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Abstract

We implement the levels structure value (Winter, 1989) for cooperative transfer

utility games with a levels structure. The mechanism is a generalization of the

bidding mechanism by Pérez-Castrillo and Wettstein (2001).
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1 Introduction

A cooperative game describes a conflict situation among a finite number of agents or

players. Even though players are assumed to have independent interests, they can ben-

efit from cooperation. When cooperation takes place, the question is how the benefits

will be distributed among the players, a problem which has been studied from different

perspectives. Our aim is to define a solution concept which results in a “fair” (or at least

“reasonable”) allocation for each problem. This allocation must take into account the

contribution of each player to the game. Cooperative transfer utility (TU) games have

been widely studied. In these games, utility is freely transferable between members of a

coalition. A widely studied solution concept for TU games is the Shapley value (described

by Shapley in 1953).
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Once a solution concept has been established, its implementation aims to state a

mechanism (or non-cooperative game) such that players, by behaving strategically obtain

as the final outcome, the allocation proposed by the solution concept.

In this context, we can say that a mechanism implements the Shapley value (or any

other concept) if two properties are satisfied. First, there must be some equilibrium

such that the final payoff is the Shapley value. Second, every equilibrium must have the

Shapley value as final payoff. The first property is necessary since, even if it is proved

that the Shapley value arises in each equilibrium, it may occur that the non-cooperative

game has no equilibrium.

Implementation for the Shapley value in TU games has been studied by several au-

thors. For example, Gul (1989), Hart and Moore (1990), Winter (1994), Dasgupta and

Chiu (1998), Hart and Mas-Colell (1996) and Evans (1996). Recently, Pérez-Castrillo

and Wettstein (2001) presented their bidding mechanism, which has novel features.

In the bidding mechanism, one of the players (the proposer) should propose an allo-

cation. If all the other players agree, this is the final payoff. If at least one of the other

players does not accept the proposed allocation, the proposer leaves the game and the

mechanism is repeated with the remaining players.

A key feature in the bidding mechanism is the way the proposer is chosen. Since the

final payoff depends on the identity of the proposer, in an initial stage the players should

bid for the right to be the proposer. The player who presents the highest net bid is chosen

as proposer.

Pérez-Castrillo and Wettstein showed that in equilibrium, all players have the same

probability of being chosen as proposer. Furthermore, if the game is zero-monotonic, the

equilibrium payoff is the Shapley value.

In equilibrium, the bidding mechanism may finish in one round (when no player drops

out) or in more than one. However, the latter only happens when the game is not strictly

zero-monotonic.

Frequently, we have more information available than that given by the characteristic

function of the game. For example, let us consider the members of the European Parlia-

ment. Even though all have the same rights, they do not act independently, since they

belong to different political parties. Furthermore, political parties are not completely

independent of each other. On a higher level, parties with similar ideologies may be

formally associated in larger groups, such as the EPP-ED1 or the Socialist Group, and

so on.

1European People’s Party (Christian Democrats) and European Democrats.
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We call this cooperation description of the players a levels structure. Solution concepts

which take into account levels structures are the Owen value (described by Owen in 1977)

for a single level, and the levels structure value (suggested by Owen in 1977 and studied

by Winter in 1989). The levels structure value is a generalization of the Owen value for

more than one level. Furthermore, the Owen value is a generalization of the Shapley

value.

In Vidal-Puga and Bergantiños (2003), the Pérez-Castrillo and Wettstein bidding

mechanism is generalized to take a single-level structure into account. The resulting

non-cooperative game implements the Owen value.

In this article, we move this a step further by modifying the bidding mechanism so that

a general levels structure is considered. To do so, we generalize the bidding mechanism

to a new mechanism, called the levels bidding mechanism.

