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Abstract

A simple protocol for coalition formation is presented. First, an order of

the players is randomly chosen. Then, a coalition grows by sequentially

incorporating new members in this order. The protocol is studied in the

context of non-transferable utility (NTU) games in characteristic function

form. If (weighted) utility transfers are feasible when everybody cooperates,

then the expected subgame perfect equilibrium payoff allocation anticipated

before any implemented game is the Shapley NTU value.

Keywords: Shapley NTU value, subgame perfect equilibrium, sequential

formation of coalitions.



1 Introduction

Endogenous formation of coalitions has been widely studied in the literature.

A common approach is to assume that any number of players can simulta-

neously join a coalition. For example, Hart and Kurz (1983), Chatterjee et

al. (1993), Bloch (1996), Okada (1996), and Ray and Vohra (1999) consider

situations where coalitions form and abandon the game.

A different approach is to assume that only bilateral mergers occur, and

the newly created coalitions keep merging among themselves until a stable

coalition structure is created. This is the approach followed by Gul (1989)

and Macho-Stadler et al. (2006).

Following the latter approach, this paper studies situations in which a

coalition is formed by the sequential inclusion of new members. In contrast

with previous models, the collusion is not parallel. Instead, a size-increasing

coalition arises that swallows up other individuals like a snowball. An indi-

vidual agent may choose to join this coalition or continue alone. International

bodies like the European Union or NATO provide relevant examples of this

coalition formation protocol. In the case of the European Union, in the pe-

riod between the customs agreement between Belgium, Luxembourg and the

Netherlands came into force (1948) and the current negotiations with Turkey

and the Balkan candidates, one re-foundation (1951) and five enlargements

(1973, 1981, 1986, 1995 and 2004) have taken place. Even though more than

one country officially joined the Union at the same time, negotiations took

place individually with each candidate and independently from negotiation

with the other candidates. Thus, from a practical perspective, it can be con-

sidered that the countries joined the union sequentially. Moreover, accession

of new members has caused changes to the laws governing the coalition. In

the last scheduled enlargement, for example, which took place in 2004, the

old voting system used for a Union of 15, became obsolete and was adapted

for a Union of 25 members. Such a change in the laws requires the unanimity

of all members, and a lack of unanimity may cause the enlargement to be

aborted. In 2001, people in Ireland voted in a referendum against the Nice
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Treaty, thereby placing in jeopardy the enlargement process. In a second

referendum held in 2002, the Irish people voted in favor.

Another example of a coalition formed by a sequential entry of new mem-

bers is given by situations in which a big company grows by absorbing smaller

companies (e.g. Microsoft’s policy in the second half of the 1990s). Since

such enlargements are often focused on new business sectors, a change in

policy in the new enlarged company is frequent.

In this paper, this process is modelled in the set of NTU games by a

simple negotiation mechanism. The bargaining model is formulated as a

finite-length extensive form game with perfect information. The main idea

of the mechanism is the creation and enlargement of a coalition of play-

ers. The members of this coalition agree on a rule for sharing their resources.

Players outside the coalition can apply to enter the coalition by agreeing with

the previously established internal rule. However, in the admission negotia-

tion, candidates may also propose changes to the internal rule. Nonetheless,

unanimity will be required for the coalition to change its rules.

In NTU games in which the feasible set associated with the grand coalition

has to be a half space1, this protocol enables players to obtain at least their

marginal contribution in each order for the induced λ-transfer TU game

as defined by Shapley (1969). Hence, the Shapley NTU value (Shapley,

1969; see also Aumann, 1985a) arises in equilibrium as an expected payoff

allocation, given that the order in which players join the coalition is randomly

chosen with the same probability. It is however possible to add more stages

(as in Bag and Winter, 1999, and Mutuswami and Winter, 2002) to get the

value precisely and not in expectation (see Section 5).

Hart and Moore (1990, footnote 11) described a different sequential proto-

col yielding the Shapley value for TU games in expected terms. This protocol

is stated in terms of contracts and guarantees each player his marginal contri-

bution as well. Stole and Zwiebel (1996) studied another sequential protocol

1Notice that these NTU games are not equivalent to transfer utility games, because

the half space condition is not imposed on proper subcoalitions.
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yielding the Shapley value for an underlying TU game involving wage bar-

gaining in a firm. In Stole and Zwiebel’s model, negotiations are always

bilateral between the firm and individual workers. Disagreement between

the firm and a worker implies that the previous agreements are renegotiated

with this last worker out of the game. Pérez-Castrillo and Wettstein (2001)

presented a different protocol yielding the Shapley value in zero-monotonic

games. In their model, the players bid for the right to be the proposer. If a

proposal is rejected, the proposer leaves the game and the rest of the players

begin the negotiation process without him.

The model presented in this paper differs from these ones in two important

aspects: First of all, provisional agreement on a rule takes into account the

possibility that not all the remaining players will join the coalition. Hence

renegotiations do not happen. Secondly, players are never excluded: they

may have the chance to join the coalition in the future if a candidate, in his

own admission negotiation, proposes to do so.

In a different framework, Maskin (2003) presented a bargaining protocol

in which more than one coalition may form at a time. The next player in

the order receives offers from these coalitions to join them. Each player

can either join one of the existing coalitions, or form his own coalition and

make offers to the next players in the order. As opposed to Maskin’s, in the

model presented in this paper at most one proper coalition may form, and

the proposals are made by the candidates.

Alternative sequential protocols may be found in Chae and Yang (1994)

and Suh and Wen (2003, 2006) for pure bargaining problems.

