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Abstract

In this paper we study the restriction, to the class of bargaining problems with

coalition structure, of several values which have been proposed on the class of

non-transferable utility games with coalition structure. We prove that all of them

coincide with the solution independently studied in Chae and Heidhues (2004) and

Vidal-Puga (2005a). Several axiomatic characterizations and two noncooperative

mechanisms are proposed.
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1 Introduction

In many economic and political situations, agents do not act individually but are parti-

tioned into unions, groups, or coalitions. Examples include political parties in a Parlia-

ment, wage bargaining between firms and labor unions, tariff bargaining between coun-

tries, bargaining between the member states of a federated country, etc.

Assuming that cooperation is carried out, one may wonder how the benefit is shared

between the coalitions and between the members inside each coalition. Game Theory has
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addressed this issue. Several solutions have been proposed for several kinds of games.

Classically, there are two possible justifications for a solution: one comes from the ax-

iomatic approach and the other one comes from the non-cooperative approach. In the

axiomatic approach the objective is to characterize the solution using nice properties. In

the non-cooperative approach the objective is to describe a natural non-cooperative game

whose equilibria coincide with the solution.

In this paper we focus on bargaining problems (Nash, 1950). Chae and Heidhues

(2004) and Vidal-Puga (2005a) describe two values in bargaining problems with coalition

structure. Chae and Heidhues (2004) follow an axiomatic approach whereas Vidal-Puga

(2005a) follows a non-cooperative approach. Both values generalize the Nash solution.

We prove that both values coincide. We call this value δ.

We study δ and we find three kinds of results. It is well-known that bargaining

problems can be expressed as games with non-transferable utility (NTU games). We

prove that five values presented in the literature for NTU games with coalition structure

coincide with δ when we restrict to bargaining problems. We also follow the axiomatic

approach and we present three new characterizations of δ. Finally, we follow the non-

cooperative approach and we present a natural non-cooperative mechanism. We prove

that this mechanism has a unique subgame perfect equilibrium payoff that approaches δ.

Let us clarify these three issues.

In games with transferable utility (TU games) and coalition structure, Owen (1977)

proposes a value, which is an extension of the Shapley value (Shapley, 1953). Casas-

Méndez, Garćıa-Jurado, van den Nouweland, and Vázquez-Brage (2003) extend the τ −

value (Tijs, 1981) to TU games with coalition structure. It is well-known that TU games

can be expressed as NTU games.

In NTU games with coalition structure there are several values. Winter (1991) in-

troduces the game coalition structure value which coincides with the Owen value in TU

games with coalition structure and with the Harsanyi value (Harsanyi, 1963) in NTU

games. Bergantiños and Vidal-Puga (2005) introduce two values: the consistent coali-

tional value and the random order coalitional value. Both values coincide with the Owen

value in TU games with coalition structure and with the consistent value (Maschler and

Owen, 1989, 1992) in NTU games. Following the classical λ − transfer procedure we

can extend values from TU games to NTU games. In particular, in differential games

Krasa, Tememi and Yannelis (2003) extend the Owen value. Let λTC and τ − λTC be

the NTU values obtained when we extend the Owen value and the coalitional τ − value

(Casas-Méndez et al., 2003), respectively. We prove that, in bargaining problems with
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coalition structure, the five NTU coalitional values mentioned above coincide with δ.

We present three new axiomatic characterizations for δ. The first one uses the proper-

ties of Independence of Affine Transformations (IAT ), Independence of Irrelevant Alter-

natives (IIA), and Unanimity Coalitional Game. This result is inspired by the character-

ization of the game coalition structure value (Winter, 1991). The second one uses IAT,

IIA, Pareto Efficiency, Symmetry inside Coalitions, and Coalitional Symmetry. This

result is inspired by the characterization of the Owen value (Owen, 1977). The third one

uses IAT, IIA, Pareto Efficiency, Symmetry inside Coalitions, and Symmetry between

Exchangeable Coalitions. This result is also inspired by the characterization of the Owen

value (Owen, 1977).

Hart and Mas-Colell (1996) propose a non-cooperative mechanism in NTU games.

The set of limit stationary subgame perfect equilibrium payoffs is contained in the consis-

tent value. This mechanism has several rounds and in each round a proposer is randomly

chosen among the active players. Vidal-Puga (2005a) adapts this mechanism when play-

ers are divided in coalitions. Hart and Mas-Colell’s mechanism is played in two levels,

first between players inside each coalition and second between coalitions. Vidal-Puga

(2005a) proves that in bargaining problems with coalition structure there exists a unique

stationary subgame perfect equilibrium payoff. In this paper we prove that δ is the unique

limit stationary subgame perfect equilibrium. We present another mechanism for bar-

gaining problems with coalition structure. The new mechanism is also a modification of

the mechanism of Hart and Mas-Colell (1996). We prove that, in the new mechanism, δ

is also the unique limit stationary subgame perfect equilibrium.

The paper is organized as follows. In Section 2, we introduce the notation and some

previous results. In Section 3, we present the axiomatic characterizations of δ. In Section

4, we prove that the five NTU coalitional values coincide with δ in bargaining problems.

In Section 5, we study the non-cooperative approach. Finally, we present some concluding

remarks.

2 Preliminaries

Let A be a finite set. We denote by ∣A∣ the number of elements in A. Let x, y ∈ RA. We

say y ≤ x when yi ≤ xi for each i ∈ A and y < x when yi < xi for each i ∈ A. We denote

by xy the vector (xiyi)i∈A and by x + y the vector (xi + yi)i∈A. Given T ⊊ A, xT is the

restriction of x to RT . We denote by RA+ the set {x ∈ RA ∶ xi ≥ 0 for every i ∈ A} and by

RA++ the set {x ∈ RA ∶ xi > 0 for every i ∈ A}. Given γ ∈ RA++, 1
γ is the vector ( 1

γi
)
i∈A

. For
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every S ⊆ RA and γ, β ∈ RA, we define γS + β = {γx + β ∶ x ∈ S}. Given θ ∈ R and x ∈ RA,

we define θx as the vector (θxi)i∈A.

We consider N = {1, ..., n} the set of players.

A coalition structure C over N is a partition of the player set, i.e.,

C = {C1, ...,Cp} ⊊ 2N where ∪Cq∈CCq = N and Cq ∩Cr = ∅ whenever q ≠ r.

Each Cq ∈ C is called a coalition. We denote by c ∈ RN the vector whose ith coordinate is

given by ci = ∣Cq ∣ if i ∈ Cq.

A transferable utility (TU) game is a pair (N,v) where v is a characteristic function

that assigns to each subset T ⊆ N a number v (T ) ∈ R, with v (φ) = 0, which represents

the total utility players in T can get by themselves when cooperate. A TU game with

coalition structure is a triple (N,v,C) where (N,v) is a TU game and C is a coalition

structure over N .

The Owen value (Owen, 1977) is a function Ow which assigns to each TU game with

coalition structure (N,v,C) a vector Ow (N,v,C) ∈ RN . The Owen value generalizes

the Shapley value (Sh) (Shapley, 1953), i.e. when C = {N} or C = {{1} , . . . ,{n}} ,

Ow (N,v,C) = Sh (N,v).

Given (N,v) a TU game the Shapley value (Shapley,1953) is given by

Shi (N,v) = ∑
S⊆N/i

∣ S ∣! (n− ∣ S ∣ −1)!

n!
[v (S ∪ i) − v (S)] for all i ∈ N.

To state the definition of the Owen value we introduce additional notation. Let Π(N)

be the set of all orders on N . We say that π ∈ Π(N) is admissible with respect to the

coalition structure C if for any i, j, k ∈ N , i, k ∈ Cq ∈ C, and π(i) < π(j) < π(k) imply

that j ∈ Cq, where π(i), π(j), π(k) denote the position of i, j, and k in the order π,

respectively. We denote by ΠC the set of all admissible orders on N with respect to C.

Given (N,v,C) a TU game with coalition structure the Owen value (Owen, 1977) is

defined as:

Owi (N,v,C) =
1

∣ ΠC ∣
∑
π∈ΠC

[v (P π
i ∪ i) − v (P

π
i )] for all i ∈ N

where P π
i = {j ∈ N ∶ π(j) < π(i)} is the set of predecessors of player i in π.

