l} ⊂ N0 such that c′kl > ckl and c
′
ij = cij otherwise. Let (k, l), (N0, C)

and (N0, C
′) be defined in this way.

For any x ∈ [0, 1], themcstp (N0, Cx) defined as cxij = (1− x) cij+xc
′
ij satisfies c

′
kl ≥ c

x
kl ≥

ckl and c
x
ij = cij otherwise. Since ΣN0 is a finite set, there exist a sequence {x

1, x2, ...xp} ⊂

[0, 1] with x1 = 0 and xp = 1 such that, for all r, we have xr < xr+1 and
(
N0, C

xr
)
and(

N0, C
xr+1

)
belong to the same Kruskal cone.

Hence, it is enough to prove that f (N0, C) ≤ f (N0, C ′) when both (N0, C) and (N0, C ′)

belong to the same Kruskal cone. An immediate consequence is that there exists a common

mcst t in both (N0, C) and (N0, C
′).
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Since f satisfies RED, f (N0, C) = f (N0, C
∗). If {k, l} /∈ t, then C∗ = C ′∗. Thus

f (N0, C) = f (N0, C
∗) = f (N0, C

′∗) = f (N0, C
′) .

Hence, we assume {k, l} ∈ t. This implies ckl = c∗kl and c
′
kl = c

′∗
kl. Let α = c

′∗
kl − c

∗
kl > 0.

Another consequence of (N0, C), (N0, C
′) being in the same Kruskal cone is that, for any

S ⊂ N , |S| > 1, there exist a mcst τ (S) in (N0, C) and (N0, C ′) , i1, i2, j2 ∈ S, j1 ∈ N0\S

with {i2, j2} ∈ τ (S) such that

δS = min
i′∈S,j′∈N0\S

ci′j′ − max
{i′,j′}∈τ(S)

ci′j′ = ci1j1 − ci2j2 and

δ′S = min
i′∈S,j′∈N0\S

c′i′j′ − max
{i′,j′}∈τ(S)

c′i′j′ = c
′
i1j1 − c

′
i2j2 .

Thus δS and δ′S cannot have opposite sign. Namely, δS > 0 implies δ′S ≥ 0. Thus,

Ne (N0, C) ⊂ qNe (N0, C ′) and Ne (N0, C ′) ⊂ qNe (N0, C).

Given any X ⊂ 2N with Ne (N0, C) ⊂ X ⊂ qNe (N0, C) and i ∈ N we have

fi (N0, C) = c
∗
0i −

∑

i∈S∈X

(δS − ei (C
∗
S, δS)) . (5)

The reason is that for any S ∈ qNe (N0, C) \Ne (N0, C), δS = 0 and hence δS −

ei (C
∗
S, δS) = 0− ei (C

∗
S, 0) = 0.

We define X = Ne (N0, C) ∪ Ne (N0, C ′). Clearly, Ne (N0, C) ⊂ X ⊂ qNe (N0, C) and

Ne (N0, C
′) ⊂ X ⊂ qNe (N0, C

′).

Fix i ∈ N . We need to prove that fi (N0, C) ≤ fi (N0, C ′). Under (5), we have

fi (N0, C) = c∗0i −
∑

i∈S∈X

(δS − ei (C
∗
S, δS))

fi (N0, C
′) = c′∗0i −

∑

i∈S∈X

(δ′S − ei (C
′∗
S , δ

′
S)) .

We have seen above that

δS = ci1j1 − ci2j2 and δ
′
S = c

′
i1j1 − c

′
i2j2

for some i1, i2, j2 ∈ S, j1 ∈ N0\S with {i2, j2} ∈ tS.

By hypothesis, cjj′ = c
′
jj′ for all {j, j

′} �= {k, l}. Hence, δS = δ
′
S unless {i

1, j1} = {k, l}

or {i2, j2} = {k, l}.