Hart and Mas-Colell (1996) designed a non-cooperative mechanism such

that the consistent Shapley value (Maschler and Owen, 1989 and 1992) arises,

as a subset of the limit of stationary subgame perfect Nash equilibria. As

Hart (2004, footnote 9) points out, it would be of interest to obtain similar

results for other extensions of the Shapley value (Shapley, 1953) and the

Nash solution (Nash, 1950) to NTU games, like the Harsanyi value (Harsanyi,

1963) or the Shapley NTU value.
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In Hart and Mas-Colell’s model, players must propose payoff allocations.

However, it is not uncommon in real negotiations that proposals refer not

to final payoff allocations, but to general policies, rules or solutions. For

example, in the context of bargaining problems, van Damme (1986), Naeve-

Steinweg (1999), and Trockel (2002), propose mechanisms in which play-

ers’ proposals are solution concepts (like the Nash solution or the Kalai-

Smorodinsky solution). Similarly, in Naeve (1999), players report the set of

feasible payoff allocations.

For more than two players, the payoff allocation proposed by a solution

concept depends on which players are involved. Following this line of thought,

in our mechanism the proposals are rules that assign a different payoff allo-

cation to each subcoalition, i.e. a rule is a function γ that assigns to each

coalition S a vector γ (S) ∈ RS that is feasible for S.

The particular class of games to which we restrict ourselves are games

(N, V ) such that V (N) is delimited by a hyperplane. This class includes TU

games, but also includes some proper NTU games, for example, prize games

(Hart, 1994).

Section 2 describes the notation used. The mechanism and the main

results are presented in Section 3. Several examples are analyzed in Section

4. Some concluding remarks are presented in Section 5. Finally, the results

are proved in Section 6.

2 Preliminaries

Let R be the set of real numbers. Similarly, R++ and R+ are the set of

positive and nonnegative real numbers, respectively. Given any finite set S,

we denote by |S| the cardinality of S, and by RS the set of all functions

from S to R. The sets RS++ and R
S
+ are defined accordingly. We also denote

by 2S the power set of S, i.e. 2S := {T : T ⊂ S}. A member x of RS is

an |S|-dimensional vector whose coordinates are indexed by members of S;

thus, when i ∈ S, we write xi for x (i). If x ∈ RT (or x ∈ RN ) and T ⊂ S
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(or T ⊂ N), we write xT for the restriction of x to T , i.e. the members of

RT whose ith coordinate is xi. With some abuse of notation, given x ∈ RS

and a ∈ R, we write (x, a) ∈ RS∪{i} for the member of RS∪{i} whose ith

coordinate is a and whose restriction to S is x. Given x, y ∈ RS, we write

x ≥ y if xi ≥ yi for all i ∈ S.

Let N = {1, 2, ..., n} be a finite set of players. Non-empty subsets of

N are called coalitions. A non-transferable utility (NTU) game on N is a

correspondence V that assigns to each coalition S a subset V (S) ⊂ RS that

satisfies the following properties:

(A1) For each S ⊂ N , the set V (S) is nonempty, closed, convex, comprehen-

sive (i.e., if x ∈ V (S) and y ≤ x, then y ∈ V (S)), and bounded from

above (i.e., for each x ∈ RS, the set {y ∈ V (S) : y ≥ x} is compact).

(A2) Normalization: For each i ∈ N , the maximum of {x : x ∈ V ({i})},

which we denote by ωi, is nonnegative.

(A3) Zero-monotonicity : For each S ⊂ N , x ∈ V (S) and i /∈ S, we have

(x, ωi) ∈ V (S ∪ {i}). In particular, this implies that (ωi)i∈S ∈ RS

belongs to V (S).

(A4) The boundary of V (N), which we denote by ∂V (N), is nonlevel in

the positive orthant (i.e., at any point of ∂V (N) ∩ RN+ there exists an

outward vector with positive coordinates.)

(A5) For each S ⊂ N , if x ∈ ∂V (S) with xi < 0 for i ∈ T ⊂ S, then ∂V (S)

at x is parallel to the subspace RT .

Properties (A1), (A2), (A3), and (A4) are standard properties. The nor-

malization given in (A2) does not affect our results. Property (A4) has pre-

viously been used by Hart and Mas-Colell (1996, in hypothesis (A2), p. 359)

and Serrano (1997, in assumption A4, p. 61). The hypothesis in Hart and

Mas-Colell (1996) is stronger, since it requires nonlevelness in every coalition

S ⊂ N . Property (A5), which is such that all relevant action occurs in the

positive orthant, generalizes the property given in Serrano’s assumption A4.
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A transferable utility (TU) game on N is a function v : 2S → R that

assigns to each coalition S a real number v (S) and v (∅) = 0. A TU game v

on N may also be expressed as the following NTU game on N :

V ′ (S) =

{
x ∈ RS :

∑

i∈S

xi ≤ v (S)

}
(1)

for all S ⊂ N .

Let Π be the set of all the orders of players in N . Given π ∈ Π and i ∈ N ,

we define P π
i as the set of players who come before player i in the order π,

namely

P π
i := {j ∈ N : π (j) < π (i)} .

For the sake of notational convenience, we denote P π
n+1 := N .

Let v be a TU game on N and let π ∈ Π. Given i ∈ N , we define the

marginal contribution of player i under the order π in the game v as

v (P π
i ∪ {i})− v (P π

i ) ∈ R.

The Shapley value (Shapley, 1953) of a TU game v on N is the vector

Sh (N, v) ∈ RN whose ith coordinate is given by

Shi (N, v) :=
1

|Π|

∑

π∈Π

[v (P π
i ∪ {i})− v (P π

i )] ∈ R.