Given a levels structure with h levels, the levels bidding mechanism has h rounds. In

Round 1, the members of the same coalition at this level play the bidding mechanism,

trying to obtain the resources of the whole coalition. Eventually, we obtain a player

(called the representative) out of each coalition, who obtains the resources of his own

coalition, or of a subcoalition if one or more players are removed. In the second round,

the representatives who are in the same coalition at the second level repeat the process,

this time with the additional resources obtained in the previous round. The process goes

on until level h is reached.

In Section 2 we describe the notation and definitions. In Section 3 we formally define

the coalitional bidding mechanism and prove that it implements the levels structure value.

A tie-breaking rule is used in the proof. In Section 4 we show that this tie-breaking rule

is needed in the model.

2 The model

We consider a cooperative game in characteristic form (N,v), where N = {1, . . . , n} is the

set of players and v ∶ 2N → R is a characteristic function satisfying v(∅) = 0. We denote

the set of cooperative games as TU(N).
A coalition of (N,v) is a nonempty subset S ⊂ N . We say that (N,v) is zero-

monotonic if v(S∪{i}) ≥ v(S)+v({i}) for every S ⊂ N∖{i}. We say that v is superadditive

if v(S ∪ T ) ≥ v(S) + v(T ) for every S,T ∈ N such that S ∩ T = ∅.

Notice that superadditivity implies zero-monotonicity.

Unless otherwise specified, we assume that a cooperative game (N,v) is superadditive.

3



A coalition structure on N is a partition C = {C1, . . . ,Cm} of N , i.e. Cq ∩Cr = ∅ when

Cq ≠ Cr and ⋃Cq∈C Cq = N .

Given i ∈ Cq ∈ C, we denote by C−i the coalition structure on N ∖ {i} which equals C
after removing player i, i.e. C−i = {C1, . . . ,Cq−1,Cq ∖ {i},Cq+1, . . . ,Cm}.

Notice that this means that C−i may have one less coalition than C.
Given v characteristic function on N , and S ⊂ N , we define (S, vS) ∈ TU(S) as the

game v restricted to the player set S, i.e. vS(T ) = v(T ) for all T ⊂ S.
In particular, we denote v−i = vN∖{i} and v−S = vN∖S.

A levels structure on N is a sequence C = (C0,C1, . . . ,Ch) , h ≥ 1 with Cl (0 ≤ l ≤ h)

coalition structure on N such that:

1. C0 = {{1},{2}, . . . ,{n}} .

2. Ch = {N} .

3. If Cq ∈ Cl with 0 < l ≤ h, then Cq = ⋃S∈Q S for some Q ⊂ Cl−1.

We call Cl the l-th level of C. We say that C is a levels structure of degree h. Thus,

the levels structure C has h + 1 levels.

If h = 1, we say that C is a trivial levels structure.

Given i ∈ Cq ∈ C1 with n > 1, we denote by C−i the levels structure on N ∖ {i} which

equals C after removing player i, namely C−i = (C0
−i,C1

−i, . . . ,Ch−i).
Given S ∈ Cl, we denote by C−S the levels structure on N ∖ S induced by C.

Assume h ≥ 2. We define by C/C1 the levels structure induced by C by dropping the

level C0 and considering the coalitions Cq ∈ C1 as players. Whenever Cq ∈ C1 is considered

as a player in C/C1, it is denoted by [Cq]. We also denote by [Cl] (1 ≤ l ≤ h) the coalition

structure which comes out from Cl by considering the coalitions of C1 as players.

Thus, we have C/C1 = ([C1] , [C2] , . . . , [Ch]) .
In particular for l = 1, if C1 = {C1, . . . ,Cm}, then [C1] = {{[C1]}, . . . ,{[Cm]}}.

This new levels structure satisfies conditions 1, 2 and 3. Furthermore, C/C1 has degree

h − 1.

Let LTU(N) be the set of all (N,v,C) with (N,v) ∈ TU(N) cooperative game and C

levels structure on N .

The quotient game (C1, v/C1,C/C1) is the game LTU (C1) defined on the coalition

structure C1 with characteristic function

(v/C1) (Q) = v
⎛
⎝ ⋃
[Cq]∈Q

Cq
⎞
⎠
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for all Q ⊂ C1.

