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Abstract

The Boruvka’s algorithm, which computes a minimum cost spanning tree, is

used to define a rule to share the cost among the nodes (agents). We show that

this rule coincides with the folk solution, a very well-known rule of this literature.
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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). Consider that a

group of agents, located at different geographical places, wants some particular service

which can only be provided by a common supplier, called the source. Agents will be

served through connections which entail some cost. However, they do not care whether

they are connected directly or indirectly to the source.

In the literature on mcstp there are several algorithms for constructing minimum

cost spanning trees (mt): Boruvka (1926) [6], Kruskal (1956) [13] and Prim (1957)
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[14]. In this paper we focus on Boruvka’s algorithm, which has been studied later by

other authors as Eppstein (1999) [11] and Cong and Wen (2007) [9]. All three are

greedy algorithms that run in polynomial time. But constructing an mt is only a part

of the problem. Another important issue is how to allocate the cost associated with the

mt among the agents. Several authors have introduced rules in mcstp through some

algorithms for constructing mt. The idea is to propose rules to divide the cost among

the agents in a fair way1.

Bird (1976) [5], Dutta and Kar (2004) [10], and Bergantiños and Vidal-Puga (2007a)

[2] introduce three rules based on Prim’s algorithm. Feltkamp et al (1994) [12] in-

troduce a rule based on Kruskal’s algorithm. The rules introduced by Bergantiños

and Vidal-Puga (2007a) [2] and Feltkamp et al (1994) [12] coincide (Bergantiños and

Lorenzo-Freire (2008) [1]). We call this rule the folk solution, which can be obtained

in other ways (see Branzei et al (2004) [7], Ciftci and Tijs (2009) [8], and Bergantiños

and Vidal-Puga (2007a, 2007b, 2009) [2][3][4]).

Nevertheless, as far as we know, no rule has been introduced through Boruvka’s

algorithm. We do it. The idea behind this algorithm is the following. Initially the

network is empty and each agent is a single component. We sequentially add to the

network, for each connected component, the cheapest arc joining this connected com-

ponent with some agent outside it and without introducing cycles. We divide the cost

of any arc selected by Boruvka’s algorithm following three principles. First, each agent

is assigned to the arc selected by the component he belongs to. Each agent pays,

partially, the cost of the assigned arc. Second, all agents pay the same proportion of

the arc assigned. Namely, each agent i pays pca(i) where ca(i) is the cost of the arc a (i)

assigned to agent i. Third, the proportion paid, p, should be as large as possible.

We prove that the rule we introduce coincides with the folk solution.

The paper is organized as follows. In Section 2 we present the notation. In Section

3 we define our rule and prove the main result.

2 The minimum cost spanning tree problem

Let N = {1, 2, ...} be the set of all possible agents. Given N ⊂ N finite, |N | denotes

the number of elements in N . We are interested in networks whose nodes are elements

of a set N0 = N ∪{0}, where N ⊂ N is finite and 0 is a special node called the source.

Usually we take N = {1, ..., |N |}. A cost matrix C = (cij)i,j∈N0
over N represents the

cost of a direct link between any pair of nodes. We assume that cij = cji ≥ 0 for each

1In this paper we refer to fairness as a general principle to achieve, and not as a well-defined

mathematical object.
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i, j ∈ N0 and cii = 0 for each i ∈ N0. Since cij = cji we will work with undirected arcs

and we denote it as {i, j}.
We denote the set of all cost matrices over N as CN . Given C, C ′ ∈ CN , we say

C ≤ C ′ if cij ≤ c′ij for all i, j ∈ N0. We denote the set of all cost matrices over N with

all the costs different as DN , i.e. C ∈ DN if cii′ 6= cjj′ when {i, i′} 6= {j, j′}.
A minimum cost spanning tree problem, briefly mcstp, is a pair (N0, C) where

N ⊂ N is a finite set of agents, 0 is the source, and C ∈ CN is the cost matrix.

A graph g over N0 is a subset of {{i, j} : i, j ∈ N0, i 6= j}. We define tree, path and

connected component in the usual way. Given an mcstp (N0, C), we denote the mcstp

induced by C in S ⊂ N as (S0, C). Given a tree t, we denote the restriction of t to

nodes in S ⊂ N as tS.

Usually, we denote a tree over N0 as t = {{i0, i}}i∈N where i0 represents the first

agent in the unique path in t from i to 0. We denote the set of trees over N0 as T N0 .

Given an mcstp (N0, C) and a graph g, we define the cost associated with g as

c (N0, C, g) =
∑
{i,j}∈g

cij. When there are no ambiguities, we write c (g) or c (C, g) instead

of c (N0, C, g).

