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1 Introduction

The Shapley value is a very appealing solution concept that is characterized
by its reliance on contributions (Young, 1985) and satisfies many interesting
properties in the general set of cooperative games, such as “additivity” (Shap-
ley, 1953b) and “balanced contributions”. A drawback is that the Shapley
value payoff vector might not be stable in the sense of core selection: even
for games for which the core is nonempty, the Shapley value might propose
allocations giving some coalitions incentives to secede.

An interesting family of balanced games in which the Shapley value has
nonetheless received considerable attention is the class of minimum cost span-
ning tree (mcst) problems, which model situations where a group of agents,
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located at different nodes of a network, require a service provided by a source
and do not care if they connect directly to the source or through other agents
already connected. The cost of an edge between two nodes has to be paid
when used, but cost remains invariant if more than one agent uses it to
connect to the source.

As the cost of the efficient network connecting all agents to the source
is easily found, we consider the problem of sharing the cost of that network
among its users. There are many ways to define a TU-game from the mcst
problem, depending on our assumptions on property rights and on the behav-
ior of non-cooperating agents. The most commonly used game is the private
mcst game, which limits the nodes that a coalition can use to those of its
members.

Regardless of how the game is defined, a mcst problem typically induces a
game with a large nonempty core and, moreover, it allows population mono-
tonic allocations schemes (Norde et al., 2004). However, for the private mcst
game, the Shapley value does not always belong to its core. This fact has led
some authors to claim that the Shapley value is not a good solution concept
in mcst problems (Sziklai et al., 2016).

Yet, even if we are interested in the private mcst game, we can use the
Shapley values of some reasonable alternative cost games that belong to the
core of the private mcst game. Moreover, those solutions rely on contributions
and maintain the nice properties of “additivity”, “balanced contributions”,
among others, in the context of minimum cost spanning tree problems.

This chapter surveys the growing literature on mcst games and it is or-
ganized as follows: In Section 2 we present the model and some basic def-
initions. In Section 3 we define three different cooperative cost games that
can be associated to a minimum cost spanning tree problem. In Section 4
we describe the respective Shapley values associated to the previous cooper-
ative cost games. In Section 5 we review their axiomatic characterizations.
In Section 6 we study the weighted versions of the Shapley value and also
compare it with other solution concepts such as the nucleolus. In Section 7
we comment on some studies of the Shapley value in other problems related
to mcst. Finally, in Section 8 we conclude.
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2 Definitions

We first define general cost games, before introducing minimum cost spanning
tree problems.

2.1 Cooperative cost games

Let N = {1, 2, . . . } be a (countably infinite) set of potential agents, and let
N = {1, . . . , n} be a generic nonempty, finite set of N .

A (cost sharing) game is a pair (N,C) where C is a cost function that
assigns to each nonempty coalition S ⊆ N the cost C(S) ∈ R+ that agents
in S should pay in order to receive the service.

For any S ⊆ N, let x(S) =
∑

i∈S xi. A preimputation is an allocation
x ∈ RN such that x(N) = C(N). Given S ⊆ N and x ∈ RN , we denote as
xS ∈ RS the restriction of x to RS.

We define the set of stable allocations as Core(C). Formally, an allocation
x belongs to Core(C) if it is a preimputation such that x(S) ≤ C(S) for all
S ⊂ N .

2.2 Minimum cost spanning tree problems

We assume that the agents in N need to be connected to a source, denoted
by 0. Let N0 = N∪{0}. For any set Z, define Zp as the set of all non-ordered
pairs (i, j) of distinct elements of Z. In our context, any element (i, j) in Zp

represents the (undirected) edge between nodes i and j. Let c = (ce)e∈Np
0

be a vector in RNp
0

+ with Np
0 = (N0)p and ce representing the cost of edge

e. Given E ⊂ Np
0 , its associated cost is c(E) =

∑
e∈E ce. For simplicity, we

write cij instead of c(i,j) for all i, j ∈ N0.
Since c assigns a cost to all edges e, we often abuse language and call c a

cost matrix. Let Γ be the set of all cost matrices. A mcst problem is a pair
(N0, c). When there is no ambiguity, we identify a mcst problem (N0, c) by
its cost matrix c.

Given l ∈ N0, a cycle pll is a set of K ≥ 3 edges (ik−1, ik), with k ∈
{1, . . . , K} and such that i0 = iK = l and i1, . . . , iK−1 distinct and different
than l. Given l,m ∈ N0, a path ψlm between l and m is a set of K edges
(ik−1, ik), with k ∈ {1, . . . , K}, containing no cycle and such that i0 = l and
iK = m. Let Ψlm(N0) be the set of all paths between nodes l and m.
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A spanning tree is a non-oriented graph without cycles that connects all
elements of N0. A spanning tree t is identified by the set of its edges.

We call mcst a spanning tree that has a minimal cost. It can be ob-
tained using a greedy algorithm, for example Prim (1957), Kruskal (1956),
or Bor̊uvka (1926) algorithms.