Given S ∈ X and δS �= δ
′
S we study both cases:

1. If {i1, j1} = {k, l}, then δ′S = δS + α. Besides, there can be at most two such S. One

of them contains node k (if any) and the other contains node l (if any). Assume, on

the contrary, that there exist two S ′ ∈ X,S �= S ′ with k ∈ S ∩ S ′ (the case for l ∈ S is

analogous). Hence,

c′kl = c
′∗
kl = min

i′∈S,j′∈N0\S
c′∗i′j′ = min

i′∈S′,j′∈N0\S′
c′∗i′j′ .
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Since k ∈ S ∩ S ′, under Proposition 1.4, S � S ′ or S′ � S. Assume w.l.o.g. S � S ′.
Then,

c′∗kl = min
i′∈S,j′∈N0\S

c′∗i′j′ ≤ min
i′∈S,j′∈S′\S

c′∗i′j′

≤ max
i′,j′∈S′

c′∗i′j′ ≤ min
i′∈S′,j′∈N0\S′

c′∗i′j′ = c
′∗
kl

which implies that no inequality is strict. In particular, max
i′,j′∈S′

c′∗i′j′ = c
′∗
kl. Since {k, l} �

S ′, max
i′,j′∈S′

c′∗i′j′ = max
i′,j′∈S′

c∗i′j′ and hence

δS′ = min
i′∈S′,j′∈N0\S′

c∗i′j′ − max
i′,j′∈S′

c∗i′j′ = c
∗
kl − c

′∗
kl = −α < 0,

which is a contradiction.

2. If {i2, j2} = {k, l}, then δ′S = δS − α. Besides, there can be at most one such S.

Assume, on the contrary, that there exists S′ ∈ X, S �= S ′, k, l ∈ S ∩ S ′, and

ckl = c
∗
kl = max

i′,j′∈S
c∗i′j′ = max

i′,j′∈S′
c∗i′j′.

Since k ∈ S ∩ S ′, under Proposition 1.4, S � S ′ or S ′ � S. Assume w.l.o.g. S � S ′.
Then,

c∗kl = max
i′,j′∈S

c∗i′j′ ≤ min
i′∈S,j′∈N0\S

c∗i′j′ ≤ min
i′∈S,j′∈S′\S

c∗i′j′ ≤ max
i′,j′∈S′

c∗i′j′ = c
∗
kl

which implies that no inequality is strict. Thus, min
i′∈S,j′∈N0\S

c∗i′j′ = c
∗
kl and hence

δS = min
i′∈S,j′∈N0\S

c∗i′j′ − max
i′,j′∈S

c∗i′j′ = c
∗
kl − c

∗
kl = 0,

which implies δ′S = δS − α = −α < 0, which is a contradiction.

Let Sk =
{
j ∈ N0 : c′∗kj < c

′∗
kl

}
and let Sl =

{
j ∈ N0 : c′∗kj < c

′∗
kl

}
. Both Sk and Sl are

non-empty (because k ∈ Sk and l ∈ Sl) and disjoint (it follows from {k, l} ∈ t). Since they

are disjoint, we can assume w.l.o.g. 0 /∈ Sk. Let S1 = Sk. If |S1| > 1, then

l /∈ S1,

c′∗kl = min
i′∈S1,j′∈N0\S1

c′∗i′j′ ,

δ′S1 = c′∗kl − max
i′,j′∈S

c′∗i′j′ > 0

and hence either S1 ∈ Ne (N0, C
′) or S1 = {k}.

Assume that S1 ∈ Ne (N0, C ′) . Since (N0, C) and (N0, C ′) are in the same Kruskal cone,

δS1 = c
∗
i1j1 − c

∗
i2j2 and δ

′
S1
= c′∗i1j1 − c

′∗
i2j2 . Since δ

′
S1
> 0 we deduce that δS1 ≥ 0. Hence

S1 ∈ qNe (N0, C) . Now, satisfies condition 1. Then δ
′
S1
= δS1 + α when |S1| > 1.
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Let S2 =
{
j ∈ N0 : c∗kj ≤ c

∗
kl

}
. Clearly, {k, l} ⊂ S2. Notice that if 0 ∈ S2 then S2 /∈ X.

Now, if 0 /∈ S2 then S2 ∈ X. Besides S1 � S2 and there is no S ∈ X, S �= S1, such that
S1 � S � S2.

In case 0 /∈ S2, we have that S2 satisfies condition 2. Hence δ
′
S2
= δS2 − α.

Let F = {S ∈ Ne (N0, C) : S1 ⊂ S, δS = δ
′
S} and let F

′ = {S ∈ Ne (N0, C ′) : S1 ⊂ S, δS = δ
′
S}.