A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t ∈ T N0 such

that c (t) = ming∈T N0 c (g). Since the number of possible trees is finite, there exists an

mt, even though it does not need to be unique. Given an mcstp (N0, C) we denote by

m (N0, C) the cost associated with any mt t in (N0, C).

A (cost allocation) rule is a function f such that for each mcstp (N0, C), we have

f (N0, C) ∈ RN and
∑

i∈N fi (N0, C) = m (N0, C) . As usual, fi (N0, C) represents the

cost assigned to agent i.

Feltkamp et al (1994) [12] introduce a rule based on Kruskal’s algorithm. Bergantiños

and Vidal-Puga (2007a) [2] introduce a rule based on Prim’s algorithm. Bergantiños

and Lorenzo-Freire (2008) [1] prove that both rules coincide. We call this rule the folk

solution and we denote it as ϕ.

3 A rule based on Boruvka’s algorithm

Boruvka (1926) [6] provides an algorithm for computing an mt. We provide a way of

sharing the cost of any arc selected by Boruvka’s algorithm. We first describe Boruvka’s

algorithm in a formal way.

Let π be an order over the set of all possible arcs. Namely

π : {{i, j} : i, j ∈ N0, i 6= j} →

{
1, 2, .....,

(
|N |
2

)}
.
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Boruvka’s algorithm (associated with the order π).

Step 1: Let gπ,0 = ∅. Notice that the set of connected components is {{0} , {1} , ..., {|N |}}.
Assume we have reached Step s (s = 1, 2, ...) and we have defined gπ,s−1.

Step s: For each connected component T , 0 /∈ T ,2 let
{
iπ,T , jπ,T

}
∈ T × (N0\T )

be the cheapest arc connecting T and N0\T . In case there are more than one possible

arc, we select the one with the lowest position in the order π. We then add this arc to

the graph, i.e.

gπ,s = gπ,s−1 ∪
{{
iπ,T , jπ,T

}
: T is a connected component, 0 /∈ T

}
.

Following this algorithm, gπ,s is a graph with no cycles.

If the set of connected components becomes {N0}, then gπ,s is a tree and the process

is over. Otherwise, we move to Step s+ 1.

The process finishes in a finite number of steps. The tree obtained by this procedure

is an mt and we denoted it as tπ. Moreover, given an mt t, there exists an order π

such that tπ = t. It is possible that tπ = tπ
′
, even if π and π′ are different orders. For

instance, if all the costs are different, tπ = tπ
′

for all π and π′.

When no confusion arises we write gs, iT , ... instead of gπ,s, iπ,T , .... respectively.

We now introduce a rule in mcstp based on Boruvka’s algorithm. At each step,

each connected component selects an arc and each agent is assigned to the arc selected

by the component he belongs to. Each agent pays the same proportion, say p, of the

cost of the assigned arc. The proportion p must be as large as possible.

Let π be some order of the arcs, let (N0, C) be a cost matrix, and let tπ (or simply

t) be the arc selected following Boruvka’s algorithm associated with π. We now define

the rule βπ as follows:

Step 0. We define a0,π
i = ∅ for all i ∈ N , p0,π = 0, %0,π

ij = 0 for all (i, j) ∈ t,

A0,π = t, and f 0,π
i = 0 for all i ∈ N.

In general, as,πi , or simply asi , denotes the arc in t that agent i pays partially in Step

s; ps,π, or simply ps, denotes the proportion of the cost of the arc that each agent pays

in Step s; %s,πij , or simply %sij, denotes the proportion of the cost of arc {i, j} already

paid in Step s; As,π, or simply As, denotes the set of non-completely paid arcs in Step

s, i.e. As =
{
{i, j} ∈ t : %sij < 1

}
; f s,πi , or simply f si , denotes the cost that agent i pays

in Step s, i.e. f si = pscasi .

We denote Ās = t\As =
{
{i, j} ∈ t : %sij = 1

}
. Let Ps be the set of connected

components of N0 associated to Ās.

2Usually, the condition 0 /∈ T does not appear. We have added it in order to adapt the algorithm

to our objective: to divide the cost of the mt among the agents. If 0 ∈ T , then the agents in T do

not need to be connected to more agents.
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Assume that we have defined Step r for all r < s. We now define Step s. For

simplicity, we omit reference to the order π.

Given a connected component T ∈ Ps−1, 0 /∈ T , we select the arc
{
iT , jT

}
as in

Boruvka’s algorithm, so that
{
iT , jT

}
∈ t. Moreover, if component T selects

{
iT , jT

}
in Step s − 1 and

{
iT , jT

}
is not completely paid at the beginning of Step s, then

component T also selects
{
iT , jT

}
in Step s.

