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Abstract

The PERT (Program Evaluation Review Technique) is a oper-

ational research tool used to schedule and coordinate activities in a

complex project. We present two values for measuring the importance

of each activity. Both values are obtained through an axiomatic char-

acterization using three properties. The first value is characterized

with separability, monotonicity, and order preservation. The second

value is characterized with separability, equal treatment inside a com-

ponent, and independence of large durations. We also present an

application to the problem of how to share the surplus obtained when

a project finishes before the expected completion time.
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1 Introduction

Complex projects require a series of activities, some of which must be per-

formed sequentially and others that can be performed in parallel with other

activities. This collection of series and parallel tasks can be modeled as a net-

work. The PERT (Program Evaluation Review Technique) is an operational

research tool used to schedule and coordinate these activities. The PERT

has been developed by the U.S. Navy in the late 1950’s to manage the Polaris

submarine missile program, a project having thousands of contractors1.

PERT planning involves several steps, which include the estimation of

the time required for each activity and to determine the critical activities,

i.e. activities which have the potential to delay the whole project.

An important question addressed in the literature of cooperative game

theory is how to measure the power (or importance) of each player. In

TU games the answer is given by values as, for instance, the Shapley value

(Shapley, 1953).

The PERT time is the minimal time required for completing the project.

In this paper we try to measure the importance of each activity in the PERT

time. To solve this question, we share the PERT time between the activities

involved in the project. We can then consider the time assigned to an activity

as a measure of its importance. Assume that the activities are lined-up. In

this case, the PERT time is the sum of the duration of the activities, and

the responsibility of each activity in the PERT time is exactly its duration.

Even though in this example the answer is trivial, in general this is not an

easy question.

We follow the axiomatic approach. We propose some desirable properties

for the aim of fairness and then, we obtain an axiomatic characterization of

a unique value satisfying these properties.

Any value dividing the PERT time between the activities must take

1The Critical Path Method (CPM) is a similar technique developed in 1957 for project

management in the private sector. CPM has become synonymous with PERT, so that the

technique is known by any variation on the names: PERT, CPM, or PERT/CPM.
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into account two aspects: the duration of the activities and their position

in the network defining the project. Thus, we formulate two properties.

Monotonicity refers to the duration of the activities. Separability refers to

the network.

Consider two PERT problems with the same associated network. Assume

that the duration of each activity in the second problem is not smaller than

in the first problem. Monotonicity says that the value of each activity in

the second problem is not smaller than the value of this activity in the first

problem.

Assume that we can divide the PERT problem in several PERT sub-

problems in such a way that the PERT problem is the disjoint union of the

subproblems. Separability says that for each activity, the value in the whole

problem must coincide with the value in the subproblem the activity belongs

to.

We first study the class of rules satisfying monotonicity and separability.

Since there are many rules we impose an additional property called order

preservation. This property says that if all activities but one have a duration

of 0, the value of the activity with a duration larger than 0 cannot be smaller

than the value of each one of the rest of the activities.

Our main result says that there is a unique value satisfying monotonicity,

separability, and order preservation. This rule is defined as follows. We first

assign to each subproblem its PERT time. Second, we divide the PERT

time of each subproblem equally among their activities.

We also present an application of this result. Suppose that a firm should

carry out a project. This firm has several departments and each department

is assigned to perform a different activity. If the project is completed before

the expected completion time a surplus is generated. An interesting question

is how to divide this surplus between the departments of the firm.

We propose a rule for dividing the surplus between the activities. We first

compute for each activity the time assigned by the value assuming that all

the activities employ exactly their scheduled time. Later, given the actual
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completion time, we compute, for each activity, the time assigned by the

value. The responsibility of each activity of the time saved in the whole

project is the difference between the value when each activity employs exactly

its expected completion time, and the value assuming that each activity

employs the actual completion time. The surplus is divided proportionally

to this responsibility.

The value characterized above could not be suitable in some PERT prob-

lems. For instance, the value of each activity depends on the total duration

of the component this activity belongs to, but not on the duration of this

activity. Thus, we present a value that takes into account both, the duration

of the component and the duration of the activity. This value is inspired in

the serial cost sharing rule introduced by Moulin and Shenker (1992). We

characterize this value as the unique value satisfying separability, indepen-

dence of large durations (the value of an activity does not depend on the

duration of the activities with a larger duration), and equal treatment inside

each component (if two activities have the same duration and belong to the

same component, then both activities must have the same value).

The paper is organized as follows. In Section 2 we introduce the model. In

Section 3 we introduce and characterize the first value. Section 4 is devoted to

an application on the first value. In Section 5 we introduce and characterize

the second value. Finally, in the Appendix it is possible to find the proof of

the results.

2 The model

We denote the set of nonnegative real numbers as R+. Given a finite set N ,

we denote the cardinality of N as |N |, and the set of all functions from N to

R as RN . A member x of RN is an n-dimensional vector whose coordinates

are indexed by members of N ; thus, when a ∈ N , we write xa for x (a).

A PERT problem is a triple (N,≺, x) where N is a finite set of activities,

≺ is a relation in N satisfying transitivity (a ≺ b and b ≺ c implies a ≺ c)
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and strict anti-symmetry (a ≺ b implies b ⊀ a), and x ∈ RN+ .

Given a, a′ ∈ N , a ≺ a′ means that activity a′ cannot begin until activity

a is finished. Given a ∈ N , xa represents the expected completion time of

activity a. We call xa the duration of activity a.