Then, F = F ′ (F = F ′ = ∅ is also possible) and S1, S2 /∈ F . By Proposition 1.3 we can

assume that F = {S3, S4, ..., SΓ} for some Γ ≥ 2 (Γ = 2 when F = ∅) and Sγ � Sγ+1 for all
γ = 3, ...,Γ− 1.

Let G = {S ∈ X : S1 ⊂ S}. Clearly, either G = {S1, ..., SΓ} (when S1 ∈ Ne (N0, C ′)) or

G = {S2, ..., SΓ} (when S1 = {k}). Besides, Sγ � Sγ+1 for all γ = 1, 2, ...,Γ− 1.
If i /∈ SΓ, then fi (N0, C) = fi (N0, C ′). We assume i ∈ Sγ for some γ ∈ {1, ...,Γ}. Let γi

be the minimum of these γ’s. We have two cases:

Case 1: Γ = 1. This means S2 /∈ X. Since δS2 ≥ 0, we have 0 ∈ S2, which implies

c∗0k ≤ c
∗
kl and also c

′∗
0k ≤ c

′∗
kl.

Subcase 1.1: S1 = {k} = {i}. This implies X = ∅ and hence

fi (N0, C
′)− fi (N0, C) = c

′∗
0i − c

∗
0i ≥ 0.

Subcase 1.2: S1 ∈ X. This implies c′∗0k ≥ c
′∗
kl and hence c

′∗
0k = c

′∗
kl. Thus c

′∗
0i − c

∗
0i = α and

C∗S1 = C
′∗
S1
. Hence,

fi (N0, C
′)− fi (N0, C)

= c′∗0i −
(
δ′S1 − ei

(
C ′∗S1 , δ

′
S1

))
− c∗0i +

(
δS1 − ei

(
C∗S1, δS1

))

= c′∗0i − c
∗
0i −

(
δS1 + α− ei

(
C∗S1 , δS1 + α

))
+
(
δS1 − ei

(
C∗S1 , δS1

))

= ei
(
C∗S1 , δS1 + α

)
− ei

(
C∗S1 , δS1

)
≥ 0

where the last inequality comes from applying ANM to
{(
S1, C

∗
S1

)}
with Γ = 1, a1 = δS1

and y = α.

Case 2: Γ > 1. This means that S2 ∈ X and hence 0 /∈ Sl. Thus we can take S1 = Sk or

S1 = S
l. We have that S2 = S

k ∪ Sl. If i ∈ S2 we choose S1 such that i ∈ S1. Thus, γi �= 2

which implies c′∗0i = c
∗
0i.

In this case,

fi (N0, C
′)− fi (N0, C)

= c′∗0i − c
∗
0i −

∑

i∈S∈X

(δ′S − δS − ei (C
′∗
S , δ

′
S) + ei (C

∗
S, δS)) .

For any S ∈ X\G with i ∈ S, we have C∗S = C
′∗
S , which implies δS = δ

′
S. Hence,

fi (N0, C
′)− fi (N0, C)

=
Γ∑

γ=γi

(
−δ′Sγ + δSγ + ei

(
C ′∗Sγ , δ

′
Sγ

)
− ei

(
C∗Sγ , δSγ

))

=
Γ∑

γ=γi

ei

(
C ′∗Sγ , δ

′
Sγ

)
−

Γ∑

γ=γi

ei

(
C∗Sγ , δSγ

)
−

Γ∑

γ=γi

(
δ′sγ − δsγ

)
.
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The last term is zero, because δ′S1 = δS1 + α, δ
′
S2
= δS2 − α, and δ

′
Sγ
= δSγ otherwise

(remember that γi �= 2). Hence,

fi (N0, C
′)− fi (N0, C) =

Γ∑

γ=γi

(
ei
(
C ′∗Sγ , δ

′
Sγ

))
−

Γ∑

γ=γi

(
ei
(
C∗Sγ , δSγ

))
.

We now define {(Nγ, Cγ)}Γγ=1, a ∈ R
Γ
+ and y ∈ [0, a2] so that ei

(
C ′∗Sγ , δ

′
Sγ

)
= ei

(
Cγ (a′) , a′γ

)

and ei

(
C∗Sγ , δSγ

)
= ei (C

γ (a) , aγ) for all γ. Under ANM , this will prove that the above

expression is non-negative.

