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Abstract

We characterize a rule in minimum cost spanning tree problems using an

additivity property and some basic properties. If the set of possible agents has

at least three agents, these basic properties are symmetry and separability. If

the set of possible agents has two agents, we must add positivity.
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1 Introduction

Imagine that a group of agents, located at different geographical places, want some

particular service which can only be provided by a common supplier, called the source.

Agents will be served through connections which entail some cost. However, they do

not care whether they are connected directly or indirectly to the source. This situation

is described by a symmetric matrix C, which specifies the connection costs between

each pair agent-agent and agent-source. There are many situations that can be modeled

in this way. For instance, several towns may draw power from a common power plant,
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and hence have to share the cost of the distribution network (Dutta and Kar, 2004).

Bergantiños and Lorenzo (2004, 2005) study a real situation where villagers had to

pay the cost of constructing pipes from their respective houses to a water supplier.

Other examples include communication networks, such as telephone, Internet, or cable

television.

We assume that the agents construct a minimum cost spanning tree (mt). The

question is how to divide the cost associated with the mt between the agents. A rule

determines an allocation.

In this paper, we characterize a rule using a property of additivity. In its most nat-

ural formulation in mcstp, additivity is very demanding and no rule satisfies it. Hence,

we introduce a restricted additivity. Other properties used in the characterization are

symmetry, positivity, and separability. Symmetry says that symmetric agents must

pay the same. Positivity says that every agent must pay at least zero.

Separability appears in Megiddo (1978), Granot and Huberman (1981), and Granot

and Maschler (1998) with the name of decomposition, and in Bergantiños and Vidal-

Puga (2007) with the name of separability. Two subsets of agents can connect to

the source separately or jointly. If there are no savings when they connect jointly,

separability says that the agents must pay the same in both circumstances.

Our results are the following. If the set of possible agents has at least three mem-

bers, then there is a unique rule satisfying restricted additivity, symmetry, and sepa-

rability. If the set of possible agents has exactly two members, then there is a unique

rule satisfying positivity, restricted additivity, symmetry, and separability.

The rule we obtain in these characterizations is well known in the literature of

mcstp. This rule was first introduced by Feltkamp, Tijs, and Muto (1994) and studied

later by Brânzei, Moretti, Norde, and Tijs (2004) and Bergantiños and Vidal-Puga

(2004, 2006, 2007).

Our paper is very related to the paper of Brânzei et al (2004) because they also

characterize this rule using an additivity property and other two properties: equal

treatment and upper bound contributions. These properties are very related to the

concept of C-component. A C-component is a maximal coalition of agents that can

be connected among themselves at zero cost. A rule satisfies equal treatment if all the

members of a C-component receive the same. A rule satisfies upper bound contributions

if the aggregate allocation assigned to the members of a C-component is not more than

their connection cost to the source.

In Section 2 we introduce the model. In Section 3 we present our results.
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2 Minimum cost spanning tree problems

Let N = {1, 2, ...} be the set of all possible agents. Given a finite set N ⊂ N , let

ΠN be the set of all permutations over N . Given π ∈ ΠN , let πp denote the agent at

position p ∈ {1, ..., |N |} in the order π.

We are interested in networks whose nodes are elements of a set N0 = N ∪ {0},

where N ⊂ N is finite and 0 is a special node called the source.

A cost matrix C = (cij)i,j∈N0 on N represents the cost of direct link between any

pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0 and cii = 0 for each

i ∈ N0. Since cij = cji we work with undirected arcs, i.e. (i, j) = (j, i).

We denote the set of all cost matrices over N as CN .

A minimum cost spanning tree problem, briefly a mcstp, is a pair (N0, C) where

N ⊂ N is a finite set of agents, 0 is the source, and C ∈ CN is the cost matrix. Given

a mcstp (N0, C), we denote the mcstp induced by C in S ⊂ N as (S0, C).

A network g over N0 is a subset of {(i, j) : i, j ∈ N0}. The elements of g are called

arcs. Given a network g and a pair of nodes i and j, a path from i to j in g is a sequence

of different arcs {(ih−1, ih)}
l

h=1 satisfying (ih−1, ih) ∈ g for all h ∈ {1, 2, ..., l}, i = i0,

and j = il. A tree is a network such that for all i ∈ N there is a unique path from i to

the source. If t is a tree, we usually write t = {(i0, i)}i∈N where i0 represents the first

agent in the unique path in t from i to 0.