Given (N,≺, x) and M ⊂ N , we denote as (M,≺, x) the PERT problem

that arises in the restriction of (N,≺, x) to M .

Given a, a′ ∈ N , a ∼ a′ means that either a ≺ a′ or a′ ≺ a. Given

M,M ′ ⊂ N , the expression M ≺ M ′ means that a ≺ a′ for all a ∈ M ,

a′ ∈M ′. The expression M ∼M ′ means that a ∼ a′ for all a ∈M , a′ ∈M ′.

A pseudo-path in (N,≺) is a nonempty set P = {ai}
p
i=1 ⊂ N such that

ai−1 ≺ ai for all i = 2, ..., p. We denote the set of all pseudo-paths in (N,≺)

as P(N,≺). P(N,≺) 
= ∅ because {a} ∈ P(N,≺) for all a ∈ N . Given a ∈ N , we

denote the set of all pseudo-paths in (N,≺) that contain a as Pa(N,≺). For all

a ∈ N , Pa(N,≺) 
= ∅ because {a} ∈ P(N,≺).

Given x ∈ RN+ , we define the PERT time as the minimum time we need

to finish the project, i.e.

τ (N,≺, x) = max
P∈P(N,≺)

∑

a∈P

xa.

A critical pseudo-path in (N,≺, x) is a pseudo-path P ∈ P(N,≺) such that

∑

a∈P

xa = τ (N,≺, x) .

A critical activity in (N,≺, x) is an activity that belongs to a critical

pseudo-path in (N,≺, x).

A component is a nonempty subset C ⊂ N such that τ (N,≺, x) =

τ (C,≺, x) + τ (N\C,≺, x) for all x ∈ RN+ . Let C(N,≺) be the set of com-

ponents in (N,≺). In particular, N ∈ C(N,≺). A minimal component is a

component without proper subcomponents, i.e. C is a minimal component

if there does not exist any component C ′ � C. Let Cm(N,≺) be the set of

minimal components in (N,≺).

A value is a function f that assigns to each PERT problem (N,≺, x) a
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vector {fa (N,≺, x)}a∈N ∈ R
N
+ such that

∑

a∈N

fa (N,≺, x) = τ (N,≺, x) .

Each fa (N,≺, x) represents the share of the PERT time that is assigned

to a.

3 Characterization of the first value

In this section we first prove that the set of minimal components are a par-

tition of N . Later, we introduce the properties of monotonicity, separability,

and order preservation. In Theorem 1 we characterize a value for PERT

problems using these properties.

Proposition 1 Given a PERT problem (N,≺, x), the set of minimal com-

ponents is a partition of N .

Proof. See the Appendix.

We consider several properties for a value f . Since our objective is to

divide the PERT time between the activities, we must take into account

the duration of the activities and their position in the network defining the

project. We first define two properties: monotonicity, which refers to the

duration of the activities; and separability, which refers to the network.

Monotonicity (MON) Let (N,≺, x) and (N,≺, y) be two PERT problems

such that xa ≤ ya for all a ∈ N . Then, fa (N,≺, x) ≤ fa (N,≺, y) for

all a ∈ N .

MON says that the value must be a nondecreasing function of the vector

of durations.

Remark 1. It is easy to check that MON can also be defined in the

following way. Let (N,≺, x) and (N,≺, y) be two PERT problems such that
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xb < yb for some b ∈ N and xa = ya for all a ∈ N\ {b} . Then, fa (N,≺, x) ≤

fa (N,≺, y) for all a ∈ N .

Separability (SEP ) Let (N,≺, x) be a PERT problem and C ⊂ N be a

component. Then, fa (N ≺, x) = fa (C ≺, x) for all a ∈ C.

SEP says that if the PERT time of a group of activities is independent

on what the other activities do (i.e. they are a component), the value should

not take into account the other activities.

In the next proposition we prove that the values satisfying MON and

SEP only depend on (N,≺) and {τ (C,≺, x)}C∈Cm
(N,≺)

.

Proposition 2 Let (N,≺, x) and (N,≺, y) be two PERT problems satis-

fying that τ (C,≺, x) = τ (C,≺, y) for all C ∈ Cm(N,≺). If f is a value that

satisfies MON and SEP, then f (N,≺, x) = f (N,≺, y) .

Proof. See the Appendix.

We now present other desirable property.

Order Preservation (OP ) Let (N,≺, x) be a PERT problem and b ∈ N

such that xa = 0 for all a 
= b. Then fa (N,≺, x) ≤ fb (N,≺, x) for all

a 
= b.

OP says that if all the activities but one finish immediately, then the time

assigned to the lengthiest activity should not be less than the time assigned

to the others.

Our main result of the section is the following:

Theorem 1 There exists a unique value satisfying MON , SEP and OP ,

and it is given by

f 0a (N,≺, x) =
τ (C,≺, x)

|C|

for each a ∈ C ∈ Cm(N,≺,x).
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Proof. See the Appendix.

f0 is a value dividing the time of each component equally among the ac-

tivities of the component. We admit that examples of PERT problems exist

where f 0 is not adequate (in Section 5 we give an example). Nevertheless,

there exist subclasses of PERT problems, as the ones we present in the next

section, where f 0 could be adequate.

If we observe the three properties characterizing f 0 we realize thatMON

is the property that can be more easily criticized. Also, observing the proofs,

we realize that MON is the property that ”makes” the value to equally

divide the time among the activities of the same component.