Let N1 = S1, C
1 = C∗N1 , and a1 = δS1 . In general, for any γ = 2, ...,Γ, N

γ = Sγ\Sγ−1,

Cγ = (C∗)Nγ , and aγ = δSγ . We also define y = α. Since c
′∗
kl = c

∗
kl + α, we have that α ≤ a2

and hence y ∈ [0, a2].

Clearly, C ′∗S1 = C
1. Now, we prove that C ′∗S2 = C

1 ⊕a1+α C
2 = C2 (a′). Let Cα = C ′∗S2 and

Cβ = C1 ⊕a1+α C
2. We have that Cα = (CS2 + αIkl)

∗. Then, cαij = c
β
ij for all i, j ∈ N

1 and

all i, j ∈ N2.

Let k1 ∈ N1 and k2 ∈ N2. Then,

cβ
k1k2

= maxC1 + a1 + α = maxC
1 + δS1 + α = min

i∈N1

j∈N0\N1

cij + α

= ckl + α = c
α
k1k2 .

Analogously, C ′∗S3 = (CS3 + αIkl)
∗ = (C1 ⊕a1+α C

2)⊕a2−αC
3 = C3 (a′) . In general, C ′∗Sγ =(

CSγ + αIkl
)∗
= C1 ⊕a1+α C

2 ⊕a1−α C
3 ⊕a3 ...⊕aγ−1 C

γ = Cγ (a′) for all γ = 3, ...,Γ.

Similarly, we can prove that C∗Sγ = C
γ (a) for all γ = 1, ...,Γ.

Hence, by applying ANM , we have

fi (N0, C
′)− fi (N0, C) ≥ 0.

We now prove that f satisfies PM . Under Theorem 2, we know that f satisfies SEP . It is

enough to prove that for eachmcstp (N0, C) and j ∈ N , fi (N0, C) ≤ fi
(
N0\ {j} , CN0\{j}

)
for

all i ∈ N\ {j}. Let (N0, C ′) be defined as c′ii′ = cii′ for all i, i
′ ∈ N\ {j} and c′ij = maxCN0\{j}

for all i ∈ N0\ {j}. Clearly, m (N0, C ′) = m
(
N0\ {j} , C ′N0\{j}

)
+ m

(
{j}0 , C

′
{j}

0

)
. Under

SEP , fi (N0, C
′) = fi

(
N0\ {j} , C ′N0\{j}

)
for all i ∈ N\ {j}. Given i ∈ N\ {j}, under CM ,

fi (N0, C) ≤ fi (N0, C
′) = fi

(
N0\ {j} , C

′
N0\{j}

)
= fi

(
N0\ {j} , CN0\{j}

)
.

We now prove that if f satisfies CM and PM , then f = f e for some e satisfying ANM .

We define e as in the proof of Theorem 2. Namely, for all C∗ ∈ C∗, x ∈ R+, and i ∈ N ,

ei (C
∗, x) = fi

(
N0, C

∗(maxC∗+x)
)
− fi

(
N0, C

∗(maxC∗)
)

and ei (C
∗, x) = 0 for all i /∈ N . We already proved (proof of Theorem 2) that e is an

extra-costs function and f = f e.
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Hence, we only need to check that e satisfies ANM . Let {(Nγ , Cγ)}Γγ=1 ⊂ C
∗ be a disjoint

sequence with Γ ≥ 1, i ∈ Nγi with γi �= 2, a ∈ RΓ+ with aγ ≥ maxCγ+1 − maxCγ for all

γ = 1, ...,Γ− 1 and y ∈ [0, a2] (or simply y ≥ 0, when Γ = 1).

Assume first that Γ = 1. We need to prove

ei
(
C1, a1 + y

)
− ei

(
C1, a1

)
≥ 0.

Let C = C1. By definition,

ei (C, a1 + y)− ei (C, a1)

= fi
(
N0, C

∗(maxC∗+a1+y)
)
− fi

(
N0, C

∗(maxC∗)
)
− fi

(
N0, C

∗(maxC∗+a1)
)
+ fi

(
N0, C

∗(maxC∗)
)

= fi
(
N0, C

∗(maxC∗+a1+y)
)
− fi

(
N0, C

∗(maxC∗+a1)
)
≥ 0

where the last inequality comes from the fact that C∗(maxC
∗+a1+y) ≥ C∗(maxC

∗+a1) and f

satisfy CM .