Let GN denote the set of all networks over N0. Let GN0 denote the set of all networks

where every agent i ∈ N is connected to the source, i.e. there exists a path from i to

0 in the network.

Given a mcstp (N0, C) and g ∈ GN , we define the cost associated with g as

c (N0, C, g) =
∑

(i,j)∈g

cij.When there is no ambiguity, we write c (g) or c (C, g) instead of

c (N0, C, g).

A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t over N0 such

that c (t) = min
g∈GN

0

c (g). It is well-known that an mt exists, even though it is not

necessarily unique. Given a mcstp (N0, C), we denote the cost associated with any mt

as m (N0, C).

A (cost allocation) rule is a function ψ that assigns to each mcstp (N0, C) a vector

ψ (N0, C) ∈ RN such that
∑

i∈N

ψi (N0, C) = m (N0, C).

A coalitional game with transferable utility, briefly a TU game, is a pair (N, v)

where v : 2N → R satisfies v (∅) = 0. Sh (N, v) denotes the Shapley value (Shapley,

1953) of (N, v). It is possible to associate a TU game (N, vC) with each mcstp (N0, C)
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as follows. For each S ⊂ N , vC (S) = m (S0, C) .

In this paper we focus on a rule first introduced by Feltkamp et al (1994), which

we denote as ϕ. This rule can be defined as

ϕ (N0, C) = Sh (N, vC∗)

where C∗ is the irreducible matrix. For all i, j ∈ N0, c∗ij = max
(k,j)∈gij

{ckl} where gij is the

unique path connecting i and j in an mt t. See Bergantiños and Vidal-Puga (2007)

for more details.

Finally, we define C-components following Norde, Moretti, and Tijs (2004). This

concept will be used in some of the proofs. Given a mcstp (N0, C) and S ⊂ N0, we say

that i, j ∈ N0, i �= j are (C, S)-connected if there exists a path g from i to j satisfying

that g ∈ GS and ckl = 0 for all (k, l) ∈ g. We say that S ⊂ N0 is a C-component

if two conditions hold. First, for all i, j ∈ S, i and j are (C,S)-connected. Second,

S is maximal, i.e. if S � T there exist i, j ∈ T, i �= j such that i and j are not

(C, T )-connected.

Clearly, the set of C-components is a partition of N0.

3 The axiomatic characterization

In its most natural definition, we say that a rule ψ satisfies additivity if for all mcstp

(N0, C) and (N0, C
′), ψ (N0, C + C ′) = ψ (N0, C) + ψ (N0, C

′). However, no rule satis-

fies this property. Take

C =






0 10 50

10 0 10

50 10 0




 , C ′ =






0 50 10

50 0 10

10 10 0




 , and C + C ′ =






0 60 60

60 0 20

60 20 0




 .

Notice that m (N0, C) = m (N0, C
′) = 20 and m (N0, C + C ′) = 80. By definition,

∑

i∈N

ψi (N0, C) = m (N0, C) for all mcstp (N0, C) . Then, ψ (N0, C + C ′) = ψ (N0, C) +

ψ (N0, C
′) is not possible.

Hence, we should only claim additivity when the pair of problems are “similar”,

and not in any case. Moreover, we also want to claim additivity in a large subclass of

problems.

In mcstp there exists an additivity property called cone-wise positive linearity

(CPL) , which has been introduced by Brânzei et al (2004). We say that ψ satis-

fies CPL if ψ (N0, C + C ′) = ψ (N0, C) +ψ (N0, C
′) for all mcstp (N0, C) and (N0, C

′)

4



satisfying that there exists an order for the arcs σ : {(i, j)}i,j∈N0,i<j →
{
1, 2, ...., n(n+1)

2

}

such that if i, j, k, l ∈ N0 with i < j, k < l, and σ (i, j) ≤ σ (k, l), then cij ≤ ckl and

c′ij ≤ c
′
kl.

Notice that according to this definition1 two problems are “similar” when, ordering

the arcs by their cost, we can obtain the same order in C and C ′.

We now introduce our additivity property. If we want to claim ψ (N0, C + C ′) =

ψ (N0, C)+ψ (N0, C
′) we need, at least, that m (N0, C + C ′) = m (N0, C)+m (N0, C

′) .