Given k ∈ T ∈ Ps−1, we define ask =
{
iT , jT

}
. That is, each agent will pay the cost

of the arc selected by Boruvka’s algorithm for the component he belongs to.

For each arc {i, j} ∈ As−1, let N s
ij = {k ∈ N : ask = {i, j}} be the set of agents that

will pay the cost of arc {i, j}. We define

ps = min

{
1− %s−1

ij∣∣N s
ij

∣∣ : {i, j} ∈ As−1, N s
ij 6= ∅

}
.

Notice that, assuming that all agents must pay the same proportion of the cost for

each arc, ps is the maximum proportion that agents can pay in Step s.

For each {i, j} ∈ As−1, we define %sij = %s−1
ij +

∣∣N s
ij

∣∣ ps . Thus, %sij ≤ 1 for each

{i, j} ∈ As−1. Moreover, there exists at least one {i, j} ∈ As−1 such that %sij = 1.

Thus, As  As−1 and Ās−1  Ās. That is, there are more arcs completely paid.

This process finishes when Ās = t. Since asi ∈ t for each agent i and each Step s,

and Ās−1  Ās, this process finishes in a finite number of steps (at most |N |), say γ.

Moreover, by definition the process finishes when
γ∑
s=1

ps = 1.

Definition 3.1 Given an order π of the set of arcs and a cost matrix C, we define the

Boruvka’s rule induced by the order π as

βπi (N0, C) =

γ∑
s=1

f si for each i ∈ N.

We have generated an allocation for each order of the arcs following Boruvka’s

algorithm. Even though this allocation could depend on the order, we prove that

it does not (as the rule defined in Feltkamp et al (1994a) [12], based on Kruskal’s

algorithm). Moreover we prove that this allocation coincides with the folk solution ϕ.

All these statements are proved in the following theorem (main result):

Theorem 3.1 For each order π, βπ coincides with ϕ.

Proof. The following properties are satisfied by ϕ (Bergantiños and Vidal-Puga

(2007a)[2]). We say that a rule f satisfies:
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Separability (SEP ) if for all (N0, C) and all partition {S, T} of N satisfying

m (N0, C) = m (S0, C) + m (T0, C), we have fi (N0, C) = fi (S0, C) if i ∈ S, and

fi (T0, C) if i ∈ T ;

Equal Sharing of Extra Costs (ESEC) if for all (N0, C), (N0, C
′) and c0, c

′
0 ≥ 0

such that c0i = c0 and c′0i = c0 for all i ∈ N , c0 < c′0, and cij = c′ij ≤ c0 for all i, j ∈ N ,

we have fi (N0, C
′) = fi (N0, C) +

c′0−c0
|N | for all i ∈ N ;

Continuity (CON) if for all N , f is a continuous function on CN ;

Independence of Irrelevant Trees (IIT ) if for all (N0, C) and (N0, C
′) such that

they both share a common mt with the same costs3, we have f (N0, C) = f (N0, C
′).

Let π be any order of the arcs in N0, C a cost matrix, and tπ = {{i0, i}}i∈N the

mt in (N0, C) obtained through Boruvka’s algorithm. We will prove that βπ (N0, C) =

ϕ (N0, C). We proceed by induction on the number of agents. For |N | = 1, the result

follows from the definition of rule. Assume that the result holds for less than |N |
agents.

We first check that it is enough to prove that the result holds for matrices in DN

(set of matrices where all costs are different). Notice that DN is a dense subset of CN .

For any C ∈ CN\DN and tπ the tree obtained through Boruvka’s algorithm, we can

find a sequence of matrices {Cm}∞m=1 ⊂ DN such that (1) Cm → C; (2) tπ is an mt

in Cm for all m; (3) if cii′ = cjj′ and π ({i, i′}) < π ({j, j′}), then cmii′ < cmjj′ for all m.

Under conditions (2) and (3), γ, as,π, ps,π, %s,π and As,π coincide for C and any Cm.

Hence, limm→∞ β
π (N0, C

m) = βπ (N0, C). If βπ = ϕ in DN , then the continuity of ϕ

implies that the result is true in all CN .