3 Associated cooperative cost games

Having established how to connect efficiently all agents to the source, we
now examine how to share the cost of such connections. To derive from a
mcst problem a cooperative game that represents the cost for each coalition
to act alone, we need to determine the rules of the game, i.e., what exactly a
coalition is allowed to do when it is alone. In the context of mcst problems,
we consider three possibilities:

The private mcst game The cost assigned to coalition S ⊂ N is com-
puted by assuming that nodes in S should connect without using nodes
N \ S, i.e., nodes outside S are unavailable.

The public mcst game The cost assigned to coalition S ⊂ N is computed
by assuming that agents in S may use edges in N \S, paying the costs
of the edges they use.

The optimistic mcst game The cost assigned to coalition S ⊂ N is com-
puted by assuming that nodes in N \ S are already connected to the
source, and hence agents in S just need to connect either to a node in
N \ S or to the source.

We analyze each of these possibilities one by one.

3.1 The private mcst game

The most common assumption in the literature is that a coalition only has
access to the nodes of its members to connect to the source. In this ap-
proach, we assume that agents have property rights over their respective
nodes, forcing a coalition to only use the nodes of its members. We thus call
the resulting game the private mcst game.
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Formally, let cS be the restriction of the cost vector c to the coalition
S0 ⊆ N0. Let C(S, c) be the cost of the mcst of the problem (S0, cS). We say
that C is the stand-alone cost for the private mcst game associated with c.

3.2 The public mcst game

An alternative approach is to suppose that there are no property rights on
nodes: a coalition S can use the nodes of its neighbours in N \ S to connect
to the source if they desire so. We call the resulting game the public mcst
game. It was first explicitly considered in Bogomolnaia and Moulin (2010),
and also examined and contrasted with the private game in Trudeau (2013);
Trudeau and Vidal-Puga (2017b).

We thus obtain the following characteristic cost function. For all S ⊆ N ,
we have

CPub(S, c) = min
T⊆N\S

C(S ∪ T, c).

It is thus obvious that for all S ⊂ N , CPub(S, c) ≤ C(S, c) and CPub(N, c) =
C(N, c).

3.3 The optimistic mcst game

We finally consider the case where agents are the last to move: others have
connected to the source, and they only need to add themselves to the tree.1

A coalition S can either connect to the source or to any node in N \ S. We
call the resulting game the optimistic mcst game. It was first used in the
context of mcst problems2 by Bergantiños and Vidal-Puga (2007b).

Formally, let c+S be the cost matrix on S0 defined as c+S
0i = minj∈N0\S cij

and c+S
ij = cij otherwise, for all i, j ∈ S.

We thus obtain the following cost function. For all S ⊆ N, we have

C+(S, c) = C
(
S, c+S

)
.

By contrast, the two other approaches are pessimistic, as the stand-alone
cost of a coalition is computed under the assumption that the other agents
are not connected.

It is obvious that for all S ⊂ N , C+(S, c) ≤ CPub(S, c) ≤ C(S, c) and
C+(N, c) = CPub(N, c) = C(N, c).

1See Bergantiños and Lorenzo (2004) for a real-life example of this situation.
2Maniquet (2003) considered the same idea in the context of queueing problems.
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S C(S, c) CPub(S, c) C+(S, c)
{1} 42 42 36
{2} 90 84 36
{3} 48 48 36
{1, 2} 84 84 72
{1, 3} 78 78 72
{2, 3} 84 84 72
{1, 2, 3} 114 114 114

3.4 Example

Consider the mcst problem described in Figure 1, for which N = {1, 2, 3}
and the cost of each edge is indicated on it.

0

1 2

3
42 90

48

42

36 36

Figure 1: Minimum cost spanning tree problem.

There is a single mcst in this game: t∗ = {(0, 1), (1, 3), (2, 3)}. The
functions C and CPub differ only for agent 2: in the private game she can
only connect to the source by using edge (0, 2), at a cost of 90. In the public
game, she can connect at a lower cost of 84 by using trees {(0, 1), (1, 2)} or
{(0, 3), (2, 3)}. The optimistic game is quite different, and only the grand
coalition has the same cost as in other approaches. For example, agent 2 can
now free-ride on the edges established by other agents and can connect by
adding edge (2, 3) at a cost of 36.
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4 The Shapley value

In what follows, a solution is a function that assigns to each mcst problem
(N0, c) a preimputation y ∈ RN . As in most cost sharing problems, the
Shapley value is a natural candidate to share the cost in a mcst problem. We
study three ways to do so, depending on the cooperative game associated to
the mcst problem.

4.1 The Kar solution

The Shapley value of the private mcst game is known in the literature as
the Kar solution, following the axiomatic analysis of the method in Kar
(2002). Formally, we define the Kar solution as yK(c) = Sh(C(N, c)).
Ando (2012) shows that computing the Kar solution is #P-hard even if the
edges are restricted to costs of 0 or 1.