Let t be an mt in (N0, C + C ′). It is easy to see that t is an mt in both (N0, C)

and (N0, C
′) . Assume that we order the arcs in t in non-decreasing cost. If we obtain

the same order in (N0, C) and (N0, C
′) , then we claim additivity on these problems.

This is our idea of “similar” problems.

Formally, we say that ψ satisfies restricted additivity (RA) if

ψ (N0, C + C ′) = ψ (N0, C) + ψ (N0, C
′)

for all mcstp (N0, C) and (N0, C
′) satisfying that there exists an mt t = {(i0, i)}i∈N

in (N0, C), (N0, C
′) , and (N0, C + C ′) and an order π ∈ ΠN such that cπ0

1
π1 ≤ cπ02π2 ≤

... ≤ cπ0nπn and c′
π0
1
π1
≤ c′

π0
2
π2
≤ ... ≤ c′

π0nπn
.

It is straightforward to check that RA implies CPL.

We now introduce the “basic” properties we use in our characterization results.

Given an mcstp (N0, C), we say that i, j ∈ N, i �= j are symmetric if for all

k ∈ N0 \ {i, j}, cik = cjk.

We say that ψ satisfies symmetry (SYM) if for all mcstp (N0, C) and all pair of

symmetric agents i, j ∈ N , ψi (N0, C) = ψj (N0, C).

We say that ψ satisfies positivity (POS) if for all mcstp (N0, C) and all i ∈ N ,

ψi (N0, C) ≥ 0.

We say that ψ satisfies separability (SEP ) if for all mcstp (N0, C) and S ⊂ N

satisfying m (N0, C) = m (S0, C) +m ((N \ S)0 , C) ,

ψi (N0, C) =

{
ψi (S0, C) if i ∈ S

ψi ((N \ S)0 , C) if i ∈ N \ S

for all i ∈ N .

1Brânzei et al (2004) define CPL in a little bit different way. Take x, x′ ≥ 0. They say that a

rule ψ satisfies CPL if ψ (N0, xC + x′C′) = xψ (N0, C) + x
′ψ (N0, C

′) when (N0, C) and (N0, C
′) are

”similar”. It is not difficult to check that the characterization of Brânzei et al (2004) also holds with

our definition. We present it in a different way only because it is simpler.
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Two subsets of the agents, S and N \ S, can connect to the source separately or

can connect jointly. If there are no savings when they connect jointly, SEP says that

agents must pay the same in both circumstances.

Proposition 1. ϕ satisfies SEP , SYM , and RA.

Proof. In Bergantiños and Vidal-Puga (2007), we proved that ϕ satisfies SEP .

On the other hand, ϕ is the Shapley value of an associated game. From this, it is

straightforward to prove that ϕ satisfies SYM .

We now prove that ϕ satisfies RA. Let (N0, C) and (N0, C
′) be two mcstp and let

t = {(i0, i)}i∈N be an mt in (N0, C), (N0, C
′) , and (N0, C + C ′) satisfying that there

exists an order π ∈ ΠN such that cπ0
1
π1 ≤ cπ02π2 ≤ ... ≤ cπ0nπn and c′

π0
1
π1
≤ c′

π0
2
π2
≤ ... ≤

c′π0nπn .

For all i, j ∈ N0, c∗ij = max
(k,l)∈gij

{ckl}, c′∗ij = max
(k,l)∈gij

{c′kl} , and (c + c′)∗ij = max
(k,l)∈gij

{ckl + c′kl}

where gij is the (unique) path in t connecting i and j. Hence, (C + C ′)∗ = C∗ + C ′∗.

Applying Proposition 2.3 in Bergantiños and Vidal-Puga (2007), it is not difficult

to deduce that for all S ⊂ N , v(C+C′)∗ (S) = vC∗ (S)+vC′∗ (S). Thus, the result follows

from the additivity of the Shapley value. �

Assume that N has at least three agents. Then we have the following result:

Proposition 2. There is a unique rule satisfying SEP , SYM , and RA.

Proof. From Theorem 1 in Norde et al (2004), if (N0, C) is a mcstp, then there

exists a family {Cp}ap=1 of cost matrices satisfying three conditions:

1. C =
a∑

p=1

Cp.