A solution concept on LTU(N) is a function f ∶ LTU(N) → RN which assigns to

each game (N,v,C) ∈ LTU(N) a vector on RN , so that fi(N,v,C) represents the payoff

received by player i ∈ N .

In this article, we use two solution concepts for LTU : the Shapley value (Shapley,

1953), and the levels structure value suggested by Owen (1977) and characterized by

Winter (1989).

The Shapley value is given by the following expression: Given (N,v) ∈ TU(N) with

i ∈ N ,

ϕi(N,v) = ∑
T⊂N∖{i}

∣T ∣!(n − ∣T ∣ − 1)!
n!

[v (T ∪ {i}) − v (T )] .

The levels structure value is a generalization of the Shapley value to games with levels

structure, i.e. when the levels structure is trivial, both solution concepts give the same

payoff vector. In order to define this, we need some additional notation.

We denote the set of all permutations on N as Π. Given a levels structure C, we

define by induction Π1(C) ⊂ Π2(C) ⊂ ⋅ ⋅ ⋅ ⊂ Πh(C) as follows:

Πh(C) = Π.

Given the sets Πl+1(C) ⊂ Πl+2(C) ⊂ ⋅ ⋅ ⋅ ⊂ Πh(C), we define

Πl(C) = {π ∈ Πl+1(C) ∶ ∀j, k ∈ Cq ∈ Cl,∀i ∈ N,π(j) < π(i) < π(k)⇒ i ∈ Cq} .

In particular, permutations in Π1(C) are those in which the players in the same

coalition on any level always appear together.

Given π ∈ Π, i ∈ N , we denote by P π
i = {j ∈ N ∶ π(j) < π(i)} the set of predecessors

of i under π. We term as levels structure value (Winter, 1989) the solution concept

Ψ ∶ LTU(N)→ RN given by

Ψi(N,v,C) =
1

∣Π1(C)∣
∑

π∈Π1(C)
[v(P π

i ∪ {i}) − v(P π
i )]

for all i ∈ N.
This solution concept generalizes the Owen value (1977) for h = 2 with coalition

structure C1 and the Shapley value for h = 1.

A simple and powerful characterization for the levels structure value is as follows

(Calvo, Lasaga and Winter, 1996): the levels structure value is the only solution concept

on LTU(N) which satisfies efficiency and balanced contributions.
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Efficiency. For any game (N,v,C) ∈ LTU(N), we have

∑
i∈N

Ψi(N,v,C) = v(N).

Balanced contributions. For any (N,v,C) ∈ LTU (N) and any S,T ∈ Cl with 0 ≤ l < h
such that S,T ⊂ R ∈ Cl+1, S ≠ T , we have

∑
i∈S

Ψi(N,v,C) −∑
i∈S

Ψi(N ∖ T, v−T ,C−T )

= ∑
i∈T

Ψi(N,v,C) −∑
i∈T

Ψi(N ∖ S, v−S,C−S).

Furthermore, the levels structure value also satisfies additivity and quotient game

property (Winter, 1989).

Additivity. For any (N,v,C), (N,w,C) ∈ LTU (N), we have

Ψ(N,v +w,C) = Ψ(N,v,C) +Ψ(N,w,C)

with (N,v + w) the TU game defined on N by (v + w)(S) = v(S) + w(S) for all

S ⊂ N .

Quotient game property. For any (N,v,C) ∈ LTU (N), we have

∑
i∈Cq

Ψi(N,v,C) = Ψ[Cq] (C1, v/C1,C/C1)

for Cq ∈ C1.

3 The levels bidding mechanism

Given a cooperative game (N,v), Pérez-Castrillo and Wettstein (2001) designed a non-

cooperative game, called the bidding mechanism. In the bidding mechanism, players bid

for the right to propose a payoff, which should be accepted by all the other players.