Let λ ∈ RN++ and let S ⊂ N . We define

vλ (S) := sup

{
∑

i∈S

λixi : x ∈ V (S)

}
.

Under our hypothesis, this supremum is a maximum:

Lemma 2.1 For each S ⊂ N , there exists x ∈ V (S) such that
∑

j∈S λjxj =

vλ (S).
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Proof. It follows from properties (A1) and (A5).

A vector x ∈ V (N) is a Shapley NTU value (Shapley, 1969) of V if there

exists a vector λ ∈ RN++ such that λixi = Shi
(
N, vλ

)
for all i ∈ N . Even

though the Shapley NTU value may not be unique, Shapley (1969) pointed

out that “it is sufficient [for uniqueness to hold] that the Pareto surface

coincide with a hyperplane within the individually rational zone”. We will

refer to this property later (see Theorem 3.1 below) as V (N) delimited by a

hyperplane. The vector λ ∈ RN++ is, of course, outward to the hyperplane.

For players negotiating to form a coalition, their payoff allocation will

only depend on the identity of the coalition members. Thus, we define a rule

as a function γ which assigns a vector γ (S) ∈ V (S) to each coalition S.

Formally, a rule is a “payoff configuration”, as defined for example in Hart

and Mas-Colell (1996). However, a rule should not be interpreted as a payoff

for every coalition, but as an index that indicates payoff allocations when a

particular coalition is formed. We denote the set of all rules as Γ.

3 The non-cooperative mechanism

First, an order of the players is randomly chosen. Assume the order is π =

(12...n). Player 1 then presents a rule γ ∈ Γ. No restrictions (apart from

feasibility) are imposed on γ. Player 2 may either agree with γ and join the

coalition, or disagree with γ and propose a new rule γ̃ to player 1. If player

1 accepts the rule (by voting ‘yes’ ), the coalition {1, 2} forms under the new

rule γ̃, and the turn passes to player 3. If player 1 rejects the rule (by voting

‘no’ ), player 2 is excluded from the coalition and the turn passes to player

3.

In general, when the turn comes round to player i, he is faced with a

coalition S ⊂ P π
i with a specific rule γ, and a set of players E = P π

i \S who

have chosen to stay out of the coalition. Players in S, E and N\P π
i are

called active players, passive players and candidates, respectively. Player i

must then either agree to join the coalition (in which case, player i becomes
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an active player and the turn passes to candidate i+1) or disagree, proposing

both a new rule γ̃ and a new coalition S̃ ⊂ P π
i ∪ {i} which includes himself

and all the members of the old coalition (i.e. S ∪ {i} ⊂ S̃). The members of

S̃\ {i} vote sequentially to either accept or reject this proposal. If they all

vote ‘yes’, the new coalition S̃ forms with the new rule (we say then that the

proposal has been accepted), and the turn passes to candidate i + 1. If at

least one member of S̃\ {i} votes ‘no’, then player i becomes a passive player

and the turn passes to candidate i+ 1.

When no more candidates remain, we have a coalition S ⊂ N of active

players, a set E = N\S of passive players, and a rule γ for the coalition. The

final payoff, thus, for each player i ∈ S is γi (S) and all the players i ∈ E

receive their individual payoffs ωi.

Remark 3.1 Note that a player makes a proposal that assigns a payoff al-

location to each coalition, even if he does not belong to the coalition. These

“external” payoff allocations do not play any role, because the implemented

coalition will always contain the proposer of the implemented rule. Hence,

the results will not be affected if the proposal of any player is a function that

assigns payoff allocations only to the coalitions in which he participates.

However, we would like to point out that these rules are not interpreted as

abstract functions, but as policies or courses of action that produce different

results (depending on the implemented coalition). Thus, any agent can deduce

the outcomes that result from a rule for each coalition, including coalitions

that do not contain the proposer.

We now describe the mechanismM formally. We first describe the games

M (π, i, S,E, γ) and M̃ (π, i, S,E, γ). M (π, i, S,E, γ) is the subgame that

begins when, given the order π, the turn comes round to player i and he faces

a coalition of active players S with a proposed rule γ ∈ Γ, as also a set of

passive players E, such that S∪E = P π
i and S∩E = ∅. M̃ (π, i, S, E, γ) is the

subgame which arises after player i disagrees in the subgameM (π, i, S,E, γ).

Let π ∈ Π be an order for the players. Without loss of generality,
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we can assume that π = (12...n). Given i ∈ N ∪ {n+ 1}, γ ∈ Γ

and S,E ⊂ P π
i such that S ∪ E = P π

i and S ∩ E = ∅, we induc-

tively define the mechanismsM (π, i, S, E, γ) and M̃ (π, i, S, E, γ)

as described immediately below.

In bothM (π, n+ 1, S, E, γ) and M̃ (π, n+ 1, S, E, γ), each player

i ∈ S receives γi (S) and each player i ∈ E receives ωi.

Assume that both M (π, j, S ′, E′, γ′) and M̃ (π, j, S ′, E′, γ′) are

defined for all j > i, γ′ ∈ Γ and S ′, E′ such that S ′ ∪ E ′ = P π
j

and S ′ ∩ E′ = ∅.

In M̃ (π, i, S,E, γ), player i proposes a rule γ̃ ∈ Γ and sets S̃ ⊃ S

and Ẽ ⊂ E such that i ∈ S̃, S̃ ∪ Ẽ = P π
i ∪ {i} and S̃ ∩ Ẽ = ∅.