2. For each p ∈ {1, ..., a} there exist xp ∈ R and a network gp such that cpij = xp if

(i, j) ∈ gp and cpij = 0 otherwise.

3. There exists σ : {(i, j)}i,j∈N0,i<j →
{
1, 2, ...., n(n+1)

2

}
such that if i, j, k, l ∈ N

with i < j, k < l, and σ (i, j) ≤ σ (k, l), then cij ≤ ckl and c
p
ij ≤ c

p
kl for all

p ∈ {1, ..., a}.

Let ψ be a rule satisfying SYM , SEP , and RA. Since RA implies CPL, from

conditions 1 and 3, ψ (N0, C) =
a∑

p=1

ψ (N0, C
p).
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Hence, it is enough to prove that ψ is unique on the subclass of mcstp (N0, C)

satisfying that there exist x ∈ R and a network g such that cij = x if (i, j) ∈ g and

cij = 0 otherwise. Assume that (N0, C) satisfies these conditions.

Let {(N1)0 , N2, ...,Nq} be the partition of N0 in C-components. It is straight-

forward to check that m (N0, C) =
q∑

r=1

m ((Nr)0 , C). Under SEP , ψi (N0, C) =

ψi ((Nr)0 , C) for all r ∈ {1, ..., q} and i ∈ Nr.

Hence, we can assume that all the agents can be connected among themselves at

zero cost. This implies that, given t = {(i0, i)} is an mt in (N0, C), there exists α ∈ N

such that α0 = 0 and ci0i = 0 for all i ∈ N \ {α}. We define C1 and C2 as follows:

c1ij =

{
cij if 0 ∈ {i, j}

0 otherwise
and c2ij =

{
0 if 0 ∈ {i, j}

cij otherwise.

It is not difficult to see that t is an mt in both (N0, C
1) and (N0, C

2). Moreover,

c1
i0i

= c2
i0i

= 0 for all i ∈ N \ {α} , c10α ≥ 0 = c20α, and C = C1 + C2. Under RA,

ψ (N0, C) = ψ (N0, C
1) + ψ (N0, C

2) .

Since m ({i}0 , C
2) = 0 for all i ∈ N and m (N0, C) = 0, under SEP , ψi (N0, C

2) =

ψi ({i}0 , C
2) = 0 for all i ∈ N. Hence, ψ (N0, C) = ψ (N0, C

1).

Thus, it is enough to prove that ψ is unique on the subclass of mcstp (N0, C)

where cij = 0 if 0 /∈ {i, j} and c0i ∈ {0, x} for all i ∈ N . If c0i = 0 for all i ∈ N ,

or c0i = x for all i ∈ N , all the agents are symmetric. Under SYM , ψi (N0, C) is

0 or x
|N |

for all i ∈ N . If there exist j, k ∈ N such that c0j = x and c0k = 0, we

define N1 = {i ∈ N | c0i = x} ∪ {k} and N2 = {i ∈ N | c0i = 0} \ {k}. These sets are

under the conditions of SEP and hence ψi (N0, C) = ψi (N
1
0 , C) for all i ∈ N1 and

ψi (N0, C) = ψi (N
2
0 , C) for all i ∈ N2. Notice that (N2

0 , C) is in the same case as

before.

Thus, it is enough to prove that ψ is unique on the subclass of mcstp (N0, C) where

there exists k ∈ N such that c0i = x ∈ R if i �= k and cij = 0 otherwise.

For each i ∈ N \ {k} , let (N,Ci) such that ci0i = x and cijl = 0 otherwise. Notice

that C =
∑

i∈N\{k}

Ci. Moreover, t = {(j − 1, j)}nj=2∪{(0, k)} is an mt in (N0, C
i) for all

i ∈ N \ {k}. Under RA, ψ (N0, C) =
∑

i∈N\{k}

ψ (N0, C
i) .

Thus, it is enough to prove that for all i ∈ N \ {k}, ψ is unique in each problem

(N0, C
i). Take i ∈ N \ {k} . It is trivial to see that

m
(
N0, C

i
)
= m

(
{k, i}0 , C

i
)
+

∑

j∈N\{k,i}

m
(
{j}0 , C

i
)
.
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Under SEP , ψk (N0, C
i) = ψk ({k, i}0 , C

i), ψi (N0, C
i) = ψi ({k, i}0 , C

i), and for

all j ∈ N \ {k, i}, ψj (N0, C
i) = ψj ({j}0 , C

i) = 0.