A bargaining problem over N is a pair (S, d) where d ∈ S ⊊ RN , there exists x ∈ S such

that x > d, and

A1. S is closed, convex, comprehensive (if x ∈ S and y ≤ x then y ∈ S), and bounded

above (i.e. for all x ∈ S the set {y ∈ S ∶ y ≥ x} is compact).
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A2. The boundary of S, ∂S, is smooth (on each point of the boundary there exists

a unique outward vector) and nonlevel (the outward vector on each point of the

boundary has all its coordinates positive).

We denote by Λ the bargaining problem (∆,0) with

∆ = {x ∈ RN ∶
n

∑
i=1

xi ≤ 1} .

We call Λ = (∆,0) the unanimity bargaining problem.

The Nash solution of a bargaining problem (Nash, 1950) is the unique point N (S, d) ∈

∂S satisfying

∏
i∈N

(Ni (S, d) − di) = max
x∈S, x≥d∏i∈N

(xi − di) . (1)

A bargaining problem with coalition structure is a triple (S, d,C) where (S, d) is a

bargaining problem and C is a coalition structure. By B (N) we represent the class of all

bargaining problems with coalition structure where N is the set of agents.

A solution of a bargaining problem with coalition structure is a map which assigns to

every (S, d,C) ∈ B (N) an element of S.

In this context, Chae and Heidhues (2004) characterize the solution defined by the

unique point δ (S, d,C) ∈ ∂S satisfying

∏
i∈N

(δi (S, d,C) − di)
1
ci = max

x∈S, x≥d∏i∈N
(xi − di)

1
ci . (2)

This solution is the weighted Nash solution (Kalai, 1977), Nw, where for any i ∈ N ,

wi =
1
pci

with p = ∣C∣ and ci = ∣Cq ∣ if i ∈ Cq.

A non-transferable utility ( NTU) game is a pair (N,V ) where V is a correspondence

which assigns to each coalition T ⊆ N a subset V (T ) ⊊ RT . This set represents all the

possible payoffs that members of T can obtain for themselves when play cooperatively.

For each T ⊊ N , we assume that V (T ) satisfies A1 and that V (N) satisfies A1 and A2.

A payoff configuration {xT}T⊆N is a family of vectors such that xT ∈ RT for every T ⊆ N .

NTU games generalize both TU games and bargaining problems. Any TU game

(N,v) can be expressed as an NTU game (N,V ) with

V (T ) = {x ∈ RT ∶∑
i∈T
xi ≤ v(T )} for all T ⊆ N.

We say that (N,V ) is a hyperplane game if for all T ⊆ N there exists λT ∈ RT++ satisfying

V (T ) = {x ∈ RT ∶∑
i∈T
λTi xi ≤ v(T )} (3)
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for some v ∶ 2N → R. Notice that each TU game is a hyperplane game (just take λTi = 1

for each T ⊆ N and i ∈ T ).

Any bargaining problem (S, d) can be expressed as an NTU game (N,V ) with

V (T ) = {x ∈ RT ∶ x ≤ dT} for all T ⊊ N (4)

and V (N) = S.

An NTU game with coalition structure is a triple (N,V,C) where (N,V ) is an NTU

game and C is a coalition structure over N . By NT U (N) we denote the class of all NTU

games with coalition structure where N is the set of agents.

A value Γ is a correspondence which assigns to each NTU game with coalition struc-

ture (N,V,C) a subset Γ (N,V,C) ⊆ V (N).

Notice that a solution on B (N) can be considered as a value which assigns to each

(S, d,C) a singleton.

We say a value Γ generalizes the Owen value if Γ (N,v,C) = {Ow (N,v,C)} for each

TU game with coalition structure (N,v,C).

We say that a value Γ generalizes the Nash solution if Γ (S, d,C) = {N (S, d)} for every

bargaining problem with coalition structure (S, d,C) when C = {N} or C = {{1} , . . . ,{n}}.

We say that a value Γ generalizes the solution δ if Γ (S, d,C) = {δ (S, d,C)} for every

bargaining problem with coalition structure (S, d,C).

Next we recall the definitions of the values we consider in this paper: the Game

with Coalition Structure (GCS) value (Winter, 1991), the Consistent Coalitional (CC)

value (Bergantiños and Vidal-Puga, 2005), the Random-Order Coalitional (ROC) value

(Bergantiños and Vidal-Puga, 2005), the λ-Transfer Coalitional (λTC) value, and the

τ -λ Transfer Coalitional (τ − λTC) value. Even though these values are defined in the

context of NTU games with coalitional structure, we present the formal definitions in

the context of bargaining problems with coalition structure. Let (S, d,C) ∈ B (N).

The GCS value, ΦGCS, was introduced by Winter (1991) as a generalization of the

Owen value for TU games with coalition structure and the Harsanyi value (Harsanyi,

1963) for NTU games. We say that x ∈ RN is an element of the GCS value for (S, d,C)

if there exists a vector λ ∈ RN++ such that λ supports S at x and moreover xi = ∑
T⊆N ∶i∈T

yTi

where (yT )T⊆N is defined inductively as follows:

y∅ = 0,
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and for every ∅ ≠ T ⊆ N , given yT
′

defined for all T ′ ⊊ T , then

zTi = ∑
T ′⊊T ∶i∈T ′

yT
′

i for every i ∈ N, and

yT =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
λT

1
cT

max{t ∈ R ∶ zT + 1
λT

1
cT
t ≤ dT} if T ⊊ N

1
λT

1
cT

max{t ∈ R ∶ zT + 1
λT

1
cT
t ∈ S} if T = N.

Then, y{i} = di for each i ∈ N . For every T ⊊ N with ∣T ∣ ≥ 2, zTi = di for every i ∈ T and

yTi = 0 for every i ∈ T . For T = N , we have

zN = d, and yN =
1

λ

1

c
max{t ∈ R ∶ d +

1

λ

1

c
t ∈ S} .

Hence,

x = yN = d +
1

λ

1

c
max{t ∈ R ∶ d +

1

λ

1

c
t ∈ S} , (5)

and we get that x belongs to ΦGCS (S, d,C). We will denote the set of points which

satisfies (5) as ΦGCS (S, d,C).

In case that the bargaining problem with coalition structure is given by (Hλ, d,C) where

λ ∈ RN++ and

Hλ = {x ∈ RN : ∑
i∈N
λixi ≤ 1} , (6)

ΦGCS (Hλ, d,C) is the unique vector which satisfies (5).

The CC value, ΦCC , and the ROC value, ΦROC , were introduced by Bergantiños and

Vidal-Puga (2005) as a generalization of the Owen value for TU games with coalition

structure and the consistent value (Maschler and Owen, 1989, 1992) for NTU games.

Following Vidal-Puga (2005a) we first present an expression for any element of the CC

value corresponding to any (S, d,C). Let {λT ∈ RT++ ∶ T ⊆ N} be a family of vectors and

let x ∈ ∂S be such that λN supports S at x. We recursively build a payoff configuration

{xT}T⊆N as

x
{i}
i = di, for every i ∈ N,

given xT
′

for any T ′ ⊊ T ⊊ N , and i ∈ T ∩Cq = C ′
q,

xTi =
1

∣CT ∣ ∣C ′
q∣λ

T
i

⎛

⎝
∑

C′r∈CT /C′q
( ∑
j∈C′q

λTj x
T /C′r
j − ∑

j∈C′r
λTj x

T /C′q
j )

⎞

⎠

+ 1
∣C′q ∣λTi

⎛

⎝
∑

j∈C′q/{i}
λTi x

T /{j}
i − ∑

j∈C′q/{i}
λTj x

T /{i}
j

⎞

⎠

+ 1
∣CT ∣∣C′q ∣λTi ∑j∈T

λTj dj
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where CT = {Cr ∩ T ∶ Cr ∈ C}, and for T = N and i ∈ N ,

xNi =
1

pciλNi
( ∑
Cr∈C/Cq

( ∑
j∈Cq

λNj x
N/Cr
j − ∑

j∈Cr
λNj x

N/Cq
j ))

+
1

ciλNi
( ∑
j∈Cq/{i}

λNi x
N/{j}
i − ∑

j∈Cq/{i}
λNj x

N/{i}
j )

+
1

pciλNi
∑j∈T λNj xj.