The Shapley value of the public mcst game has not received much more
attention. We define it here as yK

Pub
(c) = Sh(CPub(N, c)).

Whether we are applying it to the private or public version of the game,
there is one major problem: even though the cores of the private and public
mcst problems are always nonempty, the Shapley values might not be in
them, a fact observed as early as in Bird (1976).

In our running example, we obtain yK(c) = (28, 55, 31) and yK
Pub

(c) =
(29, 53, 32). Notice that whether we are in the private or public game, the
stand-alone cost for coalition {2, 3} is 84. The (private) Kar solution assigns
them a joint cost of 86, while the public version assigns them 85. Therefore,
both are unstable.

Following this observation, researchers have proposed solutions that are
in the core. We focus in this paper on the two solutions that are based on
the Shapley value, the folk and the cycle-complete solutions. Other stable
solutions are based on the network-building algorithms, and include the Bird
solution (Bird, 1976), the Dutta-Kar solution (Dutta and Kar, 2004) and
the obligation rules (Tijs et al., 2006; Lorenzo and Lorenzo-Freire, 2009;
Bergantiños and Kar, 2010; Bergantiños et al., 2010, 2011).

4.2 The folk solution

The folk solution can be obtained by applying the Shapley value to two
different situations.
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The first one is by transforming the cost matrix into an irreducible cost
matrix, which is such that no edge cost can be reduced without reducing the
cost of the grand coalition to connect to the source Bird (1976). From any
cost matrix c, we can define the irreducible cost matrix c∗ as follows:

c∗ij = min
ψij∈Ψij(N0)

max
e∈ψij

ce for all i, j ∈ N0.

Interestingly, it is not difficult to verify that for any irreducible matrix c,
C(·, c) = CPub(·, c). That is, once we have transformed the cost matrix into
its irreducible cost matrix, the property rights on the nodes are irrelevant.
One can thus argue that using the irreducible matrix will yield solutions
that are closer in spirit to the public approach than the private one Trudeau
(2014a). Following Bergantiños and Vidal-Puga (2007a), the folk solution
is defined as yf (c) = Sh(C∗(N, c)), where C∗(N, c) is the stand-alone game
induced by the irreducible cost matrix c∗.

In our running example, we obtain the following irreducible matrix: Agent
3 is linked to the source with path {(0, 1), (1, 3)} for which the most expen-
sive edge costs 42, so c∗03 = 42. Agent 2 is linked to the source with path
{(0, 1), (1, 3), (2, 3)} for which the most expensive edge costs 42, so c∗02 = 42.
Agents 1 and 2 are linked to each other with the path {(1, 3), (2, 3)} for which
the most expensive edge costs 36, so c∗12 = 36. The costs of other edges stay
unchanged. This results in C∗(S, c) = 42 if |S| = 1, C∗(S, c) = 78 if |S| = 2
and C∗(N, c) = 114. Thus, yf (c) = (38, 38, 38) due to the symmetry of the
agents. See Figure 2.

0

1 2

3
42 42

42

36

36 36

Figure 2: Irreducible matrix associated to Example 1.
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Bird (1976) first studied Core(C∗(N, c)), and called it the irreducible core.
Since C∗ is a concave cost game (Proposition 3.3c in Bergantiños and Vidal-
Puga (2007a)), its Shapley value belongs to the irreducible core. Finally,
since Core(C∗(N, c)) ⊆ Core(CPub(N, c)) ⊆ Core(C(N, c)), we have the
following result.

Theorem 1 (Bergantiños and Vidal-Puga (2007a)) For all c ∈ Γ, yf (c)
is in Core(C(N, c)).

The folk solution is thus remarkably stable: it is always in the core,
regardless of how we define the core.

The second definition of the folk rule using the Shapley value is through
the optimistic version of the cost game. Bergantiños and Vidal-Puga (2007a)
show that the folk rule is the Shapley value of the optimistic game, i.e.,
yf = Sh(C+(N, c)). This is due to the fact that the private mcst game
associated with the irreducible cost vector is dual to the optimistic cost game,
i.e., C∗(S, c) + C+(N \ S, c) is independent of S (Theorem 1 in Bergantiños
and Vidal-Puga (2007b)).

Other definitions of the folk solution are possible. Bergantiños and Vidal-
Puga (2007a) show that yf can also be defined using Prim’s algorithm (Prim,
1957) on the irreducible matrix. Feltkamp et al. (1994), using another
network-building algorithm due to Kruskal (1956), were the first ones to
define the folk rule with the name Equal Remaining Obligations (ERO) rule,
renamed as P -value in Branzei et al. (2004). Equivalence between ERO
and folk rules was first pointed out in Bergantiños and Vidal-Puga (2008);
Bergantiños and Lorenzo-Freire (2008b). Bergantiños and Vidal-Puga (2011)
use yet another network-building algorithm, due to Bor̊uvka (1926).