Assume now that Γ > 1. We need to prove

Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)
−

Γ∑

γ=γi

ei (C
γ (a) , aγ) ≥ 0

where a′ = (a1 + y, a2 − y, a3, ..., aΓ) and C
γ (b) = C1⊕b1C

2⊕b2 ...⊕bγ−1C
γ for all γ = 1, ...,Γ

and all b ∈ RΓ+.
By definition,

ei (C
∗, x) = fi (N0, C

∗ ⊕x ({0} , 0))− fi (N0, C
∗ ⊕0 ({0} , 0)) .

Under SEP , we have that

fi

(
γ⋃

r=1

N r, Cγ (b)⊕0 ({0} , 0)

)

= fi

(
γ−1⋃

r=1

N r, Cγ−1 (b)⊕bγ−1 ({0} , 0)

)

for all γ = γi + 1, ...,Γ and all b ∈ R
Γ
+. Now,

Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)

=
Γ∑

γ=γi

[

fi

(
γ⋃

r=1

N r, Cγ (a′)⊕a′γ
({0} , 0)

)

− fi

(
γ⋃

r=1

N r, Cγ (a′)⊕0 ({0} , 0)

)]

= fi

(
Γ⋃

r=1

N r, CΓ (a′)⊕a′
Γ
({0} , 0)

)

− fi

(
γi⋃

r=1

N r, Cγi (a′)⊕0 ({0} , 0)

)
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and

Γ∑

γ=γi

ei (C
γ (a) , aγ)

=
Γ∑

γ=γi

[

fi

(
γ⋃

r=1

N r, Cγ (a)⊕aγ ({0} , 0)

)

− fi

(
γ⋃

r=1

N r, Cγ (a)⊕0 ({0} , 0)

)]

= fi

(
Γ⋃

r=1

N r, CΓ (a)⊕aΓ ({0} , 0)

)

− fi

(
γi⋃

r=1

N r, Cγi (a)⊕0 ({0} , 0)

)

.

Hence,

Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)
−

Γ∑

γ=γi

ei (C
γ (a) , aγ)

= fi

(
γi⋃

r=1

N r, Cγi (a)⊕0 ({0} , 0)

)

− fi

(
γi⋃

r=1

N r, Cγi (a′)⊕0 ({0} , 0)

)

+fi

(
Γ⋃

r=1

N r, CΓ (a′)⊕a′
Γ
({0} , 0)

)

− fi

(
Γ⋃

r=1

N r, CΓ (a)⊕aΓ ({0} , 0)

)

.

Under CM ,

fi

(
Γ⋃

r=1

N r, CΓ (a′)⊕a′
Γ
({0} , 0)

)

≥ fi

(
Γ⋃

r=1

N r, CΓ (a′)⊕a′
Γ
({0} , 0)

)

.

We now prove that

fi

(
γi⋃

r=1

N r, Cγi (a)⊕0 ({0} , 0)

)

= fi

(
γi⋃

r=1

N r, Cγi (a′)⊕0 ({0} , 0)

)

.

For γi = 1, C
1 (a) = C1 (a′) = C1 and the result holds trivially. Assume γi > 2. Then,

N1∪...∪Nγi−1 andNγi are two separable components in bothmcstp

(
γi⋃

r=1

N r, Cγi (a)⊕0 ({0} , 0)

)

and

(
γi⋃

r=1

N r, Cγi (a′)⊕0 ({0} , 0)

)
. Besides, the restriction of C∗ to Nγi coincides in both

mcstp. Under SEP , we obtain the equality.

Hence,
Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)
−

Γ∑

γ=γi

ei (C
γ (a) , aγ) ≥ 0. �

7.6 Proof of Proposition 5.1

(1) Using an obligation function o we can arrive at a cost allocation as follows. We compute

a mcst following Kruskal’s algorithm (Kruskal, 1956), which consists in to construct a tree
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by sequentially adding edges with the lowest cost and without introducing cycles. The cost

of each edge selected by Kruskal’s algorithm is divided among the agents who benefit from

adding this edge. Each of these agents pays the difference between her obligation to two

groups, one in which she belonged before the edge was added and the one after. We now

define an obligation rule, f o, formally.