If all the members of S̃\ {i} vote ‘yes’ (they are asked in some

prespecified order), then the mechanism M
(
π, i+ 1, S̃, Ẽ, γ̃

)
is

played. If at least one member of S̃\ {i} votes ‘no’, then the

mechanism M (π, i+ 1, S, E ∪ {i} , γ) is played.

In M (π, i, S, E, γ), player i can either agree or disagree with

(S,E, γ). If the latter, then M̃ (π, i, S, E, γ) is played. If the

former, then M (π, i+ 1, S ∪ {i} , E, γ) is played.

The mechanismM consists of randomly choosing an order π′ ∈ Π

with each order equally likely to be chosen and playing the game

M (π′) := M̃ (π′, i′, ∅, ∅, γ0), where π′ (i′) = 1.

Clearly, for any set of pure (mixed) strategies, this mechanism terminates

in finite time. Thus, the (expected) payoffs at termination are well-defined.

We will also assume that, if a player feels indifferent to a proposal, then

he prefers to agree. This assumption is made in order to avoid problems of

coordination among players. In Section 4.2 we show that this tie-breaking

rule is necessary for our model. Note that we do not need to make any

assumption when players sequentially vote ‘yes’ or ‘no’ to a proposal in the

subgames M̃ .
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Theorem 3.1 If V (N) is bounded by a hyperplane, then there exists a unique

expected subgame perfect Nash equilibrium (SPNE) payoff in the negotiation

mechanism M , that is the Shapley NTU value. Furthermore, the strategy of

a player in SPNE in the negotiation mechanism M (π) for any π is robust to

deviations by coalitions of his predecessors in π.

The proof of Theorem 3.1 is provided in the Appendix. The main idea of

the proof is that, given any order π, each player has a strategy that ensures

his marginal contribution in the order π. Thus, in expected terms, the final

payoff is the Shapley NTU value.

Remark 3.2 Following a similar argument as in the proof of Theorem 3.1,

it is straightforward to prove that the negotiation mechanism M implements

the Shapley value in zero-monotonic TU games.

Notice that this result is not a consequence of Theorem 3.1, because TU

games do not satisfy all the assumptions that define NTU games.

4 Some examples

4.1 A classical example

In this section we apply the above procedure to an exchange economy that

was described in a series of papers in Econometrica in the 1980s that discussed

the applicability of the Shapley NTU value. The reader is referred to Roth

(1980), Shafer (1980), Harsanyi (1980), Aumann (1985b), Roth (1986), and

Aumann (1986). This controversy has been recently revisited in Montero

and Okada (2003).

Example 4.1 (Shafer, 1980) Consider a pure exchange economy with three

players {1, 2, 3} and two commodities {x, y}. Initial endowments are given
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by:

z01 = (1− ε, 0)

z02 = (0, 1− ε)

z03 = (ε, ε)

and utility functions are given by

u1 (x, y) = min {x, y}

u2 (x, y) = min {x, y}

u3 (x, y) =
x+ y

2
.

Commodities x and y may be considered as ‘left gloves’ and ‘right gloves’,

respectively. Players 1 and 2 only get utility from pairs of gloves. However,

player 3 only uses the leather of the gloves. Let i denote an element in {1, 2}.

The non-transferable utility (NTU) game is thus given by

V ({i}) =
{
t ∈ R{i} : t ≤ 0

}

V ({3}) =
{
t ∈ R{3} : t ≤ ε

}

V ({1, 2}) =
{
(t1, t2) ∈ R

{1,2} : t1 + t2 ≤ 1− ε, t1 ≤ 1− ε, t2 ≤ 1− ε
}

V ({i, 3}) =

{
(ti, t3) ∈ R

{i,3} : ti + t3 ≤
1 + ε

2
, ti ≤ ε, t3 ≤

1 + ε

2

}

V ({1, 2, 3}) =
{
(t1, t2, t3) ∈ R

{1,2,3} : t1 + t2 + t3 ≤ 1, t1 ≤ 1, t2 ≤ 1, t3 ≤ 1
}
.

The Shapley NTU value proposes a payoff of
(
5(1−ε)
12

, 5(1−ε)
12

, 5ε+1
6

)
. For a

discussion of this result, the reader is referred to Shafer (1980), Roth (1980)

and Aumann (1980).

The TU game associated with this example is given by λ = (1, 1, 1) and

vλ ({i}) = 0, vλ ({3}) = ε, vλ ({1, 2}) = 1 − ε, vλ ({i, 3}) = (1 + ε) /2, and

v (N) = 1 (see Figure 1). In the order π = (312), a possible SPNE in the

bargaining mechanism would be obtained as follows: players 3 and 1 propose

a rule γ that satisfies γ (N) = ((1− ε) /2, (1− ε) /2, ε) — i.e. the vector of

marginal contributions in the order π — and γ ({1, 3}) = ((1− ε) /2,−, ε).
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Figure 1: Feasible outcomes for {1, 2} and {i, 3}.

Player 2 cannot hope to suggest a more profitable outcome for himself. In

fact, players 1 and 3 are indifferent to whether or not player 2 joins them.

Player 2 accepts the offer and the final payoff is γ (N).

Assume now we are in the NTU game of the example. Players 3 and 1

cannot propose a rule satisfying γ ({1, 3}) = ((1− ε) /2,−, ε), because this

payoff allocation is not feasible for them. This is equivalent to their wanting

to make a non-credible threat to player 2 should he not want to join them.