Given the different definitions and names, yf has been dubbed the folk
solution by Bogomolnaia and Moulin (2010). We also use their term through-
out the chapter.

4.3 The cycle-complete solution

As seen in the previous subsection, the folk solution proposes a stable allo-
cation, but one in which we have introduced a lot of symmetry. While in
the running example all agents pay the same amount, this is not a general
result. It does, however, introduce a lot of symmetry by keeping only the
information contained in the mcst. The idea of the cycle-complete solution,
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proposed in Trudeau (2012), is to try to keep more information from the
original matrix while still proposing a stable allocation.

The method used is conceptually close to the one used to generate the folk
solution, with changes made to the cost matrix, before taking the Shapley
value of the corresponding (private) mcst game. Instead of looking at paths
between pairs of edges, we look at cycles: for edge (i, j), we look at cycles
that go through node i and node j. If there is one such cycle such that its
most expensive edge is cheaper than a direct connection through edge (i, j),
we assign this cost to edge (i, j).

From any cost matrix c, we formally define the cycle-complete cost matrix
c∗∗ as follows:

c∗∗ij = max
k∈N\{i,j}

(
cN\{k}

)∗
ij

for all i, j ∈ N

c∗∗0i = max
k∈N\{i}

(
cN\{k}

)∗
0i

for all i ∈ N

where
(
cN\{k}

)∗
indicates the matrix that we first restricted to agents in

N \ {k} before transforming into an irreducible matrix.
The cycle-complete solution is defined as ycc(c) = Sh(C∗∗(N, c)),

where C∗∗(N, c) is the stand-alone game induced by c∗∗.
In our running example, the only change we make to the original cost

matrix to obtain the cycle-complete matrix is to edge (0, 2). We can build
cycle {(0, 1), (1, 2), (2, 3), (0, 3)} that contains both 0 and 2 and for which the
most expensive edge costs 48. Thus, c∗∗02 = 48.

In the private mcst game, the only change is to the stand-alone cost of
agent 2, which goes from 90 to 48. Thus, ycc(c) = (35, 41, 38).

Trudeau (2012) shows that C∗∗(N, c) is a concave game, and thus its Shap-
ley value is in Core(C∗∗(N, c)). Since Core(C∗∗(N, c)) ⊆ Core(C(N, c)), the
cycle-complete solution is in the core.3

Theorem 2 (Trudeau (2012)) For all c ∈ Γ, ycc(c) is in Core(C(N, c)).

In general, ycc is not in Core(CPub(N, c)). Notice that the two approaches
are incompatible, as the cycle-complete approach is about bargaining for the
use of an outside edge, which the public game supposes is available for free.

3Trudeau and Vidal-Puga (2017b) show that if c is such that all edge costs are 0 or 1,
then Core(C∗(N, c)) = Core(CPub(N, c)) and Core(C∗∗(N, c)) = Core(C(N, c)).
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5 Axiomatic analysis

In this section we focus on the axiomatic characterization of the three meth-
ods defined in the previous section.4 This means that we find properties, or
axioms, that are satisfied by the solution and such that no other can satisfy
them simultaneously. Throughout this section, y(c) is a generic solution.

The first property requires that a solution propose a core allocation.

Core selection Let c ∈ Γ. Then, y(c) ∈ Core(C(N, c)).

We now define three new properties. One of them is stronger and the
other two are weaker than core selection.

The stronger version of core selection requires that no agent be worse off
when new agents join the society. Formally,

Population mononicity Let c ∈ Γ and S ⊂ N . Then, for all i ∈ S,
yi(c) ≥ yi(cS).5

A weaker version of core selection is due to Branzei et al. (2004). It
requires undominance in only some coalitions:

Upper bounded contribution Let c ∈ Γ and P ⊂ N0 such that, for all
i, j ∈ P , there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ.
Then, y(P ∩N) ≤ mini∈P∩N c0i.

Obviously, we are interested in axioms that are related with mcst prob-
lems. Among the numerous characterizations of the Shapley value in the
general transferable utility game case, the balanced contributions property
proposed by Myerson (1980) is particularly interesting, since it is inspired by
a property of edge deletion previously defined in Myerson (1977).

In the mcst problem context, we say that a solution satisfies equal treat-
ment if variation in the cost of an edge affects equally both adjacent nodes.
Formally,

Equal treatment Let c, c′ ∈ Γ be such that ckl = c′kl for all k, l ∈ N0\{i, j}.
Then, yi(c)− yi(c′) = yj(c)− yj(c′).

4A similar exercise was done in Trudeau (2013).
5We use y(cS) to designate the cost allocation to the mcst game involving only agents

in S.
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Equal treatment is, clearly, a fairness axiom. A weaker version that ap-
plies only when the change in the cost of the edge does not affect the total
cost of the mcst problem is proposed by Trudeau (2014b):

Weak equal treatment Let c, c′ ∈ Γ be such that ckl = c′kl for all k, l ∈
N0 \ {i, j} and C(N, c) = C(N, c′). Then, yi(c)− yi(c′) = yj(c)− yj(c′).