MON is a quite standard property in the literature and it is used in many

kind of problems. We discuss the impact of the monotonicity property in two

problems: bargaining problems and minimum cost spanning tree problems.

In bargaining problems an egalitarian rule is characterized with the mono-

tonicity property. In minimum cost spanning tree problems a non-egalitarian

rule is characterized with the monotonicity property.

Nash (1950) introduced the bargaining problem. Kalai (1977) charac-

terized the egalitarian rule with three properties: symmetry, weak Pareto

optimality and monotonicity (if the bargaining set increases, nobody can be

worse off). This result has some common aspects with our result. First, we

characterize an egalitarian rule with monotonicity and two weak properties.

The characterized rule cannot be adequate in some class of problems. For

instance, the egalitarian rule does not satisfy Pareto optimality in some class

of bargaining problems.

In minimum cost spanning tree problems Bergantiños and Vidal-Puga

(2007) characterize a rule with three properties: population monotonicity,

equal share of extra costs, and a monotonicity property called solidarity. This

monotonicity property says that if the connection cost between two agents

increases, no agent can be better off. The rule characterized is the Shapley

value of a game and it does not divide the cost equally among the agents.
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We end this section by proving that the properties used in Theorem 1 are

independent.

• Let P0(N,≺) be the set of critical pseudo-paths in (N,≺). Given P ∈

P0(N,≺) and x ∈ R
N
+ , let f

P (N,≺, x) ∈ RN+ be defined as fPa (N,≺, x) =

xa if a ∈ P and fPa (N,≺, x) = 0 otherwise. We define f 1 as

f 1 (N,≺, x) =
1∣∣∣P0(N,≺)

∣∣∣

∑

P∈P0
(N,≺)

fP (N,≺, x) .

It is trivial to see that f1 satisfies SEP and OP . However, f 1 does not

satisfy MON . For example, assume that N = {a, b} and a ⊀ b, then

f 1 (N,≺, (1, 0)) = (1, 0) and f1 (N,≺, (1, 2)) = (0, 2).

• We define the value f 2 as

f 2a (N,≺, x) =
τ (N,≺, x)

|N |
for all a ∈ N.

It is trivial to see that f2 satisfies MON and OP . However, f2 does

not satisfy SEP . For example, assume that N = {a, b} and a ≺ b,

both {a} and {b} are components. Then, f2 (N,≺, (1, 3)) = (2, 2).

• Let σ : N → {1, ..., |N |} be a one-to-one function. Let fσ be defined

as fσa (N,≺, x) = τ (C,≺, x) for each a ∈ C ∈ Cm(N,≺) such that σ (a) =

min
b∈C

σ (b) and fσa (x) = 0 otherwise. It is trivial to see that fσ satisfies

MON and SEP . However, fσ does not satisfy OP . For example,

assume that N = {a, b} and a ⊀ b, when σ (a) = 1 and σ (b) = 2,

fσ (N,≺, (0, 1)) = (1, 0).

4 An application

Suppose that a firm should carry out a project. This firm has several de-

partments and each department is assigned to perform a different activity. If
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the project is completed before the PERT time a surplus is generated. An

interesting question is how to divide this surplus between the departments

of the firm. In this section we show that the results stated in the previous

section can be applied to this problem.

A ”dual” problem has been previously studied by Bergantiños and Sánchez

(2002a), Branzei et al (2002), and Castro et al (2007, 2008a). In these pa-

pers the project is delayed and a cost is generated. The question addressed

is how to divide this cost between the activities of the project. Bergantiños

and Sánchez (2002a) present two rules for sharing the cost generated by the

delay of the project. One of the rules is based on serial cost sharing problems

and the other is based on game theory. Branzei et al (2002) take also two dif-

ferent approaches. First, they assign to each PERT problem a bankruptcy

problem. Later, they apply well-known rules of the associated bankruptcy

problem to the PERT problem. Second, they define rules based on delays of

paths. Castro et al (2007) model the problem as a cooperative game. Castro

et al (2008a) present a rule which is a weighted version of serial cost sharing

problems. There exists another difference between these papers. Branzei et

al (2002) and Castro et al (2007) divide the delay of the project. Bergantiños

and Sánchez (2002a) and Castro et al (2008a) divide the total cost caused

by the delay.

In this paper we follow the approach of Branzei et al (2002) and Castro et

al (2007). We divide the time saved in the project (the difference between the

PERT time and the actual completion time) among the activities. Later, we

divide the surplus proportionally to the time saved assigned to the activities.

We use the value f 0 obtained in Theorem 1 for computing the time saved

assigned to each activity.

Let (N,≺, x) be a PERT problem where x represents the (estimated)

completion times of the activities involved in the project. Assume that the

project is completed before the expected time τ (N,≺, x). Let (N,≺, y) be

the PERT problem where for all a ∈ N, ya represent the actual completion

time of activity a. We assume that xa ≥ ya for all a ∈ N .
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Notice that the total time saved in the project is t = τ (N,≺, x) −

τ (N,≺, y) . We divide this time between the different activities.

Given a ∈ N , we define the time saved by activity a as

ta = f0a (N,≺, x)− f
0
a (N,≺, y) .

We must prove that ta ≥ 0 for all a ∈ N and
∑

a∈N

ta = t.

Since xa ≥ ya for all a ∈ N and f 0 satisfies MON , we conclude that

f 0a (N,≺, x) ≥ f 0a (N,≺, y) for all a ∈ N . Thus, ta ≥ 0 for all a ∈ N.