By doing some algebra, we obtain that xT = dT for every T ⊊ N . If xN = x we say that x

is a CC value for (S, d,C) and it holds that

x = d +
1

λN
1

p

1

c
(∑
j∈N
λNj xj −∑

j∈N
λNj dj) . (7)

We will denote the set of points which satisfies (7) as ΦCC (S, d,C).

In case that the bargaining problem with coalition structure is given by (Hλ, d,C) where

λ ∈ RN++ and Hλ is defined as in (6), ΦCC (Hλ, d,C) is the unique vector which satisfies

(7).

Next we present the definition of the ROC value (Bergantiños and Vidal-Puga, 2005).

Let {λT ∈ RT++ ∶ T ⊆ N} be a family of vectors and let x ∈ ∂S be such that λN supports

S at x. Let us consider π ∈ ΠC. For each T ⊆ N and i ∈ T , the marginal contribution of

player i in the order π is

eTi (π) = max

⎧⎪⎪
⎨
⎪⎪⎩

yi ∈ R ∶ ∑
j∈Pπi ∩T

λTj e
T
j (π) + λ

T
i yi ≤ ∑

j∈(Pπi ∩T)∪{i}
λTj dj

⎫⎪⎪
⎬
⎪⎪⎭

whenever T ⊊ N or T = N and π(i) < n, and

eTi (π) = max

⎧⎪⎪
⎨
⎪⎪⎩

yi ∈ R ∶ ∑
j∈Pπi ∩T

λTj e
T
j (π) + λ

T
i yi ≤ ∑

j∈(Pπi ∩T )∪{i}
λTj xj

⎫⎪⎪
⎬
⎪⎪⎭

when T = N and π(i) = n.

We obtain a payoff configuration (xT )T⊆N as

xT =
1

∣ΠCT ∣
∑

π∈ΠCT
eT (π), for every T ⊆ N.

In case that xN = x, we say that x is a ROC value for (S, d,C). We denote by

ΦROC (S, d,C) the ROC value of (S, d,C).

Let us take i ∈ N . Notice that eNi (π) = di for all π ∈ ΠC unless π(i) = n. Whenever

π(i) = n,

eNi (π) =
1

λNi

⎛

⎝
∑
j∈N

λNj xj − ∑
j∈N/{i}

λNj dj
⎞

⎠
.
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Counting all possible orders and doing some algebra,

xi =
(pci − 1)di

pci
+

1

λNi pci

⎛

⎝
∑
j∈N

λNj xj − ∑
j∈N/{i}

λNj dj
⎞

⎠

=

pciλNi di + ∑
j∈N

λNj xj − ∑
j∈N

λNj dj

λNi pci

= di +

∑
j∈N

λNj xj − ∑
j∈N

λNj dj

λNi pci
.

This expression coincides with (7). Then, we prove that ΦCC(S, d,C) = ΦROC(S, d,C).

Given a value for TU games, Shapley (1969) proves, via a fixed-point argument, that

one can always find a vector λ of weights, one for each player, such that when each

player’s utility is multiplied by his weight, the resulting game will have the property that

the value for the associated TU game (as presented in (8) below) is feasible in the NTU

game.

Since the Shapley reasoning may be applied to any value, we apply the λ-transfer

procedure to the Owen value and the coalitional τ value (Casas-Méndez et al, 2003).

The λTC value generalizes the Owen value for TU games with coalition structure and

the Shapley NTU value (Shapley, 1969) for NTU games.

Given a bargaining problem with coalition structure (S, d,C), we say that x ∈ RN is a

λ-Transfer Coalitional (λTC) value if x ∈ ∂S, there exists λ ∈ RN++ such that λ supports

S at x, and

λx = Ow (N,vλ,C)

where

vλ (T ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∑
i∈T
λidi if T ⊊ N

max{∑
j∈N
λjxj ∶ x ∈ S} if T = N

. (8)

We denote by ΦλTC (S, d,C) the set of λTC values for (S, d,C).

The τ − λTC value generalizes the coalitional τ value for TU games with coalition

structure (Casas-Méndez et al, 2003) and the τ value for NTU games (Borm et al, 1992).

Given (S, d,C) ∈ B(N), we say that x ∈ RN is a τ -λTC value if x ∈ ∂S, there exists

λ ∈ RN++ such that λ supports S at x, and

λx = τ(N,vλ,C)

where vλ is the TU game defined in (8). If (S, d,C) is a bargaining problem with coalition

structure, we denote by ΦτλTC(S, d,C) the set of τ − λTC values for (S, d,C).
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Next table makes a matching of solutions to problems we consider:

Without With

Coalition Structure Coalition Structure

Bargaining Nash solution δ

problems Weighted Nash solution

TU games Shapley value Owen value

τ value Coalitional τ value

NTU games Harsanyi value GCS value

Consistent value CC value

λ-transfer value ROC value

λTC value

τ - λTC value

Table 1: Matching solutions to problems

3 Characterizations of the solution δ

In this section we present three axiomatic characterizations of the solution δ.

We first define the following concepts, which will be used later. Let (S, d,C) ∈ B (N).

1. Given i, j ∈ N , we say that i and j are symmetric if and only if di = dj and for every

x ∈ S, the element y with yi = xj, yj = xi, and yk = xk, for any k ∈ N/{i, j}, belongs

to S.

2. Given Cr ∈ C, we say that Cr is a homogeneous coalition if any pair of agents i, j ∈ Cr

are symmetric agents.

3. We say that (S, d) is a symmetric bargaining problem if any pair of agents i, j ∈ N

are symmetric.

4. Two different homogeneous coalitions Cr,Cs ∈ C are exchangeable if and only if

(a) di = dj for any i ∈ Cr and j ∈ Cs, and
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(b) for any x ∈ S with xi = zr for every i ∈ Cr and xi = zs for every i ∈ Cs, we have

that y, where yi = zs for every i ∈ Cr, yj = zr for every j ∈ Cs, and yk = xk for

every k ∈ N/ (Cr ∪Cs), belongs to S.

5. If a coalition Cj is homogeneous and j∗ ∈ Cj, Chae and Heidhues (2004) define the

reduced bargaining problem (Sj, dj,Cj) ∈ B (N j) as follows.

N j = (N/Cj) ∪ {j∗}

Sj = {x ∈ RNj

∶ ∃y ∈ S such that yi = xi ∀i ∈ N/Cj and yi = xj∗ ∀i ∈ Cj}

Cj = {C1,⋯,Cj−1,{j
∗},Cj+1,⋯,Cp}, and

dji = di for all i ∈ N j.

We formulate some reasonable properties of a solution defined on B (N). Let ϕ be an

arbitrary solution defined on B (N) and let (S, d,C) ∈ B (N).

• Independence of irrelevant alternatives (IIA). Let us take (S′, d,C) ∈ B (N) such

that S′ ⊆ S and ϕ (S, d,C) ∈ S′, then ϕ (S′, d,C) = ϕ (S, d,C).

• Invariance with respect to affine transformations (IAT). Given γ ∈ RN++, and β ∈ RN ,

it holds that ϕ (S̄, d̄,C) = γϕ (S, d,C) + β, where S̄ = γS + β and d̄ = γd + β.

• Pareto efficiency (PE). There is no x ∈ S ∖ {ϕ (S, d,C)} such that xi ≥ ϕi (S, d,C)

for every i ∈ N .

• Unanimity coalitional game (UCG). Given the unanimity bargaining problem (∆,0),

for each coalition structure C, we have

ϕi (∆,0,C) =
1

pci

for every i ∈ N where ci =∣ Cq ∣ if i ∈ Cq and C = {C1,⋯,Cp}.

• Symmetry inside coalitions (SIC). Given Cq ∈ C, let i, j ∈ Cq be two symmetric

agents, then ϕi (S, d,C) = ϕj (S, d,C).