For the next axiom, we need some additional notation. An edge (i, j)
between agents i, j ∈ N is relevant if cij ≤ max{c0i, c0j}. An edge is strictly
relevant if cij < max{c0i, c0j}, irrelevant if it is not relevant, and weakly
irrelevant if it is not strictly relevant.

Let Γ be the set of elementary cost matrices with no irrelevant edges.
Notice that an irrelevant edge will never belong to an optimal tree. A

path ψij is an irrelevant path if it contains a weakly irrelevant edge. If all
paths between i and j are irrelevant, then (one of) the efficient way(s) of
connecting {i, j} to the source is to connect them both directly to it. In
other words, agent i does not help agent j connect to the source in a cheaper
manner, and viceversa.

We say that an allocation satisfies group independence if we can partition
agents in groups such that members of different groups only have irrelevant
paths between them. Then, they never have any gain to cooperate with
each other, even when considering the connection problem of subgroups of
N . Formally,

Group independence Let c ∈ Γ be such that there exists a partition P of
N such that for all i ∈ S and j ∈ T , and all S, T distinct in P , we have
that all ψij ∈ Ψij(N0) are irrelevant paths. Then, for all i ∈ S ∈ P ,
yi(c) = yi(cS).

The next axiom is a stronger version of group independence, since it only
requires the partition of N (which does not need to be unique) to be able to
connect to the source independently.

Separability Let c ∈ Γ be such that there exists a partition P of N such
that C(N, c) =

∑
S∈P C(S, c). Then, for all i ∈ S ∈ P , yi(c) = yi(cS).

Another version of group independence is when we build a partition of
the set of followers of some node. Take, for example, the mcst depicted in
Figure 3. Both nodes 2 and 3 always connect to the source through node 1.
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They form two different branches. When these branches obtain no benefits
by connecting with other agents and the costs inside them are not lower than
the costs on the path from the source to the linking node, then we should be
able to remove one of the branches in order to compute the allocation of the
others.

0

1 2

3
10 20

30

6

4 30

Figure 3: Nodes 2 and 3 constitute two branches of node 1.

Branch cutting Let c ∈ Γ, S ⊂ N and k ∈ N0 \ S. If:

• all the nodes in S are followers of node k,

• for all i ∈ S, j ∈ N \S, j 6= k, cij is a weakly irrelevant edge, and

• for all i, j ∈ S ∪ {k}, cij ≥ ce for all e in a path from node k to
the source in any optimal tree,

then

yi(c) =

{
yi(c

′
S) if i ∈ S

yi(cN\S) if i ∈ N \ S, i 6= k.

where c′0i = cki and c′ij = cij for all i, j ∈ S.

Notice that branch cutting does not say anything about the cost share of
node k (in case k 6= 0). But, in this case, yk(c) can be deduced from budget
balance once the other cost shares are known.

Theorem 3 (Kar (2002)) The Kar rule is the unique solution which sat-
isfies equal treatment, and group independence.
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Another relevant property of the Shapley value, in the context of coop-
erative game theory, is additivity. A natural definition of additivity in the
context of mcst problems is to assume that y(c + c′) = y(c) + y(c′), where
c+ c′ is defined in the natural way, i.e., (c+ c′)ij = cij + c′ij for all i, j ∈ N0.

However, no solution can satisfy this version of additivity in general. To
see why, consider N = {1, 2}, c12 = c′12 = 0, c01 = c′02 = 0, and c02 = c′01 = 1.
Then, y1(c) + y2(c) = y1(c′) + y2(c′) = 0, whereas y1(c+ c′) + y2(c+ c′) = 1.

The difficulty with this example is that there exists no tree that is optimal
in all three problems c, c′, and c+ c′. We can define a weaker version of this
property by requiring additivity only between mcst problems that share at
least an optimal tree t such that, if we order the edges of t in non-decreasing
cost, then we can obtain the same order in both problems.

Restricted additivity Let c, c′ ∈ Γ be such that there exists a common
optimal tree t∗ ∈ T ∗(c) ∩ T ∗(c′) and an order π of the edges in t∗

such that cπ1 ≤ cπ2 ≤ · · · ≤ cπn and c′π1 ≤ c′π2 ≤ · · · ≤ c′πn . Then,
y(c+ c′) = y(c) + y(c′).

A sufficient condition for such an optimal tree to exist is that both prob-
lems share a common ordering of the edges according to their cost.

Piece-wise linearity Let c, c′ ∈ Γ be such that there exists an ordering
e1, e2, . . . of the edges such that ce1 ≤ ce2 ≤ . . . and c′e1 ≤ c′e2 ≤ . . . .
Then, for all α, β > 0, y(αc+ βc′) = αy(c) + βy(c′).