However, they can still propose γ (N) = ((1− ε) /2, (1− ε) /2, ε) and

γ ({1, 3}) = (0, (1 + ε) /2). This means that

• they propose a coalition N in which player 1 receives commodities

(x1, y1) with x1 = y1 = (1− ε) /2; player 2 receives commodities (x2, y2)

with x2 = y2 = (1− ε) /2, and player 3 keeps his initial endowment;

and

• should player 2 not join them, they can threaten to form a coalition

in {1, 3} in which player 3 would receive all their commodities (i.e.

(x3, y3) with x3 = 1 and y3 = ε), and in which player 1 would receive

nothing.
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In this case, the threat is credible, because this allocation is feasible for

{1, 3}. Again, player 2 cannot suggest a more profitable outcome for himself.

Any feasible proposal giving him more than (1− ε) /2 would be rejected by

player 1 or 3. This means that, in equilibrium, player 2 would immediately

agree to join the coalition. Note that, in this case, players 1 and 3 are not

indifferent to player 2 joining them.

4.2 The tie-breaking rule

Assume the tie-breaking rule does not hold. Hence, the Shapley NTU value

is still an SPNE outcome. However, other SPNE payoff allocations may arise,

as the next example shows.

Example 4.2 Let N = {1, 2, 3, 4} and let v be defined by v (S) = |S| + 1 if

{1, 2, 3} ⊂ S and v (S) = |S| otherwise. Let π = (1234). In this example,

the vector of marginal contributions in the order π is dπ = (1, 1, 2, 1). We

consider the following strategies for players in the order π: Players {1, 2}

propose a rule γ satisfying γ ({1, 2}) = (2, 0), γ ({1, 2, 4}) = (0, 2, 1) and

γ (N) = (1, 2, 1, 1). Player 4, when faced with a coalition S = {1, 2} and a

set of passive players E = {3} with a rule γ such that γ4 ({1, 2, 4}) = 1, would

apply the following tie-breaking rule: if player 3 is excluded after proposing

γ̃ with γ̃1 (N) ≥ γ̃2 (N), then player 4 will agree to join the coalition2. If

player 3 is excluded after proposing γ̃ with γ̃1 (N) < γ̃2 (N), then player 4

will disagree and propose an unacceptable offer, for example (1, 1, 1, 2).

These strategies can be supported as part of a SPNE. Player 3 agrees

because he does not expect to propose a positive payoff for himself. If he

disagreed and proposed γ̃ with γ̃1 (N) ≥ γ̃2 (N), then player 2 would get 2 by

voting ‘no’. This means that γ̃ will not be accepted unless γ̃1 (N) ≥ γ̃2 (N) ≥

2, which would leave player 3 with a negative payoff. If player 3 disagreed and

proposed γ̃ with γ̃1 (N) < γ̃2 (N), then player 1 would get 1 by voting ‘no’.

Again, this means that γ̃ will not be accepted unless γ̃2 (N) > γ̃1 (N) ≥ 2.

2For simplicity, we assume that player 3 makes an acceptable offer to player 4 (i.e.

γ̃
4
(N) = 1). A more precise description of player 4’s strategy is given in Section 6.2.
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Hence, the final payoff allocation is (1, 2, 1, 1) irrespective of player 4’s

action.

Vidal-Puga and Bergantiños (2003) model this tie-breaking rule by pun-

ishing the players involved in an exclusion with a small penalty ε > 0. Ap-

plied to this model, this would mean that any excluded player i would get

a utility of almost (but strictly less than) ωi. The result stated in Theorem

3.1 would also hold (without the tie-breaking rule) if we restricted ourselves

to strict zero-monotonic games, i.e. for each S ⊂ N , x ∈ V (S) and i /∈ S,

the payoff allocation (x, ωi) belongs to the interior of V (S ∪ {i}).

5 Concluding remarks

In this paper a new sequential protocolM of coalition formation is presented.

The order in which the players join the coalition is critical for the final payoff

allocation in SPNE. When the corresponding NTU game (N, V ) satisfies a

flat V (N), this allocation is the corresponding vector of marginal contribu-

tions. The key factor is the use of threats in the form commitments: Prior

to the accession of new members, the coalition in formation should have a

internal rule that assigns a different payoff depending on who are its final

members.

When the turn reaches a particular player, the protocol determines that

he should be able to know his followers’ order in advance. This is a key fea-

ture, since in SPNE, the accepted rule typically assigns to the grand coalition

the corresponding vector of marginal contributions (which depend on the or-

der of the players).

The expected SPNE payoff allocation anticipated before playing any re-

alized game is the Shapley NTU value. Following Bag and Winter (1999)

and Mutuswami and Winter (2002), it is possible to add one additional stage

to get the value precisely and not in expectation. The detailed protocol M ′

would be as follows: In the first stage, players play the mechanism M (ac-

cording to any arbitrary order of the players). At the end of this stage, each
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player is asked whether he wants to replay M . The mechanism ends if all

players answer “NO”. Otherwise, the mechanism M is replayed according to

a randomly chosen order. The mechanismM ′ ends after this optional second

stage.

Assuming that all the players have a lexicographic preference for the game

ending in the first stage, the only final SPNE payoff allocation is the Shapley

NTU value. See Bag and Winter (1999, p. 79) for the intuition behind this

result.

The application of the Nash program to the Shapley NTU value is still

an open question for general NTU games. The expected utility of SPNE

allocations over the different orders will usually be inefficient if the feasible

set of the grand coalition is strictly convex. It would be of interest to find a

non-cooperative mechanism supporting the Shapley NTU value in the most

general case. The present paper could be seen as a first step in this direction.

6 Appendix

6.1 Proof of Theorem 3.1

The proof is structured as follows: first of all, some additional notation is

introduced; Secondly, a SPNE that yields the Shapley NTU value is con-

structed; finally, it is shown that any SPNE yields the Shapley NTU value

as the expected final payoff.