Moreover,
∑

a∈N

ta =
∑

a∈N

f0a (N,≺, x)−
∑

a∈N

f0a (N,≺, y)

= τ (N,≺, x)− τ (N,≺, y) = t.

Let s be the surplus generated when the project is finished t units before

his expected completion time. Thus, the surplus assigned to activity a (or

equivalently the department of the firm responsible for activity a) is defined

as

sa =
ta
t
s.

Remark 2. Assume that the surplus s depends linearly of the total time

saved of the project, i.e. s = αt where α ∈ R+. Giving a time saving vector

{ta}a∈N , we believe that to divide the surplus proportionally to this vector is

the most reasonable way. We also think that if the surplus does not depend

linearly on the total time saved, more ways of dividing the surplus could be

reasonable.

We mentioned in the previous section that MON is a very demanding

property. Moreover, as in bargaining problems, in some subclass of prob-

lems if we insist in MON we do not obtain very interesting rules or values.

Nevertheless, there are other subclasses of problems where MON is a very

appealing property. For instance, the subclass of problems studied in this

section. Let us clarify this point with two arguments. The first one is based

on fairness arguments and the second one on incentive arguments.
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1. The fairness argument.

We will use the definition of MON of Remark 1. We will assume that

a firms department reduces the completion time of its activity, while

for the other activities it does not change. It seems clear that the

surplus assigned to this department should not decrease. How should

the surplus of other activities be affected?

Notice that the reduction of an activity’s completion time implies that

the project’s total time is also reduced or remains the same. Thus, the

surplus of the firm increases or remains the same. We believe that the

surplus of the other departments should not decrease.

MON guarantees it. Let (N,≺, x) be a PERT problem where x is the

expected completion time of the activities. Let (N,≺, y) and (N,≺, y′)

be two PERT problems in which the departments of the firm reduce the

completion time of the activities, i.e for all a ∈ N, ya ≤ xa and y
′
a ≤ xa.

Assume that the department of activity b reduces its completion time

more in y′ than in y, i.e. yb > y′b. Moreover, all departments but b

reduce the same time in y than in y′, i.e. ya = y′a for all a ∈ N\ {b} . If

a value f satisfiesMON, then fa (N,≺, y) ≥ fa (N,≺, y′) for all a ∈ N .

If we compare the time assigned to the activities in y and y′ we obtain

that for all a ∈ N,

ta = f 0a (N,≺, x)− f
0
a (N,≺, y) ≤ f 0a (N,≺, x)− f

0
a (N,≺, y

′) = t′a.

Now, it is easy to conclude that sa ≤ s′a for all a ∈ N. Then, the surplus

of other departments does not decrease.

2. The incentive argument.

Assume that all the departments in a firm are trying to reduce the com-

pletion time of the activities. Even though each activity is assigned to

a specific department, departments should often communicate between

them, for instance by sharing information on the activity’s progress.
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Suppose that department a needs information from department b in

order to decrease the completion time of activity a. Department b

knows that by giving this information to department a, department a

will reduce his completion time. What are the incentives, in terms of

the surplus that department b will receive, of department b?

If the value satisfies MON , department b will receive more surplus be-

cause department a will reduce its completion time. Thus, department

b has incentives to give this information to department a.

If the value does not satisfy MON , it could be the case that the sur-

plus received by department b is smaller when department a reduces

his completion time. Thus, department b has incentives to not pass

this information onto department a. Of course, this is an undesirable

situation for the firm as the total surplus for reducing the project could

be smaller.

From the firms point of view, MON guarantees that the different de-

partments have incentives to collaborate between them.

We end this section with a numerical example.

Let (N,≺, x) be a PERT problem where N = {a, b, c}, a ≺ b, and a ≺ c.

Assume that x = (5, 6, 7) and y = (4, 3, 6) . Moreover, we assume that the

surplus is ten times the total saved time, i.e. s = 10t.

Making some computations we obtain the following. The total time saved

is t = τ (N,≺, x)− τ (N,≺, y) = 12− 10 = 2.

There is two minimal components C1 = {a} and C2 = {b, c} . Thus,

f 0 (N,≺, x) = (5, 3.5, 3.5), f0 (N,≺, y) = (4, 3, 3) , ta = 1, and tb = tc = 0.5.

The surplus assigned to each activity is (10, 5, 5) .
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5 Characterization of the second value

Bergantiños and Sánchez (2002b, 2002c) introduce a value for dividing the

slack of the project among the activities. This value, as f 0, does not depend

directly on the duration of the activities. Later, Castro et al (2008b) define

a value, for dividing the slack of the project among the activities, which

depends directly on the duration of the activities. In this section we present,

in PERT problems, a new value which depends directly on the duration of

the activities. The new value is defined by applying the ideas of the serial

cost sharing rule introduced in Moulin and Shenker (1992).

Let (N,≺, x) be a PERT problem. We assume without loss of generality

that xa ≤ xb when a < b. For each (N,≺, x) and each a ∈ N, we consider

the vector of durations xa where xab = min {xb, xa} for all b ∈ N.

We define the value fd as follows. For each a ∈ C ∈ Cm(N,≺,x), we define

fda (N,≺, x) =
a∑

b=1

τ
(
C,≺, xb

)
− τ

(
C,≺, xb−1

)

|{b′ ∈ C : xb′ ≥ xb}|

where, by convention, τ (C,≺, x0) = 0.