• Symmetry between exchangeable coalitions (SEC). Given any pair of exchangeable

coalitions Cr,Cs, then ϕi (S, d,C) = ϕj (S, d,C) for any i ∈ Cr and j ∈ Cs.
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• Coalitional symmetry (CS). Given the unanimity bargaining problem (∆,0), for

each coalition C, we have

∑
i∈Cr

ϕi (∆,0,C) = ∑
i∈Cs

ϕi (∆,0,C)

for every Cr,Cs ∈ C.

• Symmetry (SYM) (Chae and Heidhues, 2004). If C = {{1},⋯,{n}} and (S, d) is

symmetric, then for any two players i, j, one has ϕi (S, d,C) = ϕj (S, d,C).

• Representation of a homogeneous group (RHG) (Chae and Heidhues, 2004). If a

coalition Cj is homogeneous and j∗ ∈ Cj, then ϕj∗(S, d,C) = ϕj∗(Sj, dj,Cj).

Independence of irrelevant alternatives, invariance with respect to affine transforma-

tions, and Pareto efficiency are well-known properties.

Aumann (1985) defined the property of unanimity to characterize the Shapley-NTU

value. This property says that the unanimity game1 of a coalition has a unique value

given by the equal split of the available amount. Hart (1985) also used this property to

characterize the Harsanyi value in the context of NTU games. De Clippel, Peters, and

Zank (2004) also use this property in the characterization of the egalitarian Kalai-Samet

solution (Kalai and Samet, 1985). Winter (1991) used the property of unanimity games

in his characterization of the GCS value. The unanimity coalitional game property has

the same flavour in the context of bargaining problems with coalition structure.

The property of symmetry inside coalitions establishes that two symmetric agents

of the same coalition obtain the same value. According to the property of symmetry

between exchangeable coalitions, all members of two exchangeable coalitions receive the

same amount. The property of coalitional symmetry has the same flavour that symmetry

inside coalitions but applied to coalitions.

The properties of symmetry and representation of homogeneous group are not used in

our characterizations of δ but they appear in the characterization of δ given by Chae and

Heidhues (2004). Our symmetry properties (SIC, SEC, and CS) differ from the property

of symmetry proposed by Chae and Heidhues (2004). The property of representation of

a homogeneous group says that a member of a homogeneous coalition receives what he

would receive if he became a representative member bargaining on behalf of the coalition,

that is, a homogeneous coalition can be replaced by a member to whom bargaining is

delegated. RHG relates the payoff of a player in two different problems whereas the

1Given T ⊆ N , the unanimity game of the coalition T is the TU game defined as uT (R) = 1 if

T ⊆ R ⊆ N and uT (R) = 0, otherwise.
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property of symmetry between exchangeable coalitions (SEC) compares the payoff of

several players in the same problem.

Remark 3.1 We want to point out that there is a conceptual difference between the

properties defined above. IIA, IAT, PE, SIC, SEC, SYM, and RHG hold for the set

of all bargaining problems. UCG and CS only hold for unanimity bargaining problems.

Next we provide our characterizations of the solution δ using these properties.

Theorem 3.1 1.- The solution δ is the unique solution defined on B (N) which satisfies

IIA, IAT, and UCG.

2.- The solution δ is the unique solution defined on B (N) which satisfies PE, IIA,

IAT, SIC, and CS.

3.- The solution δ is the unique solution defined on B (N) which satisfies PE, IIA,

IAT, SIC, and SEC.

Before the formal proof of this result it is worthily to describe the uniqueness part.

Since we use IAT and IIA, by the same reasoning as in Nash (1950) it is enough to

prove the uniqueness in unanimity bargaining problems. In characterization 1, UCG

proposes a sharing in unanimity bargaining problems. For proving the uniqueness part of

characterizations 2 and 3 we use two lemmas. The first lemma says that PE, SIC, and

CS imply UCG. The second lemma says that PE, IAT, SIC, and SEC imply UCG.

Thus, the uniqueness part of characterizations 2 and 3 follows from characterization 1.

We next present two lemmas and later the proof of the theorem.

Lemma 3.1 Any solution ϕ defined on B (N) which satisfies PE, SIC, and CS also

satisfies UCG.

Proof. Let ϕ be a solution defined on B (N) which satisfies PE, SIC, and CS. Let us

consider (Λ,C) ∈ B (N). For every Cr ∈ C, we have that any two agents i, j ∈ Cr are

symmetric. By SIC, ϕi (Λ,C) = ϕj (Λ,C) for every i, j ∈ Cr and Cr ∈ C. Moreover, since

the solution ϕ satisfies CS, for every Cr,Cs ∈ C, it holds

ciϕi (Λ,C) = ∑
k∈Cr

ϕk (Λ,C) = ∑
k∈Cs

ϕk (Λ,C) = cjϕj (Λ,C)

with i ∈ Cr and j ∈ Cs.

Finally, taking into account that the solution ϕ satisfies PE, we get, for any i ∈ N ,

1 = ∑
j∈N

ϕj (Λ,C) = pciϕi (Λ,C) .
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Then, for every i ∈ N ,

ϕi (Λ,C) =
1

pci
.

Lemma 3.2 Any solution ϕ defined on B (N) which satisfies PE, IAT, SIC, and SEC

also satisfies UCG.

Proof. Let us consider the bargaining problem with coalition structure (Hλ,0,C) where

λ = 1
p

1
c and Hλ is defined by (6). If ∣C∣ = 1, the bargaining problem (Hλ,0) is symmetric.

Otherwise, any pair of coalitions Cr,Cs ∈ C are exchangeable. Since the solution ϕ satisfies

PE, SIC, and SEC, it holds

ϕi (Hλ,0,C) = ϕj (Hλ,0,C) = 1 for every i ∈ Cr, j ∈ Cs and Cr,Cs ∈ C.

Moreover, applying the affine transformation defined by λ ∈ RN++ and β = 0 to (Hλ,0,C),

we obtain the bargaining problem with coalition structure (Λ,C). Since the solution ϕ

satisfies IAT, we have

ϕi (Λ,C) =
1

pci
for every i ∈ N.

Proof. of Theorem 3.1 First we will see that the solution δ satisfies these properties.

The solution δ satisfies IIA, IAT, and PE (Chae and Heidhues, 2004). Since δ is a

weighted Nash solution, it assigns the vector of weights to the unanimity bargaining

problem (Kalai, 1977). Thus, given the structure of the weights, δ satisfies UCG. Fur-

thermore, the total amount that a coalition receives in (∆,0,C) is the same and we prove

that δ also satisfies CS.

Next, we see that it also satisfies SIC. Let us assume that this does not happen. Since

δ satisfies IAT, we take a bargaining problem with a coalition structure (S,0,C) ∈ B (N).

Let Cq ∈ C and i, j ∈ Cq such that i and j are symmetric. Let us assume that δi (S,0,C) ≠

δj (S,0,C). We define the point x̄ ∈ RN as

x̄i =
1
2 (δi (S,0,C) + δj (S,0,C)) = x̄j and

x̄k = δk (S,0,C) for every k ∈ N ∖ {i, j} .
(9)

This point x̄ belongs to S because i and j are symmetric and S is a convex set. Further-

more,

x̄ix̄j − δi (S,0,C) δj (S,0,C) =
1

4
(δi (S,0,C) − δj (S,0,C))

2
> 0. (10)

Moreover, since i, j ∈ Cq, (9), and (10), it holds

∏
k∈N

x̄
1
ck

k > ∏
k∈N

δk (S,0,C)
1
ck .
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This is a contradiction with respect to the definition of δ. Then, the solution δ satisfies

SIC.

Let us check that it also satisfies SEC. Let (S,0,C) ∈ B (N). If ∣C∣ > 1, let us take

Cr,Cs two exchangeable coalitions. Since δ satisfies SIC we have

δi (S,0,C) = δj (S,0,C) for every i, j ∈ Cr and

δi (S,0,C) = δj (S,0,C) for every i, j ∈ Cs.

Let us define the vector z ∈ RN as

zi = δi (S,0,C) if i ∉ Cr ∪Cs

zi = δj (S,0,C) if i ∈ Cr with j ∈ Cs

zi = δj (S,0,C) if i ∈ Cs with j ∈ Cr.