The next property is due to Trudeau (2014b) and uses the fact that if
we do not have irrelevant edges, then there always exists a mcst in which
a single agent is connected to the source. We can then divide the problem,
first sharing the cost of the unique connection to the source, before sharing
the cost to connect the remaining agents to that source-connected agent.

Problem separation Let c̄ ∈ Γ be such that ĉij = 0 for all i, j ∈ N . Let
c̃, ċ ∈ Γ be such that c̃0i = ċ0i = maxi∈N ĉi0 and ċij = 0 for all i, j ∈ N .
Then, if ĉ+ c̃− ċ ∈ Γ, y(ĉ+ c̃− ċ) = y(ĉ) + y(c̃)− y(ċ).

In the preceding property, the problem of connecting a single agent to the
source is represented by ĉ, while the problem of connecting the remaining
agents to the source-connected agent is in c̃. Since we added a large source-
connection cost in that second problem, it is removed by subtracting ċ.
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Trudeau (2014b) also proposes a weaker version of problem separation
that applies only to problems for which there is no edge used in a mcst that
is more expensive than the cheapest edge connecting an agent to the source.

Weak problem separation Let ĉ ∈ Γ be such that ĉij = 0 for all i, j ∈ N .
Let c̃, ċ ∈ Γ be such that c̃0i = ċ0i = maxi∈N ĉ0i and ċij = 0 for all
i, j ∈ N . Then, if ĉ+ c̃− ċ ∈ Γ and ce ≤ mini∈N c0i for all edge e in an
optimal tree, y(ĉ+ c̃− ċ) = y(ĉ) + y(c̃)− y(ċ).

The remaining properties are self-explanatory.
We require that agents that play the same role pay the same amount.

Formally6,

Symmetry Let c ∈ Γ and i, j ∈ N such that cik = cjk for all k ∈ N0 \{i, j}.
Then, yi(c) = yj(c).

The next property says the allocation does not depend on irrelevant edges.

Independence of irrelevant edges Let c ∈ Γ and let c ∈ Γ be defined
as cij = min{cij,max{ci0, cj0}} and ci0 = ci0 for all i, j ∈ N . Then,
y(c) = y(c).

Theorem 4 (Trudeau (2014b)) The Kar rule is the only solution that
satisfies weak equal treatment, group independence, piece-wise linearity, prob-
lem separation, symmetry, and independence of irrelevant edges.

The Kar rule also satisfies other nice properties, such as cost monotonicity
(Dutta and Kar, 2004), which states that an increase of the cost of an edge
cannot benefit any adjacent agent. Formally,

Cost monotonicity Let c, c′ ∈ Γ be such that, for some i ∈ N and j ∈ N0,
ckl = c′kl for all k, l ∈ N0 \ {i, j}, and cij < c′ij. Then, yi(c) ≤ yi(c

′).

The property incentives efficiency, as it prevents nodes from benefitting
by increasing their connection costs. In case sabotage of non-adjacent con-
nection costs is possible, a stronger version of cost monotonicity is desirable.
Solidarity states that an increase of the cost of an edge does not benefit any
agent (and not only its adjacent ones). Formally,

6Some theorems below use, in the original article, the stronger property of anonymity,
which requires that the allocation not depend on the name of the agents. All of them hold
with symmetry.
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Solidarity Let c, c′ ∈ Γ be such that cij ≤ c′ij for all i, j ∈ N0. Then, for all
i ∈ N , yi(c) ≤ yi(c

′).

Despite the other nice properties, the Kar rule does satisfy neither soli-
darity nor, as shown in Dutta and Kar (2004) and in Subsection 4.1, stability.

The next theorem links the Kar rule and the folk rule:

Theorem 5 (Trudeau (2014b)) A solution satisfies weak equal treatment,
group independence, piece-wise linearity, weak problem separation, symmetry,
and independence of irrelevant edges if and only if it is a convex combination
of the Kar rule and the folk rule, i.e., there exists α ∈ R such that y =
αyK + (1− α)yf .

There exist several characterizations of the folk rule using the restricted
additivity or piece-wise linearity:

Theorem 6 (Branzei et al. (2004)) The folk rule is the only solution that
satisfies upper bounded contribution, piece-wise linearity, and symmetry.

Clearly, we can replace upper bounded contribution by core selection in
this characterization.

Theorem 7 (Bergantiños and Vidal-Puga (2009)) The folk rule is the
only solution that satisfies separability, restricted additivity, and symmetry.

Theorem 8 (Bergantiños et al. (2011)) The folk rule is the only solu-
tion that satisfies core selection, restricted additivity, symmetry, and solidar-
ity.