Let us clarify this definition with an example. Let (N,≺, x) be a PERT

problem where N = {a, b, c}, a ≺ b, and x = (1, 1, 9) . Thus, C = N,

xa = xb = (1, 1, 1), xc = x, {b′ ∈ C : xb′ ≥ xa} = {b′ ∈ C : xb′ ≥ xb} = N,

and {b′ ∈ C : xb′ ≥ xc} = {3}. Now

fda (N,≺, x) = fda (N,≺, x) =
τ (C,≺, xa)

3
=

2

3
,

fdc (N,≺, x) =
τ (C,≺, xa)

|N |
+
τ
(
C,≺, xb

)
− τ (C,≺, xa)

|N |
+
τ (C,≺, xc)− τ

(
C,≺, xb

)

|{3}|

=
2

3
+

0

3
+ 7 =

23

3
.

If we compute the first value we obtain that f 0a (N,≺, x) = (3, 3, 3) . In

this example, fd seems more reasonable. The main difference between both

values is that with f0 two activities in the same component have the same

value always, independently of their durations. Nevertheless, with fd two
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activities in the same component with different durations may have different

values, as shown in this example.

We now introduce two properties, which will be used in the characteriza-

tion of fd.

Independence of large durations (ILD) For each (N,≺, x) and each a ∈

N , fa (N,≺, x) = fa (N,≺, xa) .

ILD says that the value of an activity does not depend on the durations

of activities with a larger duration.

Equal treatment inside a component (ETC) For each (N,≺, x) , each

component C, and each a, b ∈ C such that xa = xb, then fa (N,≺, x) =

fb (N,≺, x) .

ETC says that the if two activities have the same duration and belong

to the same component, then both activities must have the same value.

In the next theorem we provide a characterization of fd.

Theorem 2 fd is the unique value satisfying SEP, ILD, and ETC.

Proof. See the Appendix.

We end this section by proving that the properties used in 2 are indepen-

dent.

• Let (N,≺, x) be a PERT problem. We assume without loss of gener-

ality that xa ≤ xb when a < b. We define the value fα by applying the

ideas of the serial cost sharing rule as follows. For each a, we define

fda (N,≺, x) =
a∑

b=1

τ
(
N,≺, xb

)
− τ

(
N,≺, xb−1

)

|{b′ ∈ N : xb′ ≥ xb}|
.

fα satisfies ETC and ILD but fails SEP.
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• f 0 satisfies SEP and ETC but fails ILD.

• Let σ : N → {1, ..., |N |} be a one-to-one function. For each a ∈ C ∈

Cm(N,≺), let f
∗σ be defined as

f ∗σa (N,≺, x) = τ
(
C,≺, xσ(a)

)
− τ

(
C,≺, xpre(a,C,σ)

)

where pre (a,C, σ) denotes the agent in C which comes just before a in

the order given by σ, namely {b ∈ C : pre (a,C, σ) < σ (b) < σ (a)} =

∅. If a is the first agent in C in the order given by σ we take, by

convention, τ
(
C,≺, xpre(a,C,σ)

)
= 0.

f ∗σ satisfies SEP and ILD but fails ETC.

6 Appendix

In this section we prove the results stated in the paper.

6.1 Proof of Proposition 1

We proceed by a series of lemmas.

Lemma 1 P ⊂ N is a pseudo-path if and only if a ∼ a′ for all a, a′ ∈ P

with a 
= a′.

Proof. (⇒) Let P = {aj}
p
j=1. Let aj and ak be such that j < k. If k = j+1,

then aj ≺ aj+1. If k > j + 1, then aj ≺ ak because ≺ is transitive. Hence,

aj ∼ ak.

(⇐) Since P is finite and ≺ is anti-symmetric, there exists a1 ∈ P such

that a ⊀ a1 for all a ∈ P . Since a1 ∼ a for all a ∈ P\ {a1}, a1 ≺ P\ {a1}.

Since P\ {a1} is finite and ≺ is anti-symmetric, there exists a2 ∈ P\ {a1}

such that a ⊀ a2 for all a ∈ P\ {a1}. Since a2 ∼ a for all a ∈ P\ {a1, a2},

a2 ≺ P\ {a1, a2}. Following the same reasoning, we deduce that P = {aj}
p
j=1

such that ak ≺ P\ {aj}
k
j=1 for all k = 1, 2, ..., p. Hence, P is a pseudo-path.
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We define

E(N,≺) = {E ⊂ N : E ∼ (N\E)} .

We also define Em(N,≺) as the set of minimal nonempty elements of E(N,≺),

namely

Em(N,≺) =
{
E ∈ E(N,≺)\ {∅} : E

′ � E ⇒ E′ /∈ E(N,≺)\ {∅}
}
.

Lemma 2 Let E,E′ ∈ E(N,≺) be such that E
′ � E. Then, E\E′ ∈ E(N,≺).

Proof. Let a /∈ E\E′. We need to prove that a ∼ E\E′.

Assume first a /∈ E. Then a ∼ E because E ∈ E(N,≺). Thus, a ∼ E\E′.

Assume now a ∈ E ′. Let b ∈ E\E′. Since E′ is a component, we have

b ∼ a. Thus, a ∼ E\E ′.

Lemma 3 Em(N,≺) is a partition of N .

Proof. Since N is finite and N ∈ E(N,≺), by Lemma 2, each activity belongs

to one element of Em(N,≺).