Since Cr and Cs are exchangeable, z ∈ S. Then, given i ∈ Cr and j ∈ Cs,

∏
k∈Cr

z
1
ck

k ∏
k∈Cs

z
1
ck

k = δj (S,0,C) δi (S,0,C) = ∏
k∈Cr

δi (S,0,C)
1
ck ∏

k∈Cs
δj (S,0,C)

1
ck

and

∏
k∈N

z
1
ck

k = ∏
k∈N

δk (S,0,C)
1
ck = max

x∈S,x≥0
∏
k∈N

x
1
ck

k .

Thus, z and δ (S,0,C) are solutions of the maximization problem (2). Since this solution

is unique, we have z = δ (S,0,C). In particular, δi (S,0,C) = δj (S,0,C) for every i ∈ Cr

and j ∈ Cs.

Next we prove the uniqueness of the solution in each case.

1.- Let us consider a solution ϕ defined on the class B (N) which satisfies IIA, IAT,

and UCG. Let (S, d,C) ∈ B (N). Because δ satisfies IAT, we assume d = 0 ∈ RN and

δ (S, d,C) = (1, . . . ,1) = e.

There exists a hyperplane which separates S and the set

{x ∈ RN : ∏
i∈N

x
1
ci
i > 1} .

Let us assume that λ ∈ RN++ defines such hyperplane. Since S is a convex set and e is the

solution of the maximization problem (2), ∑
i∈N
λixi ≤ 1 for every x ∈ S. Thus, we consider

the bargaining problem with coalition structure given by (Hλ,0,C) where Hλ is defined

as in (6). The set Hλ is obtained from ∆ by the affine transformation defined as γ = 1
λ

and β = 0. Since δ and ϕ satisfy IAT and UCG, it holds

ϕ (Hλ,0,C) = δ (Hλ,0,C) =
1

p

1

λ

1

c
. (11)
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By the definition of the solution δ and because S ⊆Hλ,

1 = max
x∈S,x≥0

∏
i∈N

x
1
ci
i ≤ max

x∈Hλ,x≥0
∏
i∈N

x
1
ci
i ≤ 1.

Then,

δ (Hλ,0,C) = δ (S,0,C) = e ∈ S. (12)

From (11) and (12),

ϕ (Hλ,0,C) = e ∈ S.

Since S ⊆ Hλ, ϕ (Hλ,0,C) ∈ S, and ϕ satisfies IIA, we have ϕ (S,0,C) = ϕ (Hλ,0,C).

Then, ϕ (S,0,C) = e = δ (S,0,C) .

2.- By Lemma 3.1, any solution ϕ which satisfies PE, IIA, IAT, SIC, and CS also

satisfies IIA, IAT, and UCG. In these conditions, as we have previously proved, the

solution ϕ coincides with δ.

3.- Let us take any solution ϕ which satisfies all these properties. By Lemma 3.2, any

solution ϕ which satisfies PE, IIA, IAT, SIC, and SEC also satisfies IIA, IAT, and

UCG. Using Item 1 of this Theorem, we get that ϕ coincides with δ.

We analyze the independence of the properties in Theorem 3.1.

1. The properties IIA, IAT, and UCG are independent.

(a) The Nash solution satisfies IIA and IAT, but not UCG.

(b) The weighted Kalai-Smorodinsky solution (Gutiérrez-López, 1993) with weights

given by wi =
1
pci

for each i ∈ N , is defined as

ηi (S, d,C) = di + t̂
ui
pci

(13)

where for each i ∈ N ,

ui = max{t ∈ R ∶ (d1, . . . , di−1, t, di+1, . . . , dn) ∈ S} , and

t̂ = max{t ∈ R++ ∶ (d1 + t
u1

pc1

, . . . , dn + t
un
pcn

) ∈ S}

satisfies IAT and UCG, but not IIA.

(c) The solution ν0 which assigns to any i ∈ N the number

ν0
i (S, d,C) = di +

t̂

pci
(14)

where

t̂ = max{t ∈ R++ ∶ (d1 +
t

pc1

, . . . , dn +
t

pcn
) ∈ S}

satisfies IIA and UCG, but not IAT.
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2. The properties PE, IIA, IAT, SIC, and CS are independent.

(a) The solution ν1 which assigns to each bargaining problem with coalition struc-

ture (S, d,C) the vector d satisfies IIA, IAT, SIC, and CS, but not PE.

(b) The weighted Kalai-Smorodinsky solution defined in (13) satisfies PE, IAT,

SIC, and CS, but not IIA.

(c) The solution defined in (14) satisfies PE, IIA, SIC, and CS, but not IAT.

(d) Let Nw be the weighted Nash solution where w is a vector of weights such that

wi ≠ wj for any i, j ∈ Cq and ∑i∈Cq wi =
1
p , for each coalition Cq ∈ C. This solution

satisfies PE, IIA, IAT, and CS, but not SIC.

(e) The Nash solution satisfies PE, IIA, IAT, and SIC, but not CS.

3. The properties PE, IIA, IAT, SIC, and SEC are independent.

(a) The solution ν1 defined above satisfies IIA, IAT, SIC, and SEC, but not PE.

(b) The solution ν2 defined as

ν2 (S, d,C) =

⎧⎪⎪
⎨
⎪⎪⎩

δ (S, d,C) if ∣C∣ > 1

η (S, d,C) if ∣C∣ = 1

satisfies PE, IAT, SIC, and SEC, but not IIA.

(c) The solution ν3 defined as

ν3
i (S, d,C) = di + t̂, for every i ∈ N

where t̂ is given by

t̂ = max{t ∈ R++ ∶ (d1 + t, . . . , dn + t) ∈ S}

satisfies PE, IIA, SIC, and SEC, but not IAT.

(d) Let w be a vector of weights such that there exist i, j ∈ N with wi ≠ wj. The

solution ν4 defined as

ν4 (S, d,C) =

⎧⎪⎪
⎨
⎪⎪⎩

δ (S, d,C) if ∣C∣ > 1

Nw (S, d,C) if ∣C∣ = 1

satisfies PE, IAT, IIA, and SEC, but not SIC.

(e) The Nash solution satisfies PE, IIA, IAT, and SIC, but not SEC.

Chae and Heidhues (2004) characterize δ as the unique solution satisfying PE, IIA,

IAT, SYM, and RHG. We would like to mention that there is no relationship between

our characterizations of δ and the characterization of δ given in Chae and Heidhues

(2004).
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It is clear that there is no relationship between our characterizations 1 and 2 and the

one of Chae and Heidhues (2004).

There is no relationship between SEC and RHG as we illustrate next. For instance,

the following solution ν5 defined as

ν5 (S, d,C) =

⎧⎪⎪
⎨
⎪⎪⎩

δ (S, d,C) if ∣N ∣ > 2

ν3 (S, d,C) if ∣N ∣ ≤ 2

satisfies SEC but not RHG.

We consider the solution ν6 defined as

ν6
i (S, d,C) =

⎧⎪⎪
⎨
⎪⎪⎩

di + t∗ if i ∈ C1

di if i ∉ C1

where C = {C1, ...,Cp} and t∗ = max{t ∈ R++ ∶ ((di + t)i∈C1
, (di)i∈N/C1

) ∈ S} . ν6 satisfies

RHG but not SEC.

Thus, there is no relationship between our characterization 3 and the one of Chae and

Heidhues (2004).

4 About δ and some NTU-values

In this section we show that the following values, the Game with Coalition Structure

(GCS) value, the Consistent Coalitional (CC) value, the Random-Order Coalitional

(ROC) value, the λ-Transfer Coalitional (λTC) value, and the τ -λ Transfer Coalitional

(τ − λTC) value, generalize the solution δ.

Theorem 4.1 The values ΦGCS, ΦCC , ΦROC , ΦλTC , and ΦτλTC generalize the solution

δ.

Proof. Let (S, d,C) ∈ B (N).

Claim 1. {δ (S, d,C)} = ΦGCS (S, d,C).

From the characterization of each point belonging to ΦGCS (S, d,C) proposed in (5), it

holds that ΦGCS satisfies IAT. Since δ also satisfies IAT, we assume d = 0 and δ (S,0,C) =

(1, . . . ,1) = e.