It only remains to prove that ψ is unique in the mcstp ({i, k} , C) where c0k = cik =

0 and c0i = x.

Since m ({i, k}0 , C) = 0, ψ ({i, k}0 , C) = (y,−y) . We prove that y = 0.

Let (N0, C
′) be such that N = {i, j, k}, c′0i = x, and c

′
hl = 0 otherwise. We can find

such a (N0, C
′) because N has at least three members.

Hence, m (N0, C
′) = m ({j}0 , C

′) +m ({i, k}0 , C
′). Under SEP ,

ψk (N0, C
′) = ψk ({i, k}0 , C

′) = ψk ({i, k}0 , C) = −y.

Moreover, m (N0, C
′) = m ({i, j}0 , C

′) +m ({k}0 , C
′). Under SEP , ψk (N0, C

′) =

ψk ({k}0 , C
′) = 0. Hence, y = 0. �

The next theorem is a trivial consequence of Propositions 1 and 2.

Theorem 1. If N has at least three agents, then ϕ is the unique rule satisfying

SEP , SYM , and RA.

The properties used in Theorem 1 are independent.

Assume N = {1, ..., n}. For each mcstp (N0, C) and i ∈ N we define ψ1i (N0, C) =

vC∗ ({1, ..., i})− vC∗ ({1, ..., i− 1}). ψ1 satisfies SEP and RA, but fails SYM .

Consider the egalitarian rule defined as ψ2i (N0, C) = m (N0, C) / |N | for all i ∈ N .

ψ2 satisfies RA and SYM , but fails SEP .

Let ψ3 be defined as

ψ3i (N0, C) =
1

|Π′N |

∑

π∈Π′
N

[vC∗ (Pre (i, π) ∪ {i})− vC∗ (Pre (i, π))]

for all i ∈ N , where Π′N is the subset of orders in which the agents with the cheapest

cost to the source connect first, i.e.

Π′N =
{
π ∈ ΠN | c0πq ≤ c0πp when q < p

}
.

ψ3 satisfies SEP (Bergantiños and Vidal-Puga, 2007) and SYM, but fails RA.

The next theorem is the analogous to Theorem 1 when N has two agents.

Theorem 2. If N has two agents, then ϕ is the unique rule satisfying POS, SEP ,

SYM , and RA.
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Proof. In Bergantiños and Vidal-Puga (2007), we proved that ϕ satisfies POS. By

Proposition 1 we know that ϕ satisfies SEP , SYM , and RA.

We now prove the uniqueness. Let ψ be a rule satisfying POS, SYM , SEP , and

RA. If N = {i}, by definition ψi (N0, C) = m (N0, C) = c0i.

Assume that N = {i, j}. Using arguments similar to those used in the proof of

Proposition 2, we can deduce that it is enough to prove that ψ is unique in the mcstp

({i, j}0 , C) where c0i = cij = 0 and c0j = x.

Sincem (N0, C) = 0, ψi (N0, C) = −ψj (N0, C). Under POS, ψi (N0, C) = ψj (N0, C) =

0. �

The properties used in Theorem 2 are also independent. When N has two agents,

ψ1 satisfies SEP, RA and POS but fails SYM ; ψ2 satisfies SYM, RA and POS but

fails SEP ; and ψ3 satisfies SEP , SYM and POS but fails RA.

Assume, without loss of generality, that N = {i, j} and c0i ≤ c0j. We consider the

rule ψ4 defined as

ψ4i (N0, C) = ϕi (N0, C)−max {0, c0j −max {c0i, cij}} and

ψ4j (N0, C) = ϕj (N0, C) + max {0, c0j −max {c0i, cij}} .

ψ4 satisfies SYM , SEP and RA, but fails POS.

In Bergantiños and Vidal-Puga (2007) we introduce, in mcstp, the property of

Population Monotonicity (PM). We say that ψ satisfies PM if for all mcstp (N0, C),

all S ⊂ N , and all i ∈ S, ψi (N0, C) ≤ ψi (S0, C). PM says that, if new agents join a

society, no agent of the initial society can be worse off. Since PM implies SEP and ϕ

satisfies PM , all the results of this paper hold with PM instead of SEP .
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