The next axiom states that if all the nodes are close to each other and
are at the same distance to the source, then any increase in the cost to the
source should be shared equally among the agents. An example is depicted
in Figure 4. All agents are equally far away from the source. So, an optimal
tree should connect any of them to the source and then the others connect to
the source through this one. The property of equal share of extra costs states
that the cost allocation should be the same as before, and the extra cost (6
in our example) is shared equally among the agents, i.e., yi(c

′) = yi(c) + 2
for all i, where c is the cost matrix on the left and c′ is the one on the right.
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Figure 4: Example of equal share of extra costs.

Equal share of extra costs Let c, c′ ∈ Γ and x0, x
′
0 ∈ R be such that

c0i = x0 > x′0 = c′0i ≥ cij = c′ij for all i, j ∈ N . Then, for all i ∈ N ,

yi(c) = yi(c
′) +

x0−x′0
n

.

The next property is a weaker version of equal share of extra costs:

Equal share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i] such
that c0i ≤ c0j, c

′
0i = c0i−x and c′e = ce otherwise and, for all j ∈ N \{i},

there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ. Then,
for all j ∈ N , yj(c

′) = yj(c)− x
n
.

An opposite viewpoint is that the cost reduction should be assigned solely
to the agent that is closer to the source and can connect freely to all others.

Full share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i] such that
c0i ≤ c0j, c

′
0i = c0i − x and c′e = ce otherwise and, for all j ∈ N \ {i},

there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ. Then,
yi(c

′) = yi(c)− x and yj(c
′) = yj(c) for all j ∈ N \ {i}.

A compromise viewpoint from both previous properties is to make sure
the fraction of the savings going to the cheapest source connector is the same
in all such situations:

Constant share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i]
such that c0i ≤ c0j, c

′
0i = c0i − x and c′e = ce otherwise and, for all j ∈
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N \ {i}, there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ.
Then, there exists α ∈ R such that yi(c

′) = yi(c) − x
n

(1 + (n− 1)α)
and yj(c

′) = yj(c)− x
n
(1− α) for all j ∈ N \ {i}.

The following property, as equal share of extra costs, applies to problems
where all the agents are equally far away from the source. It states that the
cost sharing should be done in the same order as we find an optimal tree,
i.e., by picking up one agent randomly, and connecting her to the source.

Decomposition Let c ∈ Γ and x0 ∈ R be such that c0i = x0 ≥ cij for all
i, j ∈ N . Then, for all i ∈ N ,

yi(c) =
∑

j∈N\{i}

yi(c
j)

n
+ yi(ĉ)

where cj0k = cjk and cjkl = ckl for all k, l ∈ N \ {j}, and ĉ0j = x0 and
cjkl = 0 for all k, l ∈ N .

The following property also applies to problems where all the agents are
far away from the source, but without requiring them to be equally far away
nor any other similarity. It says that, in this case, agents should share the
extra cost in the same way in both problems.

Constant share of extra costs Let c, c′ ∈ Γ such that c0i = maxj,k∈N0 cjk
and c′0i = maxj,k∈N0 c

′
jk for all i ∈ N and x1 be the cost matrix defined

as x10i = x and x1ij = 0 for all i, j ∈ N , for some positive real number
x.

Then, y(c+ x1)− y(c) = y(c′ + x1)− y(c′).

Theorem 9 (Bergantiños and Vidal-Puga (2007a)) The folk rule is the
only solution that satisfies population monotonicity, solidarity, and equal
share of extra costs.

Theorem 10 (Bergantiños and Kar (2010)) The folk rule is the only
solution that satisfies population monotonicity, symmetry, solidarity, and
constant share of extra costs.

Theorem 11 (Trudeau (2014a)) The folk rule is the only solution that
satisfies core selection, piece-wise linearity, branch cutting, decomposition,
and equal share of cost reduction.
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The next theorem links the folk rule and the cycle-complete rule:

Theorem 12 (Trudeau (2014a)) A solution satisfies core selection, piece-
wise linearity, branch cutting, decomposition, and constant share of cost re-
duction if and only if it is a linear combination of the folk rule and the cycle-
complete rule, i.e., there exists α ∈ [0, 1] such that y = αyf + (1− α)ycc.

A strengthening of constant share of cost reduction to give the savings to
the agent with the cheap cost to the source yields a characterization of the
cycle-complete solution.

Theorem 13 (Trudeau (2014a)) The cycle-complete rule is the only so-
lution that satisfies core selection, piece-wise linearity, branch cutting, de-
composition, and full share of cost reduction.

6 Correspondences with other concepts

We discuss how other solution concepts have been used in the mcst literature,
and the links that have been found with the Shapley value.

6.1 Weighted Shapley values

The weighted versions of the Shapley value (Shapley, 1953a; Kalai and Samet,
1987) have also played a relevant role in mcst problems. Moreover, Bird
(1976); Curiel (1997) also use the term weighted Shapley value to refer to
restricted orders in the contribution vectors so that an optimal tree is con-
structed via Prim’s algorithm following that order. Bird (1976) proves that
this solution belongs to the irreducible core.