We should only prove that the elements of Em(N,≺) do not overlap. Namely,

given E,E′ ∈ Em(N,≺), E ∩E
′ 
= ∅ implies E = E′. Since they are minimal, it

is enough to prove that E ∩ E′ ∈ E(N,≺). Let a /∈ E ∩ E′. We need to prove

that a ∼ E ∩ E′. If a /∈ E, then a ∼ E because E ∈ E(N,≺). If a /∈ E′, then

a ∼ E′ because E′ ∈ E(N,≺). In any case, a ∼ E ∩ E′.

Lemma 4 Let E ∈ E(N,≺), P ∈ P(E,≺), and P
′ ∈ P(N\E,≺). Then, P ∪ P

′ ∈

P(N,≺)

Proof. Let a, a′ ∈ P ∪ P ′ with a 
= a′. If a, a′ ∈ P or a, a′ ∈ P ′, then a ∼ a′

because P,P ′ are pseudo-paths. If a ∈ P and a′ ∈ P ′, we have a ∈ E and

a′ ∈ N\E. Since E ∈ E(N,≺), we have a ∼ a′. Thus, by Lemma 1, P ∪ P ′ is

a pseudo-path in (N,≺).

Lemma 5 Let E ∈ E(N,≺), P ∈ P(N,≺), and x ∈ R
N . Then, P is critical in

(N,≺, x) if and only if P ∩ E and P ∩ (N\E) are critical in (E,≺, x) and

(N\E,≺, x), respectively.
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Proof. (⇒) Assume P ∩ E is not critical in (E,≺, x), i.e. there exists

Q ∈ P(E,≺) such that
∑

a∈P∩E

xa <
∑

a∈Q

xa. Consider R = Q ∪ (P ∩ (N\E)).

By Lemma 4, R ∈ P(N,≺). Moreover,

∑

a∈P

xa =
∑

a∈P∩E

xa +
∑

a∈P∩(N\E)

xa <
∑

a∈Q

xa +
∑

a∈P∩(N\E)

xa =
∑

a∈R

xa

and thus P is not critical in (N,≺ x) .

Since E ∈ E(N,≺) if and only if N\E ∈ E(N,≺), we can obtain the same

contradiction if P ∩ (N\E) is not critical in (N\E,≺, x) .

(⇐) Assume P is not critical in (N,≺, x), i.e. there exists R ∈ P(N,≺)

such that
∑

a∈P

xa <
∑

a∈R

xa. Then,

∑

a∈P∩E

xa +
∑

a∈P∩(N\E)

xa <
∑

a∈R∩E

xa +
∑

a∈R∩(N\E)

xa

which means that either
∑

a∈P∩E

xa <
∑

a∈R∩E

xa or
∑

a∈P∩(N\E)

xa <
∑

a∈R∩(N\E)

xa.

It is obvious that R ∩ E ∈ P(E,≺) and R ∩ (N\E) ∈ P(N\E,≺). In the first

case, P ∩E is not critical in (E,≺, x). In the second case, P ∩ (N\E) is not

critical in (N\E,≺, x).

Lemma 6 For any nonempty set C ⊂ N, C ∈ C(N,≺) if and only if C ∈

E(N,≺).

Proof. (⇒) Assume that C /∈ E(N,≺). Then, there exists a1 ∈ C and a2 /∈ C

such that a1 ≁ a2. By Lemma 1, this means that no pseudo-path exists

containing both a1 and a2. Let x ∈ RN be defined by xa1 = xa2 = 1 and

xa = 0 otherwise. For each j = 1, 2 let Pj ∈ P
aj
(N,≺) be such that

∑

a∈Pj

xa = max
P∈P

aj

(N,≺)

∑

a∈P

xa.
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Hence,

τ (N,≺, x) = max
P∈P(N,≺)

∑

a∈P

xa

= max

{

max
P∈P

a1
(N,≺)

∑

a∈P

xa, max
P∈P

a2
(N,≺)

∑

a∈P

xa, max
P∈P(N,≺):a1,a2 /∈P

∑

a∈P

xa

}

= max {1, 1, 0} = 1

τ (C,≺, x) = max
P∈P(C,≺)

∑

a∈P

xa

= max

{

max
P∈P

a1
(C,≺)

∑

a∈P

xa, max
P /∈P

a1
(C,≺)

∑

a∈P

xa

}

= max {1, 0} = 1.

Analogously, τ (N\C,≺, x) = 1. Thus, τ (N,≺, x) = 1 
= 2 = τ (C,≺, x)+

τ (N\C,≺, x), which contradicts that C is a component.

(⇐) Let P be a critical pseudo-path in (N,≺, x). Then, τ (N,≺, x) =
∑

a∈P

xa. By Lemma 5, P ∩C is a critical path in (C,≺, x) and P ∩ (N\C) is a

critical path in (N\C,≺, x). Then,
∑

a∈P∩C

xa = τ (C,≺, x) and
∑

a∈P∩(N\C)

xa =

τ (N\C,≺, x). Thus,

τ (N,≺, x) =
∑

a∈P

xa =
∑

a∈P∩C

xa +
∑

a∈P∩(N\C)

xa = τ (C,≺, x) + τ (N\C,≺, x) .

Lemma 7 Cm(N,≺) is a partition of N .

Proof. By Lemma 6, C(N,≺) = E(N,≺)\ {∅} and thus Cm(N,≺) = Em(N,≺). The

result follows from Lemma 3.