Hence, we prove the result assuming that C ∈ DN . Then, tπ = tπ
′

and βπ = βπ
′

for any pair of orders π and π′. Thus, it is enough to prove that βπ = ϕ for some order

π. Let π be an order and t = tπ. Let N0 be the set of nodes directly connected to the

source in t and let (j0, j) be the most expensive arc in t. We consider three cases:

Case 1. There are more than one agent directly connected to the source: For any

of these agents, say agent i ∈ N0, let F i be the set of followers of agent i (agents

j ∈ N such that {0, i} is in the unique path in t from j to 0) including agent i. Then,

{F i}i∈N0 is a partition of N satisfying that
∑

i∈N0 m (F i
0, C) = m (N0, C) and tF i0 is a

tree in (F i
0, C) for all i ∈ N0.

Since ϕ satisfies SEP , for all i ∈ N0 and k ∈ F i, we have ϕk (N0, C) = ϕk (F i
0, C).

We just need to prove βπk (N0, C) = βπk (F i
0, C) for all i ∈ N0 and k ∈ F i. Notice that

βπk (F i
0, C) = ϕk (F i

0, C) by the induction hypothesis.

We need to prove that for each i ∈ N0, the cost of the arcs in tF i0 is paid only by

3Formally, there exists a tree t that is a mt in both (N0, C) and (N0, C
′) and, moreover, cij = c′ij

for all (i, j) ∈ t.
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the agents in F i. Suppose not. Then, there exist i ∈ N0 and k ∈ F i such that k selects

in step s+ 1 an arc as+1
k =

{
iT , jT

}
∈ t\tF i0 for some T ∈ Ps with k ∈ T . Let s be the

first stage in which we can find such i ∈ N0 and k ∈ F i. Thus, the arcs in tT0 have

been paid in Step s. By definition, all the agents in T are connected through arcs in

t. Thus, tT0 is a tree in T0. Since in tT0 there are exactly |T | arcs, the cost of the arcs

in tT0 is paid only by the agents in T (s is the first stage in which an agent k ∈ F i is

paying an arc outside tF i0), and each agent pays the same proportion pr at each step r,

we deduce that
s∑
r=1

pr = 1. This means that the procedure is already finished in Step

s. Hence, there is no Step s+ 1, which is a contradiction.

Case 2. There is exactly one agent directly connected to the source, and it is not

player j (hence, the most expensive arc does not connect to the source): Let F be the

set of agents i ∈ N such that arc {j0, j} is in the unique path in t from i to 0. Let

F̄ = N \ F . Notice that F 6= ∅ and F̄ 6= ∅ because j ∈ F and j0 ∈ F̄ .

We first prove that agents in F̄ only pay the cost of the arcs in tF̄0
. Suppose not.

Then, there exists k ∈ F̄ such that as+1
k = {j0, j} for some step s. Let s be the first

stage where this happens. Let T ∈ Ps with k ∈ T . Thus, as+1
i = {j0, j} for all i ∈ T .

Since cj0j > cii′ for all {i, i′} ∈ tF̄0
and tF̄0

is a tree in F̄0, we deduce that T = F̄

and tF̄0
⊂ Ās. Since there are exactly

∣∣F̄ ∣∣ arcs in tF̄0
, and all the agents pay the same

proportion pr at each Step r, we deduce that
s∑
r=1

pr = 1. This means that the procedure

is already finished in Step s. Hence, there is no Step s+ 1, which is a contradiction.

Similarly, we can prove that agents in F only pay the cost of arcs in tF∪{j0}.

Take the matrix C ′ ∈ DN defined as c′0j = cj0j, c
′
j0j = c0j, and c′il = cil otherwise.

Following the above reasoning, βπ (N0, C) = βπ (N0, C
′).

Since t is the unique mt in (N0, C) , t′ = (t\ {{j0, j}}) ∪ {(0, j)} is the unique mt

in (N0, C
′). Thus, C ′ is in Case 1. Hence, βπ (N0, C

′) = ϕ (N0, C
′).

Take now the matrix C ′′ ∈ CN defined as c′′0j = cj0j and c′′il = cil otherwise. With

this change, both t and t′ are mt in C ′′. Since ϕ satisfies IIT , ϕ (N0, C
′) = ϕ (N0, C

′′) =

ϕ (N0, C).

Case 3. Agent j is the only one directly connected to the source (hence, the most

expensive arc connects to the source). Let {k0, k} ∈ t\ {{0, j}} be the most expensive

arc in t\ {{0, j}}. Under our hypothesis, k0 6= 0.

We define a new matrix C ′ ∈ CN from C by reducing the cost of the arcs in

{(0, i)}i∈N to the same cost as arc (k0, k). Namely, for each i, l ∈ N , c′0i = ck0k, and

c′il = cil. Of course C ′ /∈ DN .
We can assume w.l.o.g. that the order π is such that the arcs {{0, i}}i∈N are the

last and, among them, {0, j} is the first one and {0, k} is the second one. Moreover, let
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π′ be another order such that the arcs {{0, i}}i∈N come first and, among them, {0, j}
is the first one and {0, k} is the second one.