6.1.1 Additional notation

Let (λi)i∈N ∈ R
N
++ and k ∈ R+ be such that

V (N) =

{
x ∈ RN+ :

∑

i∈N

λixi = k

}
−RN+ .

Clearly, vλ (N) = k.

In order to prove Theorem 3.1, we need some additional notation. Given

x ∈ RS, we define x+ ∈ RS+ as the vector whose coordinates are given by
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x+i := max {0, xi} for all i ∈ S. By (A5), x ∈ V (S) implies x+ ∈ V (S) for

all S ⊂ N .

Let π ∈ Π. From now on, we assume without loss of generality that

π = (12...n). In particular, this implies that P π
i+1 = P π

i ∪ {i} for all i ∈ N .

Let λid
π
i be the marginal contribution of player i to the game vλ in the

order π, namely

dπi :=
1

λi

[
vλ
(
P π
i+1

)
− vλ (P π

i )
]
.

Given x ∈ RP
π
i , we define

fπi (x) := max
{
yi :

(
x, yi, d

π
N\Pπ

i+1

)
∈ V (N)

}

when this maximum exists. In particular, if x ∈ V (P π
i ), this value is well-

defined and nonnegative.

Note that fπi (x) represents the maximum payoff that player i can obtain

when the players preceding him obtain x and the players following him obtain

dπ.

Let x ∈ RP
π
i be such that fπi (x) is well-defined. It is straightforward to

confirm that

fπi (x) =
1

λi

[
vλ
(
P π
i+1

)
−
∑

j<i

λjx
+
j

]
. (2)

Given S � N , we define

κ (S) := min {i ∈ N\S : P π
i ⊂ S} .

Thus, κ (S) is the excluded player with the lowest index, which means

that players in P π
κ(S) are the first players out of S who come together in the

order π. This minimum always exists, because P π
1 = ∅. Moreover, P

π
κ(S) ⊂ S.

We also define

Γπ :=
{
γ ∈ Γ : γ (S) =

(
γ+
(
P π
κ(S)

)
, ωS\Pπ

κ(S)

)
for all S � N

}

where γ+ (S) is such that γ+i (S) = max {0, γi (S)} for all i ∈ S.
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Thus, Γπ is the set of (positive) rules which do not share out the resources

of the players after the first ‘gap’ in the coalition (with respect to π). Note

that, given γ ∈ Γπ, we can change γ (N) and the resulting rule will still be

in Γπ.

We also define

Kπ :=



γ ∈ Γπ : γ (P π

i ) ∈ argmin
x∈V (Pπi )

{fπi (x)} for all i ∈ N



 .

This Kπ is the set of rules out of Γπ which give each coalition P π
i the

payoff x that minimizes fπi (x).

Should player i disagree in equilibrium, his payoff would be fπi (x) with

x ∈ RP
π
i as the payoff allocation that his predecessors would obtain should

they vote ‘no’ to his proposal. In SPNE, players who precede player i would

try to minimize fπi (x) so that they could extract the maximum surplus from

player i. Hence, Kπ is a possible set of rules from among which these prede-

cessors could choose their proposals.

It is straightforward to confirm that Kπ can also be expressed as

Kπ =

{
γ ∈ Γπ :

∑

j<i

λjγj (P
π
i ) = vλ (P π

i ) for all i ∈ N

}
.

We denote by Θπi the set of feasible (S,E, γ)’s in the subgameM (i, S,E, γ),

namely

Θπi := {(S,E, γ) : S ∪ E = P π
i , S ∩ E = ∅ and γ ∈ Γ} .

6.1.2 Existence of SPNE

Given any (S,E, γ) ∈ Θπn+1, we define

b (n+ 1, S, E, γ) := (γ (S) , ωE) ∈ V (N) .

Thus, b (n+ 1, S, E, γ) is the final payoff in the fictitious subgameM (π, n+ 1, S, E, γ).

Consider the following strategies in the subgames M (π, n, S,E, γ) and

M̃ (π, n, S,E, γ):
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In the subgame M (π, n, S, E, γ), player n agrees to (S,E, γ) if and only

if

γn (S ∪ {n}) ≥ fπn (γ (S) , ωE) ,

which can be restated as

bn (n+ 1, S ∪ {n} , E, γ) ≥ fπn
(
bPπn (n+ 1, S, E ∪ {n} , γ)

)
. (3)

In the subgame M̃ (π, n, S, E, γ), player n proposes
(
S̃, Ẽ, γ̃

)
such that

S̃ = N , Ẽ = ∅ and

γ̃ (N) = (t, fπn (t)) (4)

with t := (γ (S) , ωE) and γ̃ (T ) for all T �= N given by

γ̃ (T ) =
(
y, ωT\Pπ

κ(T )

)
(5)

and with y ∈ V
(
P π
κ(T )

)
such that

∑

j<κ(T )

λjyj = vλ
(
P π
κ(T )

)
. (6)

Clearly, γ̃ ∈ Kπ. In the subgame M̃ (π, n, S,E, γ), assume player n pro-

poses
(
S̃, Ẽ, γ̃

)
and j ∈ S̃\ {n}. Hence, player j votes ‘yes’ if and only

if

bj

(
n+ 1, S̃, Ẽ, γ̃

)
≥ bj (n+ 1, S, E ∪ {n} , γ) . (7)

We have thus defined the strategies of the players in M (π, n, S,E, γ) for

any (S,E, γ) ∈ Θπn. Assume that for each j > i and each (S,E, γ) ∈ Θπj ,

we have defined the strategy profiles inM (π, j, S, E, γ) and M̃ (π, j, S,E, γ).