6.2 Proof of Proposition 2

Let (N,≺, x) be a PERT problem. An initial activity is an activity a ∈ N

such that a′ ⊀ a for all a′ ∈ N . Since N is finite and ≺ is anti-symmetric,
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we conclude that each (N,≺) has at least one initial activity. We denote the

set of initial activities as SN,≺. Moreover, we define TN,≺ = N\SN,≺. For

simplicity, we write S and T instead of SN,≺ and TN,≺, respectively.

Let Π be the set of all orders in T , i.e.

Π = {σ : {1, ..., |T |} → T : σ is a one-to-one function} .

Given an order σ ∈ Π, we denote σ (j) as σj . Given σ ∈ Π and j ≤ |T |,

we define Pre (σ, j) as the set of predecessors of σj in the order, i.e.

P re (σ, j) = {σk ∈ T : k < j} .

Let f be a value that satisfiesMON and SEP . By SEP , we can assume

without loss of generality that Cm(N,≺) = {N}.

We say that z ∈ RN is a reduced vector for (N,≺, x) if it satisfies

Definition 1 1. za ≥ 0 for all a ∈ N ;

2. τ (N,≺, z) = τ (N,≺, x);

3. every a ∈ S is a critical activity in (N,≺, z);

4. za = 0 for all a ∈ T .

Condition 1 says that (N,≺, z) is a well-defined PERT problem. Con-

dition 2 says that the PERT time is the same for (N,≺, x) as for (N,≺, z).

Conditions 3 and 4 say that all PERT time is due to the initial activities.

Lemma 8 For every PERT problem (N,≺, x) there exists a unique reduced

vector z.

Proof. Existence. We consider z ∈ RN given by

• za = τ (N,≺, x) for each a ∈ S;

• za = 0 for each a ∈ T .
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We check that z is a reduced vector for (N,≺, x). By definition, za = 0

for all a ∈ T (condition 4 in the definition). Moreover, it is clear that za ≥ 0

for all a ∈ N (condition 1).

Let a ∈ S and P a ∈ Pa(N,≺). Since there cannot be more than one initial

activity in the same pseudo-path, we have zb = 0 for all b ∈ P a\ {a}. Hence

∑

b∈Pa

zb = za = τ (N,≺, x) . (1)

Let P be a pseudo-path in (N,≺). If P ∩ S = ∅, then

∑

b∈P

zb = 0 ≤ τ (N,≺, x) .

If P ∩ S 
= ∅, then P has a unique initial activity a ∈ S (because there

cannot be more than one initial activity in the same pseudo-path) and

∑

b∈P

zb = za = τ (N,≺, x) .

Hence

τ (N,≺, z) = max
P∈P(N,≺)

∑

b∈P

zb = τ (N,≺, x)

which is condition 2 in the definition. Moreover, by (1) every initial activity

is a critical activity in (N, z) (condition 3).

Uniqueness. Let z and z′ be two reduced vectors for (N,≺, x). By defini-

tion, za = z′a = 0 for all a ∈ T . Given a ∈ S, let P be a critical pseudo-path

in (N,≺, z) with a ∈ P . This pseudo-path exists by condition 3. Since a ∈ S,

we have P\ {a} ⊂ T . Then,

z′a =
∑

b∈P

z′b ≤ τ (N,≺, z′) = τ (N,≺, z) =
∑

b∈P

zb = za.

By an analogous reasoning, za ≤ z′a and thus za = z′a. �

We now prove Proposition 2

Let x ∈ RN+ . As a consequence of the proof of Lemma 8, a reduced vector

for (N,≺, x) only depends on τ (N,≺, x) (we are assuming Cm(N,≺) = {N}).
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Hence, it is enough to prove that f (N,≺, x) = f (N,≺, z) when z is the

reduced vector for (N,≺, x).

When T 
= ∅, we define an order σ ∈ Π as follows: The set S is not a

component as Cm(N,≺) = {N}. Then, there exists a ∈ S, σ1 ∈ T such that

a ≁ σ1.

Assume we have defined σ1, ..., σj−1 and S ∪ {σk}
j−1
k=1 
= N . We define

σj . Since S ∪ {σk}
j−1
k=1 is not a component, there exists a ∈ S ∪ {σk}

j−1
k=1,

σj /∈ S ∪ {σk}
j−1
k=1 such that a ≁ σj . Thus, we have an order σ ∈ T such that

T = {σj}
|T |
j=1.

Let D = {a ∈ T : xa > 0}. When D 
= ∅, let j0 ∈ {1, ..., |T |} be such that

σj /∈ D for all j < j0 and σj0 ∈ D.

We proceed by double induction on |D| and j0.

Assume first |D| = 0 (this includes the case T = ∅). Then, xa = 0 for all

a ∈ T . We consider the reduced vector z ∈ RN given by

• za = τ (N,≺, x) for all a ∈ S

• za = 0 for all a ∈ T .

It is straightforward to check that xa ≤ za for all a ∈ N . Hence, byMON

we have fa (N,≺, x) ≤ fa (N,≺, z) for all a ∈ N . Moreover, τ (N,≺, x) =

τ (N,≺, z) and thus
∑

a∈N

fa (N,≺, x) =
∑

a∈N

fa (N,≺, z). Hence, f (N,≺, x) =

f (N,≺, z) .

Assume now the result is true for |D|− 1. We prove that the result holds

for |D| by induction on j0.