For any i ∈ N , we prove βπi (N0, C) = ϕi (N0, C) following four equalities.

βπi (N0, C)
Equality 1

= βπi (N0, C
′) +

c0j − ck0k
|N |

Equality 2
= βπ

′

i (N0, C
′) +

c0j − ck0k
|N |

Equality 3
= ϕi (N0, C

′) +
c0j − ck0k
|N |

Equality 4
= ϕi (N0, C) .

We now prove the four equalities:

Equality 1: βπi (N0, C) = βπi (N0, C
′) +

c0j−ck0k
|N | for all i ∈ N .

When computing βπi (N0, C) and βπi (N0, C
′), we realize that (a) their respective

mt coincide with t and (b) both procedures coincide until step γ − 1, where all the

arcs in t\ {{0, j}} are completely paid in both procedures and {0, j} is not paid at all.

Thus, f s,πi (N0, C) = f s,πi (N0, C
′) for all i ∈ N and all s < γ. In Step γ, all the players

choose arc {0, j} and hence, the cost of arc {0, j} is shared equally among all agents,

i.e. pγ = 1
|N | . Thus, for all i ∈ N, fγ,πi (N0, C) =

c0j
|N | and fγ,πi (N0, C

′) =
c′0j
|N | . Hence,

for all i ∈ N , βπi (N0, C)− βπi (N0, C
′) =

c0j
|N | −

c′0j
|N | =

c0j−ck0k
|N | .

Equality 2: βπ (N0, C
′) = βπ

′
(N0, C

′) .

Since the mcstp is the same we omit (N0, C
′) from the notation. Let G be the

set of agents i ∈ N such that arc {k0, k} is in the unique path in t from i to 0. Let

G = N \G. Notice that G 6= ∅ and G 6= ∅ because k ∈ G and k0 ∈ G. We prove that

βπi = βπ
′

i for all i ∈ G. The case i ∈ G can be proved in a similar way and we omit it.

We know that tπ = t. Because of the definition of βπ, there exist r1 and r2 such

that (a) from Step 1 to Step r1, the agents in G select arcs in tG, and hence all arcs

in tG have been paid completely in Step r1; (b) from Step r1 + 1 to Step r2, all the

agents in G select arc {k0, k}; and hence all the arcs in tG ∪ {{k0, k}} have been paid

completely in Step r2. Hence, as,πi = {0, j} for all i ∈ N and γπ = r2 + 1.

Because of the definition of π′, he have tπ
′

= (t\ {{k0, k}}) ∪ {{0, k}}. Because of

the definition of βπ
′
, (a) from Step 1 to Step r1, the agents in G select arcs in tG, and

moreover as,π
′

i = as,πi and ps,π = ps,π
′

for all s = 1, ..., r1 and all i ∈ G, and all the arcs

in tG have been paid completely in Step r1; (b) from Step r1 + 1 to Step γπ
′
, all the

agents in G select arc {0, k}.
Let i ∈ G. Then,

βπi =
r1∑
s=1

ps,πc′as,πi
+

r2∑
s=r1+1

ps,πc′as,πi
+ pγ

π ,πc′
aγ
π,π
i

=
r1∑
s=1

ps,πcas,πi +

(
1−

r1∑
s=1

ps,π

)
ck0k.
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Moreover,

βπ
′

i =
r1∑
s=1

ps,π
′
c′
as,π

′
i

+

γπ
′∑

s=r1+1

ps,π
′
c′
as,π

′
i

=
r1∑
s=1

ps,πcas,πi +

(
1−

r1∑
s=1

ps,π

)
ck0k.

Equality 3: βπ
′
(N0, C

′) = ϕ (N0, C
′) .

The proof is analogous to the proof of Equality 1 and hence we omit it.

Equality 4: ϕi (N0, C) = ϕi (N0, C
′) +

c0j−ck0k
|N | for all i ∈ N .

Let C ′′ ∈ CN defined as c′′0i = c0j and c′′il = cil for all i, l ∈ N . Since ϕ satisfies

ESEC, for all i ∈ N , ϕi (N0, C
′′) = ϕi (N0, C

′) +
c0j−ck0k
|N | . Since t is an mt in (N0, C

′′)

and (N0, C) and ϕ satisfies IIT , ϕ (N0, C
′′) = ϕ (N0, C).
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