Let us assume that the supporting hyperplane of S at e is defined by λ ∈ RN++. As a

consequence of (11) and (12), and doing some algebra,

e =
1

λ

1

c
max{t ∈ R ∶

1

λ

1

c
t ∈ S} .
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By (5), δ (S,0,C) = e ∈ ΦGCS (S,0,C).

Let us take x ∈ ΦGCS (S,0,C). Let λ ∈ RN++ be the vector which defines the supporting

hyperplane of S at x. Let us consider (Hλ,0,C) ∈ B (N) with Hλ defined as in (6). Then,

δ (Hλ,0,C) ∈ ΦGCS (Hλ,0,C). Moreover, x ∈ ΦGCS (Hλ,0,C) because x ∈ ΦGCS (S,0,C) ∩

Hλ. Since ΦGCS (Hλ,0,C) is a singleton, δ(Hλ,0,C) = x. Since S ⊆ Hλ, δ(Hλ,0,C) ∈ S,

and δ satisfies IIA, we have

x = δ(Hλ,0,C) = δ(S,0,C) = e,

and the claim is proved.

Claim 2. {δ (S, d,C)} = ΦCC (S, d,C).

It follows from similar reasoning as we did in Claim 1. Notice that ΦCC satisfies IAT,

and assuming that d = 0 and δ(S,0,C) = e, we obtain that δ(S,0,C) satisfies (7).

Claim 3. {δ (S, d,C)} = ΦROC (S, d,C).

We have previously seen that ΦROC (S, d,C) = ΦCC (S, d,C).

Claim 4. {δ (S, d,C)} = ΦλTC (S, d,C).

For every λ ∈ RN++ such that the game vλ defined as in (8) is well-defined, the Owen

value for vλ is given by

Owi (N,v
λ,C) = λidi +

vλ (N) − ∑
j∈N

λjdj

pci
for every i ∈ N.

By Claim 2 and (7)

δi (S, d,C) = di +
1

λi

∑
j∈N

λj (xj − dj)

pci
for every i ∈ N,

and thus ΦλTC (S, d,C) = ΦCC (S, d,C) = {δ (S, d,C)}.

Claim 5. {δ (S, d,C)} = ΦτλTC (S, d,C) .

It follows from a similar reasoning that Claim 4, because, for every λ ∈ RN++ such that

the game vλ is well-defined,

τi (N,v
λ,C) = λidi +

vλ (N) − ∑
j∈N

λjdj

pci
for every i ∈ N.

5 A non-cooperative perspective

In the context ofNTU games, Hart and Mas-Colell (1996) design a simple non-cooperative

mechanism of negotiation between n players. Applied to bargaining problems, this mech-

anism is as follows: In each round, a player is randomly chosen to propose a payoff. If
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all the other players agree, the mechanism finishes with this payoff. If at least a player

disagrees, the mechanism is repeated with probability ρ ∈ [0,1). With probability 1 − ρ,

the proposer leaves the mechanism and thus each player gets his disagreement payoff.

In Theorem 3 in Hart and Mas-Colell (1996), it is shown that the above mecha-

nism (when applied to bargaining problems) yields the Nash bargaining solution as ρ

approaches 1.

Vidal-Puga (2005a) adapts this mechanism when players are divided in coalitions.

Hart and Mas-Colell’s mechanism is played in two levels, first between players inside

each coalition and second between coalitions. In the first level, players inside the same

coalition decide (following Hart and Mas-Colell’s mechanism) which proposal to use in

the second level.

Formally:

Mechanism I First, a proposer i ∈ C1 is randomly chosen out of coalition C1 ∈ C,

being each player equally likely to be chosen. Player i proposes a feasible payoff,

i.e. a point in S. The members of C1/ {i} are then asked in some prespecified

order. If one of the members of C1/ {i} rejects the proposal, then with probability

ρ the mechanism is repeated under the same conditions, and with probability 1− ρ

the mechanism finishes in disagreement. If all the members of C1/ {i} accept the

proposal, then the same procedure is repeated with coalition C2, and so on. If

there is no rejection, one of the proposals is chosen at random, being each proposal

equally likely to be chosen. Say the proposal of coalition Cq is chosen. Then, the

members of N/Cq are asked in some prespecified order. If one of the members

of N/Cq rejects the proposal, then with probability ρ the mechanism is repeated

under the same conditions, and with probability 1 − ρ the mechanism finishes in

disagreement. If the mechanism finishes in disagreement, the final payoff is d.

This structure in two levels appears in many situations where negotiations are carried

out by agents who are the delegates of larger coalitions. Delegates begin to negotiate

among them not before agreeing their proposals with their respective coalitions.

However, it may be possible an inverse structure: a coalition is first chosen to make

a proposal, and only then they choose a proposer to make the offer.

Formally:

Mechanism II First, a coalition Cq out of C is randomly chosen, being each coalition

equally likely to be chosen. Then, a proposer i is randomly chosen out of Cq, being

each player equally likely to be chosen. Player i proposes a feasible payoff, i.e.
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a point in S. The members of N/ {i} are then asked in some prespecified order.

If one of the members of N/ {i} rejects the proposal, then with probability ρ the

mechanism is repeated under the same conditions, and with probability 1 − ρ the

mechanism finishes in disagreement. In the latter case, the final payoff is d.

This procedure is the adaptation to bargaining problems of the mechanism that ap-

pears in Section 4.4. in Vidal-Puga (2002).

Clearly, each player i ∈ N is chosen as proposer with probability µi = 1
pci

.

This mechanism also generalizes Hart and Mas-Colell’s bargaining mechanism (ap-

plied to bargaining problems) when the coalition structure is trivial. However, it is not

equivalent to the mechanism in Vidal-Puga (2005a). In particular, it does not implement

the Owen value when applied to a TU game with coalition structure, as Example 43 in

Vidal-Puga (2002) shows.

As in Hart and Mas-Colell (1996) and Vidal-Puga (2005a), we work with stationary

strategies. This means that the proposal of an agent is independent of the previous

history. Notice that a stationary subgame perfect equilibrium is also optimal against

non-stationary strategies.

Theorem 5.1 If (S, d,C) ∈ B (N), in the two above mechanisms there exists a station-

ary subgame perfect equilibrium for each ρ ∈ [0,1). Moreover, as ρ approaches 1, any

stationary subgame perfect equilibrium payoff converges to δ (S, d,C).

From now on, when we say equilibrium, we mean stationary subgame perfect equilib-

rium.

As it can be readily checked from the proof of Theorem 5.1 below, both mechanisms

yield the same equilibrium payoff for any ρ, and not only in the limit. However, this

is not generally true for the class of TU games. See Example 43 in Vidal-Puga (2002).

The reason is that, for Mechanism I, the players do not know which proposal will be

selected in the game between coalitions. When a player is substitutable for someone else

outside the coalition, it may happen that one of his coalition partners makes a proposal

that leaves him a negative payoff. The substitutable player nevertheless agrees because

his final payoff is nonnegative in expected terms (he hopes another proposal be chosen

in the play between coalitions). See Example 14 in Vidal-Puga (2005a). For Mechanism

II, however, no negative payoff is bound to be accepted in the game inside a coalition.

This cancels out some disadvantage of a substitutable player. For the class of bargaining

problems, however, no player is substitutable and hence the result.

21



The proof for Mechanism I comes from Theorem 12 in Vidal-Puga (2005a), Claim 2

in the proof of Theorem 4.1, and an analogous reasoning as in the proof of Proposition

5.5 below. Hence, we concentrate on Mechanism II.

In order to prove Theorem 5.1 for Mechanism II, we need further notation.

Given ρ ∈ [0,1), let ai (ρ) be the proposal of player i when he is the proposer. Let

a (ρ) ∶=∑
i∈N

µiai (ρ) ∈ RN

be the final payoff when all the proposals are due to be accepted. When there is no

ambiguity, we write a and ai instead of a (ρ) and ai (ρ), respectively.

Proposition 5.1 Given ρ ∈ [0,1), the proposals in any equilibrium of a bargaining prob-

lem with coalition structure (S, d,C) are characterized by

P1 ai (ρ) ∈ ∂S for each i ∈ N and

P2 aij (ρ) = ρaj (ρ) + (1 − ρ)dj for each j ≠ i.