Assume j0 = 1 (i.e. σ1 ∈ D). Thus, xσ1 > 0. By the definition of σ, there

exists a ∈ S such that a ≁ σ1. If needed, we can increase xa until a is critical

in (N,≺, x). Namely, we define x1 ∈ RN+ as follows:

x1a = xa + τ (N,≺, x)− max
P∈Pa

(N,≺)

∑

b∈P

xb

and x1b = xb for b ∈ N\ {a}. It is not difficult to check that a is critical in

(N,≺, x1), x ≤ x1 and τ (N,≺, x) = τ (N,≺, x1). By MON , fb (N,≺, x1) ≥
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fb (N,≺, x) for all b ∈ N . Since τ (N,≺, x1) = τ (N,≺, x), we conclude that

f (N,≺, x1) = f (N,≺, x).

We now decrease x1σ1 to 0. Namely, we define y1 ∈ RN+ as y1σ1 = 0 and

y1b = x1b for all b ∈ N\ {σ1}. Since a ≁ σ1, no pseudo-path is shared by

a and σ1 and thus the PERT time remains unchanged, i.e. τ (N,≺, x1) =

τ (N,≺, y1). By MON , fb (N,≺, y1) ≤ fb (N,≺, x1) for all b ∈ N . Since

τ (N,≺, y1) = τ (N,≺, x), we conclude that f (N,≺, y1) = f (N,≺, x1).

Since y1σ1 = 0, we can apply the induction hypothesis on |D| to de-

duce f (N,≺, y1) = f (N,≺, z′) where z′ is the reduced vector for y1. Since

τ (N,≺, y) = τ (N,≺, x) we have that z′ = z.Hence, f (N,≺, x) = f (N,≺, z).

Assume now the result is true for j0 − 1. We prove it for j0. We know

that xj0 > 0. By definition of σ, there exists a ∈ S ∪ {σj}
j0−1
j=1 such that

a ≁ σj0 . We have two cases:

• If a ∈ S, we proceed as before and deduce the result by induction

hypothesis on |D|.

• If a = σj for some j < j0, we proceed as follows:

— If σj is not critical, we proceed as before to increase xj until σj

is critical (as in the construction of x1). Again, f is not affected.

We now decrease xσj0 to 0 (as in the construction of y1). Since

σj ≁ σj0 , no pseudo-path is shared by σj and σj0 and thus the

PERT time remains unchanged. ByMON , f is not affected. But

now xσj0 = 0 and thus we can apply the induction hypothesis on

|D| to deduce the result.

— If σj is critical, we proceed as before to decrease xσj0 to 0 (as in

the construction of y1). Since σj ≁ σj0 , no pseudo-path is shared

by σj and σj0 and thus the total time remains unchanged. By

MON , f is not affected. But now |D| has decreased and thus we

can apply the induction hypothesis on |D| to conclude the result.
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6.3 Proof of Theorem 1

It is straightforward to check that f0 satisfies these properties.

Let f be a value satisfying MON , SEP and OP . We will prove that

f = f 0. Since f satisfies SEP , we can assume that there exists a unique

component, i.e. Cm(N,≺) = {N}.

By the proof of Proposition 2, we know that f (N,≺, x) = f (N,≺, z)

and f 0 (N,≺, x) = f 0 (N,≺, z) where z is the reduced vector for (N,≺, x).

Then, it is enough to prove that f (N,≺, z) = f 0 (N,≺, z).

Given a ∈ N , we define za ∈ RN+ as follows:

zab =

{
τ (N,≺, z) if b = a

0 if b 
= a.

Since f satisfies OP , fb (N,≺, za) ≤ fa (N,≺, za) for all b ∈ N\ {a}.

Moreover, z is also the reduced vector for (N,≺, za) for all a ∈ N . By the

proof of Proposition 2, f (N,≺, z) = f (N,≺, za) for all a ∈ N . Thus, given

a, b ∈ N ,

fb (N,≺, z) = fb (N,≺, z
a) ≤ fa (N,≺, z

a) = fa (N,≺, z) .

Hence, fa (N,≺, z) = fb (N,≺, z) for all a, b ∈ N , i.e. f = f 0. �

6.4 Proof of Theorem 2

It is straightforward to check that fd satisfies these properties.

Let f be a value satisfying SEP, ILD, and ETC. We will prove that

f = fd. Since f satisfies SEP , we can assume that there exists a unique

component, i.e. Cm(N,≺) = {N}.

Let a1 ∈ N be such that xa1 ≤ xb for all b ∈ N. By ILD, fa1 (N,≺, x) =

fa1 (N,≺, x
a1) . Since xa1b = xa1 for all b ∈ N, by ETC, fa1 (N,≺, x

a1) =
τ(N,≺,xa1 )

|N |
. Thus,

fa1 (N,≺, x) =
τ (N,≺, xa1)

|N |
= fda1 (N,≺, x) .
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Let a2 ∈ N be such that xa2 ≤ xb for all b ∈ N\ {a1} . By ILD,

fa2 (N,≺, x) = fa2 (N,≺, x
a2) . By ILD, fa1 (N,≺, x

a2) = fa1 (N,≺, x
a1) =

fa1 (N,≺, x) . Since x
a2
b = xa2 for all b ∈ N\ {a1} , by ETC,

fa2 (N,≺, x
a2) =

τ (N,≺, xa2)− fa1 (N,≺, x
a2)

|N | − 1

=
τ (N,≺, xa1)

|N |
+
τ (N,≺, xa2)− τ (N,≺, xa1)

|N | − 1
.

Thus, fa2 (N,≺, x) = fda2 (N,≺, x) .

Repeating the same argument we can prove that fa (N,≺, x) = fda (N,≺, x)

for each a ∈ N. �
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