Let b (j, S, E, γ) ∈ V (N) be the final payoff allocation when players follow

these strategies in M (π, j, S, E, γ).

We now describe the strategies in M (π, i, S, E, γ) and M̃ (π, i, S,E, γ).

In M (π, i, S,E, γ), player i agrees to (S,E, γ) if and only if

bi (i+ 1, S ∪ {i} , E, γ) ≥ fπi
(
bPπ

i
(i+ 1, S,E ∪ {i} , γ)

)
.
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The strategies applied in M̃ (π, i, S,E, γ) are as follows: assume we are

in the subgame M̃ (π, i, S,E, γ). Player i proposes
(
P π
i+1, ∅, γ̃

)
with γ̃ given

by

γ̃ (N) =
(
t, fπi (t) , d

π
N\Pπ

i+1

)

with t = bPπ
i
(i+ 1, S, E ∪ {i} , γ). It is not difficult to confirm that γ̃ (N) is

well-defined (i.e. γ̃ (N) ∈ V (N)). For S � N , γ̃ (S) is given as in (5) and

(6). Hence, γ̃ ∈ Kπ.

In the subgame M̃ (π, i, S, E, γ), assume that player i proposes
(
S̃, Ẽ, γ̃

)
∈

Θπi+1 and j ∈ S̃\ {i}. In this case, player j votes ‘yes’ if and only if

bj
(
i+ 1, S̃, Ẽ, γ̃

)
≥ bj (i+ 1, S, E ∪ {i} , γ) .

Under these strategies, therefore, player 1 proposes ({1} , ∅, γπ) with

γπ (N) = dπ and the rest of players agree. The coalition is thus formed

with all the players and the final outcome is dπ.

It is straightforward to prove that these strategies form a SPNE.

6.1.3 Uniqueness of SPNE payoff allocations

We will now prove that every SPNE in M (π) has dπ as the final outcome.

Assume that we are in a SPNE of M (π). We will prove that the final payoff

allocation in M (π) is dπ.

Given i ∈ N and (S,E, γ) ∈ Θπi , let b (i, S, E, γ) ∈ V (N) be the SPNE

payoff allocation in the subgame M (π, i, S, E, γ).

We now proceed by a series of claims, as follows: Claim A states that

passive players do not receive anything; Claim B describes a condition that is

sufficient for candidates to agree; Claim C specifies the final payoff allocation

when a candidate disagrees and makes a new proposal; Claim E says that

each candidate i receives at least dπi ; finally, Claims D and F are technical

claims.

Claim A: bE (i, S, E, γ) = ωE for all i ∈ N , (S,E, γ) ∈ Θπi .
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Claim B: Assuming we are in M (π, i, P π
i , ∅, γ) such that γj (N) ≥ dπj

for all j ≥ i and γ ∈ Kπ, player i agrees.

Claim C: Assuming we are in M̃ (π, i, S, E, γ), the final payoff allocation

is given by
(
t, fπi (t) , d

π
N\Pπ

i+1

)
with t = bPπ

i
(i+ 1, S, E ∪ {i} , γ).

Claim D: Assuming we are in M (π, i, S, E, γ), there exists T ⊃ S, T ∩

E = ∅ such that bS (i, S,E, γ) = γS (T ).

Claim E: bj (i, S, E, γ) ≥ dπj for all j ≥ i, (S,E, γ) ∈ Θπi .

Claim F:
∑

j∈S λjbj (i, S, E, γ) ≤ vλ (S) for all i ∈ N , (S,E, γ) ∈ Θπi .

Since under Claim E, each player i ∈ N can ensure a final payoff for

himself of at least dπi , and dπ, moreover, is an efficient payoff allocation, then

we can conclude that the only possible final payoff allocation in SPNE for

the subgame M (π) is dπ and, furthermore, that the strategy of player i is

robust to deviations by coalitions of P π
i .

We can prove these claims by backward induction on i. We consider a

fictitious case for i = n + 1, where the subgames M (π, n+ 1, S,E, γ) are

trivial subgames in which players receive b (n+ 1, S,E, γ) = (γ (S) , ωE).

Hence, the claims for this case are trivial.

We will now prove the claims for i ≤ n.

Proof of Claim A: Assume we are in the subgame M (π, i, S,E, γ).

If player i agrees (or he disagrees and his new proposal is, furthermore,

rejected), under the induction hypothesis, players in E get ωE. Assume, on

the other hand, that player i disagrees and makes an acceptable proposal.

It is well-known that, in equilibrium, player i would make a proposal that

would leave the responders indifferent to voting ‘yes’ or ‘no’. By induction

hypothesis, any responder j ∈ E receives ωj if he votes ‘no’. We can thus

conclude the result.

Proof of Claim B: The induction hypothesis for Claim B holds for

i+1, ..., n if player i agrees. Thus, by induction hypothesis applied to Claim

B, we know that player i gets a payoff of γi (N) by agreeing. Assume player

i disagrees and proposes a different γ̃. If this proposal is rejected, under
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Claim A, player i receives ωi ≤ dπi and thus is either strictly worse off (when

ωi < dπi ) or does not apply the tie-breaking rule (when ωi = dπi ). If the

proposal is accepted by players in P π
i , this means that each will receive at

least what they would obtain by rejecting the proposal. Under Claim D, this

is γPπ
i
(T ) for some T ⊃ P π

i with i /∈ T . Since γ ∈ Γπ and i /∈ T , we know

that γPπ
i

(T ) = γ (P π
i ). Under Claim E, the final payoff for player i is no more

than fπi (γ (P
π
i )). But γ ∈ Kπ, which means that

∑
j<i λjγj (P

π
i ) = vλ (P π

i ),

and so

fπi (γ (P
π
i )) =

1

λi

[
vλ
(
P π
i+1

)
−
∑

j<i

λjγj (P
π
i )

]

=
1

λi

[
vλ
(
P π
i+1

)
− vλ (P π

i )
]
= dπi .