Moreover, the proposals are always accepted and ai (ρ) ≥ d for each i ∈ N .

This Proposition is similar to Proposition 1 in Hart and Mas-Colell (1996). However,

in Hart and Mas-Colell the vector a is the average of the ai’s. In this case, a is a weighted

average with weights given by the µi’s.

Proof. Assume we are in equilibrium. Let b ∈ RN be the expected final payoff. Each

player i ∈ N can guarantee himself a payoff of at least di by proposing always d and

accepting only proposals which give him no less than di. Thus, b ≥ d.

We must prove that conditions P1 and P2 hold. We proceed by two Claims:

Claim (A): Assume the proposer is i ∈ Cq. Then, all players in N/ {i} accept ai if

aij > ρbj + (1 − ρ)dj for each j ≠ i. If aij < ρbj + (1 − ρ)dj for some j ≠ i, then the proposal

is rejected.

Notice that, in the case of rejection, the expected payoff of a player j ≠ i is ρbj+(1−ρ)dj.

We assume without loss of generality that i = 1 and (2, ..., n) is the order in which the

players in N/ {i} are asked.

If the game reaches player n, i.e. there has been no previous rejection, his optimal

strategy involves accepting the proposal if ain is higher than ρbn + (1 − ρ)dn and rejecting

it if it is lower than ρbn + (1 − ρ)dn. Player n − 1 anticipates reaction of player n. Hence,

if an > ρbn + (1 − ρ)dn, an−1 > ρbn−1 + (1 − ρ)dn−1, and the game reaches player n − 1,

he accepts the proposal. If an < ρbn + (1 − ρ)dn, then player n − 1 is indifferent between
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accepting or rejecting the proposal, since he knows player n is bound to reject the proposal

should the game reach him. In any case, the proposal is rejected. By going backwards,

we prove the result for all players in N/ {i}.

Claim (B): Assume the proposer is player i. Then, his proposal is accepted.

Assume the proposal of player i is rejected. This means the final payoff for player i is

ρbi + (1 − ρ)di.

We define a new proposal ai for player i as follows. Since b ∈ S and d belongs to the

interior of S, by convexity ρb+(1 − ρ)d belongs to the interior of S. Thus, it is possible to

find ε > 0 such that ρb+ (1 − ρ)d+ (ε, ..., ε) belongs to S. Let ai = ρb+ (1 − ρ)d+ (ε, ..., ε).

By Claim (A), this offer is accepted and the final payoff for player i is ρbi + (1 − ρ)di + ε.

This contradiction proves Claim (B).

Since all the proposals are accepted, and each player i has probability µi to be chosen

as proposer, we can assure that b = a.

We show now that P1 and P2 hold.

Suppose P1 does not hold, i.e. there exists a player i such that ai is not Pareto optimal.

Thus, ai belongs to the interior of S; so, there exists ε > 0 such that ai + (ε, ..., ε) ∈ S.

Notice that, since the proposal ai of player i is accepted (Claim (B)), by Claim (A)

we know that aij ≥ ρaj + (1 − ρ)dj for each j ≠ i. So, if player i changes his proposal to

ai+(ε, ..., ε), it is bound to be accepted and his expected final payoff improves by µiε > 0.

This contradiction proves P1.

Suppose P2 does not hold. Let j0 ≠ i be a player such that aij0 = ρaj0 + (1 − ρ)dj0 + α

with α ≠ 0. By Claim (A) and Claim (B), α > 0.

Let x ∈ RN be defined by xj0 = α and xj = 0 for all j ≠ j0. By comprehensiveness and

nonlevelness, we have ai − x belongs to the interior of S. Thus, there exists ε > 0 such

that

âi ∶= ai − x + (ε, ..., ε)

belongs to S. Suppose player i changes his proposal to âi. Let âj = aj for all j ≠ i. The

new average â = ∑
i∈N

µiâi satisfies

âii = a
i
i − xi + ε = a

i
i + ε > a

i
i,

âij0 = a
i
j0
− xj0 + ε = ρaj0 + (1 − ρ)dj0 + α − α + ε > ρaj0 + (1 − ρ)dj0 , and

âij = a
i
j − xi + ε = a

i
j + ε > a

i
j ≥ ρaj + (1 − ρ)dj for all j ≠ i, j0.

Thus, by Claim (A), the new proposal of player i is due to be accepted. Also, player

i improves his expected payoff. This contradiction proves P2.

Conversely, we show that proposals (ai)i∈N satisfying P1 and P2 can be supported as

an equilibrium.
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First, we prove that ai ≥ d for all i ∈ N . By convexity, x = ρa + (1 − ρ)d belongs to S.

Fix i ∈ N , by P2, we have aij = xj for all j ≠ i. We conclude that ai ≥ x because ai ∈ ∂S

and x ∈ S. Hence:

aj =∑
i∈N
µiaij ≥∑

i∈N
µixj =∑

i∈N
µi (ρaj + (1 − ρ)dj) = ρaj + (1 − ρ)dj

and thus (1 − ρ)aj ≥ (1 − ρ)dj, i.e. aj ≥ dj.

Fix a player i ∈ N . If he rejects the proposal from a proposer j ≠ i, his expected final

payoff is ρai + (1 − ρ)di. Thus, his expected final payoff is the same as that the other

player is offering. Since the rest of the players accept the proposal, he does not improve

his expected final payoff by rejecting it. If the proposer is player i himself, the strategies

of the other players do not allow him to decrease his proposal to any of them (since it

would be rejected by Claim (A)). Moreover, increasing one or more of his offers to the

other players keeping the rest unaltered implies his own payment decreases (by P1 and

nonlevelness). Finally, by offering an unacceptable proposal, he may be dropped out and

his expected final payment becomes di, which does not improve his final payoff because

aii ≥ di. Thus, the proposals do form an equilibrium.

Proposition 5.2 Let S = {x ∈ RN ∶ ∑
i∈N

λixi ≤ ξ} for some λ ∈ RN++ and ξ ∈ R. Assume a

set of proposals (ai)i∈N satisfies P1 and P2. Then a = δ (S, d,C), i.e.

λiai = λidi + µ
i (∑

j∈N
λjaj −∑

j∈N
λjdj)

for each i ∈ N .

Proof. Fix i ∈ Cq. Then,

λiai = λi∑
j∈N

µjaji = λi∑
j≠i
µjaji + µ

iλia
i
i.

By P1,

λiai = λi∑
j≠i
µjaji + µ

i (ξ −∑
j≠i
λja

i
j)

= λi∑
j∈N

µjaji + µ
i (ξ −∑

j∈N
λja

i
j) .

By P2,

λiai = λi∑
j∈N

µj (ρai + (1 − ρ)di) + µ
i (ξ −∑

j∈N
λj (ρaj + (1 − ρ)dj))

= ρλiai + (1 − ρ)λidi + µ
i (ξ − ρ∑

j∈N
λjaj − (1 − ρ)∑

j∈N
λjdj) .
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Since ai ∈ ∂S and ∑
j∈N

µj = 1, we have ∑
j∈N

λjaj = ξ. Hence,

λiai = ρλiai + (1 − ρ)λidi + µ
i ((1 − ρ) ξ − (1 − ρ)∑

j∈N
λjdj) .

Hence,

(1 − ρ)λiai = (1 − ρ)λidi + (1 − ρ)µi (ξ −∑
j∈N

λjdj)

and dividing by (1 − ρ),

λiai = λidi + µ
i (ξ −∑

j∈N
λjdj)

which completes the proof because ξ = ∑
j∈N

λjaj.

Corollary 5.1 Assume S = {x ∈ RN ∶ ∑
i∈N

λixi ≤ ξ} for some λ ∈ RN++, ξ ∈ R. Then, for

each ρ ∈ [0,1), there exists a unique equilibrium payoff, which equals δ (S, d,C).

Proof. Immediate from Proposition 5.1 and Proposition 5.2.

Proposition 5.3 Let (S, d,C) ∈ B (N). Then, for each ρ ∈ [0,1), there exists an equilib-

rium.