Given a network g we define P (g) = {Tk (g)}
n(g)
k=1 as the partition of N0 in connected

components induced by g. Namely, P (g) is the only partition of N0 satisfying the following

two properties: Firstly, if i, j ∈ Tk (g) , i and j are connected in g. Secondly, if i ∈ Tk, j ∈ Tl,

and k �= l, then i and j are not connected in g. Given a network g, let S (P (g) , i) denote

the element of P (g) to which i belongs to.

Given a mcstp (N0, C) , let g
|N | be a tree obtained applying Kruskal’s algorithm to

(N0, C) , and for each p = 1, ..., |N | , (ip, jp) is the edge selected by Kruskal’s algorithm

at Stage p, and gp the set of edges selected by Kruskal’s algorithm at stages 1, ..., p. For each

i ∈ N , we define the obligation rule associated with the obligation function o as

foi (N0, C) =

|N |∑

p=1

cipjp
(
oi
(
S
(
P
(
gp−1

)
, i
))
− oi (S (P (g

p) , i))
)

where by convention, oi (T ) = 0 if 0 ∈ T.

Tijs et al (2006) prove that f o is well defined, namely, it is independent of the mcst

obtained following Kruskal’s algorithm.

We prove that if f o is an obligation rule, then f o = fe where e (C∗, x) = xoi (N) for each

(N,C∗) and x.

We proceed by induction on the number of agents. If |N | = 1 the result holds trivially.

Assume that fo = f e when |N | < q and we prove it when |N | = q.

Let (N0, C) be amcstp. Since f
o and f e satisfyCM, it is enough to prove that fo (N0, C

∗) =

f e (N0, C
∗) .

Proposition 3.1 in Bergantiños and Vidal-Puga (2007) says the following. (N0, C
∗) is an

irreducible problem if and only if there exists a mcst t in (N0, C
∗) that satisfies the following

two conditions:

(A1) t = {(πs−1, πs)}
n
s=1 where π0 = 0 (the source).

(A2) Given πp, πq ∈ N0 with p < q, c
∗
πpπq

= max
s|p<s≤q

{
c∗πs−1πs

}
.

Let t be such mcst. Without loss of generality we assume that πs = s for each s =

1, ..., |N | . We consider two cases.

1. There exists s > 1 such that c∗s−1,s ≥ c
∗
r−1,r for all r = 1, ..., |N | . Let S = {1, ..., s− 1} .

By Proposition 3.1 in Bergantiños and Vidal-Puga (2007) we have that {(r − 1, r)}s−1r=1

can be obtained applying Kruskal’s algorithm to
(
S0, C

∗
S0

)
and {(0, s)}∪{(r − 1, r)}|N |r=s+1

can be obtained applying Kruskal’s algorithm to
(
(N\S)0 , C

∗
(N\S)

0

)
. Thus,m (N0, C

∗) =

m
(
S0, C

∗
S0

)
+m

(
(N\S)0 , C

∗
(N\S)

0

)
.
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Let i ∈ S. Since f o and f e satisfy SEP, we deduce that

f oi (N0, C
∗) = foi

(
S0, C

∗
S0

)
and f ei (N0, C

∗) = f ei
(
S0, C

∗
S0

)
.

By induction hypothesis f oi
(
S0, C

∗
S0

)
= fei

(
S0, C

∗
S0

)
. Hence, f oi (N0, C

∗) = fei (N0, C
∗) .

Similarly, we can prove that f oi (N0, C
∗) = f ei (N0, C

∗) when i ∈ N\S.

2. c∗01 > c
∗
r−1,r for all r = 2, ..., |N | . Let α = c

∗
01 − max

r=2,...,|N |

{
c∗r−1,r

}
. Let (N0, C

′) be the

irreducible problem associated with t and C ′ where c′01 = c
∗
01 − α and c

′
r−1,r = c

∗
r−1,r

for all r = 2, ..., |N | .

Since C ′ is under the conditions of the previous case, we have that fo (N0, C
′) =

f e (N0, C
′) . Thus, it is enough to prove that for all i ∈ N,

f oi (N0, C
∗)− f oi (N0, C

′) = f ei (N0, C
∗)− fei (N0, C

′) .

Fix i ∈ N . We first compute f oi (N0, C
∗) − f oi (N0, C

′) . We can apply Kruskal’s algo-

rithm to both C∗ and C ′ in such a way that:

• The edge selected at each stage belongs to t. Namely, for each p = 1, ..., |N |,

(ip (C∗) , jp (C∗)) ∈ t and (ip (C ′) , jp (C ′)) ∈ t.