Here again, player i is either strictly worse off or does not apply the

tie-breaking rule.

Proof of Claim C: Let t = bPπ
i
(i+ 1, S,E ∪ {i} , γ), and consider the

following strategy for player i: given ε > 0, player i proposes
(
P π
i+1, ∅, γ̃

)
such

that γ̃ ∈ Kπ and γ̃ (N) =
(
t, fπi (t) , d

π
N\Pπ

i+1

)
+ xε, where λjx

ε
j = ε for all

j �= i, and λix
ε
i = − (n− 1) ε. Under Claim B, we know that this proposal

is bound to be accepted should players in P π
i vote ‘yes’. So, by voting ‘yes’,

players in P π
i obtain more than what they would obtain by voting ‘no’. So

they vote ‘yes’ and player i gets a final payoff of fπi (t)−
n−1
λi

ε. Since this is

true for any ε > 0, we can conclude that player i can obtain at least fπi (t) in

SPNE. Moreover, player i cannot obtain more by making an acceptable offer,

since any player j ∈ P π
i can ensure a payoff of tj for himself by rejecting any

new offer.

Proof of Claim D: If player i agrees, under the induction hypothesis,

bS∪{i} = γS∪{i} (T ) with T ⊃ S ∪ {i} (thus T ⊃ S) and T ∩ E = ∅. Hence,

bS (i, S,E, γ) = γS (T ).

If player i disagrees, under Claim C, bS (i, S, E, γ) = bS (i+ 1, S, E ∪ {i} , γ).

Under the induction hypothesis, bS (i+ 1, S, E ∪ {i} , γ) = γS (T ) with T ⊃

S and T ∩ (E ∪ {i}) = ∅ (thus T ∩ E = ∅). Hence, bS (i, S, E, γ) = γS (T ).
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Proof of Claim E: By induction hypothesis, the result is true for j > i.

Let ḃ = b (i+ 1, S,E ∪ {i} , γ). Under Claim C, player i can, by rejecting the

proposal, ensure a payoff for himself of

fπi

(
ḃPπ

i

)
=
1

λi

[
vλ
(
P π
i+1

)
−
∑

j<i

λj ḃj

]

under Claim A,

=
1

λi

[
vλ
(
P π
i+1

)
−
∑

j∈S

λj ḃj −
∑

j∈E

λjωj

]

under Claim F,

≥
1

λi

[
vλ
(
P π
i+1

)
− vλ (S)−

∑

j∈E

λjωj

]

according to zero-monotonicity, vλ (S) +
∑

j∈E λjωj ≤ vλ (P π
i ), and so

≥
1

λi

[
vλ
(
P π
i+1

)
− vλ (P π

i )
]
= dπi .

Proof of Claim F: Assume we are in M (π, i, S,E, γ). For simplicity

sake, we denote b = b (i, S,E, γ) and ḃ = b (i+ 1, S,E ∪ {i} , γ). If player i

disagrees, under Claim C, players in P π
i get bPπi = ḃPπ

i
. Under the induction

hypothesis,

∑

j∈S

λjbj =
∑

j∈S

λj ḃj ≤ vλ (S) .

Let b̈ = b (i+ 1, S ∪ {i} , E, γ). If player i agrees, then b = b̈. Moreover,

under Claim C, player i would not agree if b̈i < fπi

(
ḃPπ

i

)
. Thus,

bi = b̈i ≥ fπi

(
ḃPπ

i

)
=
1

λi

[
vλ
(
P π
i+1

)
−
∑

j<i

λj ḃj

]

under Claim A,

=
1

λi

[
vλ
(
P π
i+1

)
−
∑

j∈S

λj ḃj −
∑

j∈E

λjωj

]
. (8)
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So, under Claim A and E,

∑

j∈S

λjbj =
∑

j∈N

λjbj −
∑

j∈E

λjbj − λibi −
∑

j>i

λjbj

≤ vλ (N)−
∑

j∈E

λjωj − λibi −
∑

j>i

λjd
π
j

= vλ
(
P π
i+1

)
−
∑

j∈E

λjωj − λibi

under (8),

≤ vλ
(
P π
i+1

)
−
∑

j∈E

λjωj −

[
vλ
(
P π
i+1

)
−
∑

j∈S

λj ḃj −
∑

j∈E

λjωj

]
=
∑

j∈S

λj ḃj

under the induction hypothesis,

≤ vλ (S) .

6.2 The tie-breaking rule

A more precise description for the strategy of player 4 in Example 4.2 is the

following: If player 3 is excluded after proposing γ̃ with γ̃1 (N) ≥ γ̃2 (N)

and γ̃4 (N) ≥ 1, or γ̃1 ({1, 2, 3}) ≥ γ̃2 ({1, 2, 3}) and γ̃4 (N) < 1, then player

4 will agree to join the coalition. If player 3 is excluded after proposing γ̃

with γ̃1 (N) < γ̃2 (N) and γ̃4 (N) ≥ 1, or γ̃1 ({1, 2, 3}) < γ̃2 ({1, 2, 3}) and

γ̃4 (N) < 1, then player 4 will disagree and propose an unacceptable offer,

such like (1, 1, 1, 2).
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