Proof. By Proposition 5.1, we only need to prove that there exist proposals satisfying

P1 and P2.

Let K = {x ∈ S ∶ x ≥ d}. This set is nonempty (d ∈ K), closed (because S is closed),

and bounded. Thus, K is a compact set. Furthermore, K is convex (because S is convex).

We define n functions αi ∶ K → K as follows. Given i ∈ N , αij(x) ∶= ρxj + (1 − ρ)dj for

each j ≠ i and αii (x) is defined in such a way that αi (x) ∈ ∂S.

These functions are well-defined because y ∶= ρx+(1−ρ)d belongs to K (by convexity)

and αi(x) equals y in all coordinates but i’s, which we increase until reaching the boundary

of S.

Also, because of the smoothness of S the functions αi are continuous. By the convexity

of the domain, ∑
i∈N

µiαi(x) ∈K for each x ∈K. Hence, the function α ∶K →K defined as

α (x) = ∑
i∈N

µiαi (x) for all x ∈K is well-defined and continuous. Since K is a non-empty,

compact, and convex subset of the Euclidean space, under Kakutani fixed point theorem

there exists a vector a ∈K satisfying a = ∑
i∈N

µiαi (a).

We define ai = αi (a) for each i ∈ N . It is trivial to see that (ai)i∈N satisfies P1 and

P2.
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Proposition 5.4 Let (S, d,C) ∈ B (N) and let (ai)i∈N be the proposals in equilibrium.

Then, there exists M ∈ R such that ∣aij − aj ∣ ≤M(1 − ρ) for all i, j ∈ N .

Proof. Fix i ∈ N . Given j ∈ N/ {i}, by P2:

∣aij − aj ∣ = ∣ρaj + (1 − ρ)dj − aj ∣ = (1 − ρ) ∣aj − dj ∣ .

We define

M i
1 = max{∣aj − dj ∣ ∶ j ∈ N/ {i} , ρ ∈ [0,1)} .

Notice that aj depends on ρ. This maximum is well-defined because aj ≥ dj for all

j ∈ N/ {i}, a ∈K = {x ∈ S ∶ x ≥ d}, and K is compact.

We have then ∣aij − aj ∣ ≤M
i
1(1 − ρ) for all j ∈ N/ {i}.

We now study ∣aii − ai∣. We know that ai = ∑
j∈N

µjaji . Then,

aii =
1

µi
(ai −∑

j≠i
µjaji) .

So,

∣aii − ai∣ =
1

µi
∣ai −∑

j≠i
µjaji − µ

iai∣

=
1

µi
∣ai −∑

j≠i
µj (ρai + (1 − ρ)di) − µ

iai∣

=
1

µi
∣ai − ρ∑

j∈N
µjai − (1 − ρ)∑

j≠i
µjdi − (1 − ρ)µiai∣ .

Since ∑
j∈N

µj = 1,

∣aii − ai∣ =
1

µi
∣(1 − ρ)∑

j∈N
µjai − (1 − ρ)∑

j≠i
µjdi − (1 − ρ)µiai∣

=
1 − ρ

µi
∣∑
j≠i
µjai −∑

j≠i
µjdi∣

≤
1 − ρ

µi
∑
j≠i
µj ∣ai − di∣

=
1 − ρ

µi
(1 − µi) ∣ai − di∣ .

Let

M i
2 =

1 − µi

µi
max{∣ai − di∣ ∶ ρ ∈ [0,1)} .

Using similar arguments to those used with M i
1 we can argue that M i

2 is well-defined,

for each i ∈ N .

So, we take M i = max{M i
1,M

i
2} and M = max{M i}i∈N .
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Proposition 5.5 Let (S, d,C) ∈ B (N), and let a (ρ) be an equilibrium payoff for each

ρ ∈ [0,1). Then, a (ρ)→ δ (S, d,C) when ρ→ 1.

Proof. Note that a (ρ) → δ (S, d,C) means that for all ε > 0 there exists ρ0 ∈ [0,1) such

that if ρ > ρ0 then, ∣a (ρ) − δ (S, d,C)∣ < ε.

Assume the result is not true. This means that there exists ε̂ > 0 such that for each

ρ0 ∈ [0,1) it is possible to find ρ > ρ0 satisfying

∣a (ρ) − δ (S, d,C)∣ ≥ ε̂.

Let {ρk0}
∞
k=0 ⊊ [0,1) be a sequence with ρk0 → 1. For each k, it is possible to find ρk > ρk0

satisfying ∣a (ρk) − δ (S, d,C)∣ ≥ ε̂. Since ρk0 → 1 and ρk > ρk0 for all k, we have ρk → 1.

Moreover, ∣a (ρk) − δ (S, d,C)∣ ≥ ε̂ for all k.

Since a (ρk) ≥ d for each k and S is closed, there exists a∗ ≥ d such that a∗ is a limit

point of {a (ρk)}
∞
k=0, i.e. there exists a subsequence of {a (ρk)}

∞
k=0 which converges to a∗.

We can assure without loss of generality that a (ρk)→ a∗.

Since ρk → 1, by Proposition 5.4, ai (ρk)→ a∗ for each i ∈ N . Since ai(ρ) ∈ ∂S for each

ρ ∈ [0,1), i ∈ N and ∂S is closed, we conclude that a∗ ∈ ∂S.

Let λ be the unit length vector normal to ∂S at a∗. We associate to each ρk a

bargaining problem with coalitional structure (Sk, d,C) as follows:

Given k, there exists at least one hyperplane on RN containing the n points {ai(ρk) ∶ i ∈ N}.

If there are more than one hyperplane, we take the one whose unit length outward or-

thogonal vector λk is the closest to λ.

We define:

Sk = {x ∈ RN ∶ ∑
j∈N

λkjxj ≤ ∑
j∈N

λkja
i
j (ρ) , i ∈ N} .

The half-space Sk is well-defined because ∑
j∈N

λkja
i
j (ρ) = ∑

j∈N
λkja

i′

j (ρ) for all i, i′ ∈ N .

Since ai (ρk)→ a∗ for all i ∈ N , by the smoothness of ∂S, λk → λ. Therefore,

Sk → S′ = {x ∈ RN ∶ ∑
j∈N

λjxj ≤ ∑
j∈N

λja
∗
j} .

By Proposition 5.1, the proposals {ai(ρk) ∶ i ∈ N} satisfy P1 and P2 for (S, d,C).

But these properties are the same for (Sk, d,C). Thus, by Proposition 5.1, a (ρk) is an

equilibrium payoff for (Sk, d,C). By Proposition 5.2, this implies that a (ρk) = δ (Sk, d,C).

Hence, given i ∈ N ,

ai (ρ
k) = di +

µi

λki
(∑
j∈N
λkjaj (ρ

k) −∑
j∈N
λkjdj)
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and thus

a∗i = di +
µi

λi
(∑
j∈N
λjaj −∑

j∈N
λjdj) .

Hence a∗ = δ (S, d,C). But this contradicts that ∣a (ρk) − δ (S, d,C)∣ ≥ ε̂ for each k =

0,1, .... This proves the result.

6 Concluding Remarks

Chae and Heidhues (2004) and Vidal-Puga (2005a) describe two values in bargaining

problems with coalition structure. We prove that both values coincide.

We study this value (called δ) and we find three kinds of results. Firstly, we present

three new characterizations of δ. Secondly, we prove that five values presented in the

literature for NTU games with coalition structure coincide with δ when we restrict to

bargaining problems. Thirdly, we present a new non-cooperative mechanisms with a

unique stationary subgame perfect equilibrium payoff that approaches δ.

The Harsanyi paradox (Harsanyi, 1977) says that an individual can be worse off

bargaining as a member of a coalition than bargaining alone. This paradox makes some

solutions inadequate for some situations. Nevertheless, in other situations this is not so

relevant. For instance, when coalitions are fixed and agents can not leave them. A good

example could be a group of countries (considered as coalitions of local governments)

bargaining about the reduction of greenhouse gas emissions. Most of the solutions of the

literature have this paradox. Chae and Heidhues (2004) prove that δ has this paradox.

Recently, Chae and Moulin (2004) and Vidal-Puga (2005b) found solutions without the

Harsanyi paradox.
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