• The edge selected at each stage is the same in both problems. Namely, for each

p = 1, ..., |N | , (ip (C∗) , jp (C∗)) = (ip (C ′) , jp (C ′)).

• The last edge selected is (0, 1) .Namely,
(
i|N | (C∗) , j|N | (C∗)

)
=
(
i|N | (C ′) , j|N | (C ′)

)
=

(0, 1).

Thus, f oi (N0, C
∗)− f oi (N0, C

′) = c∗01oi (N)− c
′
01oi (N) = αoi (N) .

We now compute f ei (N0, C
∗) − f ei (N0, C

′) . Notice that if S is a neighborhood of i

in (N0, C
′), then S is also a neighborhood of i in (N0, C

∗). Besides, N is the unique

neighborhood of i in (N0, C
∗) which is not a neighborhood of i in (N0, C

′). Thus,

f ei (N0, C
∗)− f ei (N0, C

′) = c∗0i − (δN − ei (C
∗
N , δN))− c

′∗
0i.

Since δN = α,

f ei (N0, C
∗)− f ei (N0, C

′) = ei (C
∗
N , α) = αoi (N) .

Using arguments similar to those used above we can prove that if f e is associated with

some e as in the statement, then f e = f o where o (N) = e (C∗, 1) . Notice that, by hypothesis,

o (N) does not depend on C∗.

(2) I is a trivial consequence of part (1) and the definition of optimistic weighted Shapley

rules.

(3) I is a trivial consequence of part (1) and the definition of the folk rule. �
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7.7 Proof of Proposition 5.2

We prove that the extra-costs function e satisfies the ANM property, which implies, under

Theorem 3, that f e satisfies CM and PM.

Consider a disjoint sequence {(Nγ, Cγ)}Γγ=1 ⊂ C
∗, i ∈ Nγi ⊂ N with γi �= 2, a ∈ R

Γ
+ with

aγ ≥ maxCγ+1−maxCγ for all γ = 1, ...,Γ− 1, and y ∈ [0, a2] (y ≥ 0 when Γ = 1). We will

prove that
Γ∑

γ=γi

ei
(
Cγ (a′) , a′γ

)
≥

Γ∑

γ=γi

ei (C
γ (a) , aγ) .

If Γ = 1 the result is obvious. Assume now that Γ > 1. Since a′γ = aγ when γ ≥ 3,

ei
(
Cγ (a′) , a′γ

)
=

∫ a′γ

0

oxi
(
N1 ∪ ... ∪Nγ

)
dx

=

∫ aγ

0

oxi
(
N1 ∪ ... ∪Nγ

)
dx = ei (C

γ (a) , aγ)

for all γ ≥ 3.

In particular, if γi ≥ 3 the inequality holds. Hence, we assume i ∈ N1. We know that

ei
(
Cγ (a′) , a′γ

)
= ei (C

γ (a) , aγ) for all γ ≥ 3. Thus, it is enough to prove that

2∑

γ=1

ei
(
Cγ (a′) , a′γ

)
≥

2∑

γ=1

ei (C
γ (a) , aγ) .

We make some computations:

ei
(
C1 (a′) , a′1

)
=

∫ a′
1

0

oxi
(
N1
)
dx =

∫ a1+y

0

oxi
(
N1
)
dx

ei
(
C2 (a′) , a′2

)
=

∫ a′
2

0

oxi
(
N1 ∪N2

)
dx =

∫ a2−y

0

oxi
(
N1 ∪N2

)
dx

ei
(
C1 (a) , a1

)
=

∫ a1

0

oxi
(
N1
)
dx, and

ei
(
C2 (a) , a2

)
=

∫ a2

0

oxi
(
N1 ∪N2

)
dx.

Thus, the inequality holds if and only if

∫ a1+y

0

oxi
(
N1
)
dx+

∫ a2−y

0

oxi
(
N1 ∪N2

)
dx ≥

∫ a1

0

oxi
(
N1
)
dx+

∫ a2

0

oxi
(
N1 ∪N2

)
dx.

Equivalently, ∫ a1+y

a1

oxi
(
N1
)
dx ≥

∫ a2

a2−y

oxi
(
N1 ∪N2

)
dx

which is a particular case of the condition given in (3). �
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