In what follows, we use the definition of weighted Shapley values first
suggested by Shapley (1953a) and studied by Kalai and Samet (1987).

Bergantiños and Lorenzo-Freire (2008a,b) study the weighted Shapley
values of the optimistic game introduced in Bergantiños and Vidal-Puga
(2007b) and prove that they are obligation rules. Moreover, they characterize
these rules using population monotonicity, solidarity, and weighted version
of equal share of extra cost where the extra cost is divided proportionally to
the weights of the agents.
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Trudeau (2014c) obtains a family of weighted Shapley values when study-
ing an extension of mcst problems in which some agents do not need to be
connected to the source.

Gómez-Rúa and Vidal-Puga (2017) study mcst situations in which agents
can merge in advance, paying their internal costs. They show that this
situation can lead to inefficiencies and prove that the weighted Shapley value
of the irreducible cost vector, with weights given by the size of the nodes, is
immune to this manipulation. It also inherits most of the nice properties of
the folk rule, such as population monotonicity, core selection, solidarity, and
piece-wise linearity.

6.2 The core and the nucleolus

The excess of a coalition S in a TU game (N, v) with respect to a preim-
putation x is defined as e(S, x, C) = C(S) −

∑
i∈N xi. The vector θ(x) is

constructed by rearranging the 2n excesses in (weakly) increasing order. If
x, y ∈ RN are two allocations, then θ(x) >L θ(y) means that θ(x) is lexi-
cographically larger than θ(y). As usual, we write θ(x) ≥L θ(y) to indicate
that either θ(x) >L θ(y) or x = y.

The nucleolus of the game C is the set

Nu(C) = {x ∈ X : θ(x) ≥L θ(y)∀y ∈ X}

where X =
{
x ∈ RN :

∑
i∈N xi = C(N), xi ≥ v({i})∀i ∈ N

}
is the set of im-

putations (individually rational preimputations). When X 6= ∅, as it is the
case for the TU games we study here, it is wellknown that Nu(C) is a sin-
gleton, whose unique element we denote, with some abuse of notation, also
as Nu(C).

Let Π be the set of permutations of N . For all π ∈ Π, let yπ ∈ Core(C) be
the allocation that lexicographically maximizes the allocations with respect
to the order given by the permutation. The permutation-weighted average
of extreme points of the core is the average of these allocations: γ(C) =∑

π∈Π(N)
1
n!
yπ(C). If the game is concave, γ is the Shapley value. It is also

closely related to the selective value (Vidal-Puga, 2004) and the Alexia value
(Tijs, 2005), the permutation-weighted average of leximals.

Consider the subset of mcst problems known as elementary7 mcst prob-
lems: for any i, j ∈ N0, cij ∈ {0, 1}. Let Γe be the set of elementary cost

7These cost games are named information graph games by Kuipers (1993).
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matrices.

Theorem 14 (Trudeau and Vidal-Puga (2017a,b)) For all c ∈ Γe, we
have ycc(c) = Nu(C(N, c)) = γ(C(N, c)).

Theorem 15 (Trudeau and Vidal-Puga (2017a,b)) For all c ∈ Γe, we
have yf (c) = Nu(CPub(N, c)) = γ(CPub(N, c)).

7 The Shapley value in other related prob-

lems

Some of the different versions of the Shapley value have also been studied
in different subclasses and extensions of mcst problems, but it is still a very
unexplored field of research. In particular, the following literature focuses on
the extensions of the folk solution in the private game case.

Dutta and Mishra (2012) and Bahel and Trudeau (2017) extend the folk
rule to minimal cost arborescence problems, where the cost vector describing
the cost of connecting each pair of nodes is not necessarily symmetric. An
extension of the cycle-complete solution is offered in the latter.

Bergantiños and Gómez-Rúa (2010, 2015) extend the folk rule to mcst
problems with groups, where agents are grouped by a partition, such that
the nodes inside each member of the partition (a group) are more related to
each other than to any node in another group.

Subiza et al. (2016) study the folk rule in simple mcst problems, where
only two different costs are possible.

Finally, from a non-cooperative point of view, the folk rule appears as
subgame perfect Nash equilibrium cost allocation in several mechanisms ap-
plied to mcst problems (Bergantiños and Vidal-Puga, 2010; Hougaard and
Tvede, 2013).

8 Conclusion

In this chapter we have reviewed the literature on the minimum cost spanning
tree problems. This literature is unique in that most of the allocation meth-
ods considered are Shapley values. There are (at least) five different ways
to define a game based on a mcst problem, before taking the Shapley value.
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The games vary depending on how we set the ground rules: who has access
to which nodes, what cost we consider for each edge, etc. The solutions vary
depending on whether we care about core stability, if we allow coalitions to
use the nodes of their neighbours, and if we take an optimistic or pessimistic
view of the game. The corresponding axiomatic analysis reflects the choices
made in how we define the game.
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