Otherwise the proposer leaves the game. Pérez-Castrillo and Wettstein proved that the

payoff of any subgame perfect Nash equilibrium (henceforth, SPNE) of this mechanism

with pure strategies always coincides with the Shapley value of the cooperative game

(N,v). Like Pérez-Castrillo and Wettstein, we will not analyze mixed strategies.

Our mechanism is played in several rounds. In each round, coalitions in each coalition

structure play a bidding mechanism in order to obtain the resources of their own coalition.

In other words, they bid for the right to propose a payoff. In the first round, coalitions
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in C1 play sequentially. Assume they play in the order C1, . . . ,Cm. Each player i ∈ C1

simultaneously announces a bid bij ∈ R for each player j ∈ C1 ∖ {i}. The bid bij represents

the amount that player i is willing to pay to player j in order to be chosen as proposer.

Note that a bid may be positive or negative. A negative bid is interpreted as the amount

that player i is willing to accept from player j in exchange for being chosen as proposer.

The net bid for player i is the difference between what player i offers to other players

and what other players offer him. The player with the highest net bid (say, player α) is

chosen as proposer. Player α pays bαj to each j ∈ Cq ∖{i} and makes an offer. This offer is

an amount yαj ∈ R to be paid to each j ∈ C1∖{α}. If all the players in C1∖{α} accept the

offer, player α pays yαj to each j ∈ C1 ∖ {α}, he becomes the representative of C1, and the

turn passes to the next coalition C2. Coalition C2 should then choose a representative

following the same procedure, and so on. If some player rejects an offer from a proposer

(say, proposer αq ∈ Cq), all bids and offers are cancelled except the bids in Cq, and player

αq leaves the game. The mechanism is then played again with one player less.

The first round ends when each coalition has its own representative. This represen-

tative has the resources of all the members of his coalition (or a subcoalition, if some

players quit). The representatives are themselves divided into coalitions, given by the

coalition structure C2. The second round is then played, following the same procedure

as before, with the coalitions in C2, and so on. Since the last coalition structure Ch has

a single coalition, after round h there exists a unique representative i, who obtains the

value of the grand coalition minus the bids and offers previously made by him. The rest

of the players obtain the sum of the bids and offers in which they participated.

When the levels structure is trivial, there is a single round and the mechanism coin-

cides with that of Pérez-Castrillo and Wettstein.

We will now describe the levels bidding mechanism (LBM) more formally. We proceed

by double induction on h (degree of C) and n (number of players).

For h = 1, the players play a single round. This round comprises the bidding mecha-

nism (Pérez-Castrillo and Wettstein, 2001) associated with the game (N,v).
Assume that we know the rules of the LBM when the levels structure has degree h−1,

and it comprises h − 1 rounds.

If there is only one player i, he obtains v ({i}). Let us now assume that we know the

rules of the LBM when played by n− 1 players. For a set of players N = {1, . . . , n} and a

levels structure C = (C0,C1, . . . ,Ch) with C1 = {C1, . . . ,Cm}, the LBM proceeds as follows:

Round 1
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The players of any coalition Cq ∈ C1 play the bidding mechanism trying to obtain

the resources of Cq. Formally, if there is only one player i, then this player has his

resources. Assume now that we know the rules when played by ∣Cq ∣−1 players. For

∣Cq ∣ > 1 the mechanism proceeds as follows:

Stage 1. Each player i ∈ Cq makes bids bij ∈ R for every j ∈ Cq ∖ {i}. For each

i ∈ Cq, we take Bi = ∑j∈Cq∖{i} b
i
j −∑j∈Cq∖{i} b

j
i . Assume that αq = argmaxi{Bi}.

In the case of a non-unique maximizer, αq is randomly chosen from among the

maximizing indices.

Stage 2. Player αq, called the proposer, makes an offer y
αq

i to each player

i ∈ Cq ∖ {αq}.

Stage 3. In turn, the players of Cq ∖ {αq} either accept or reject the offer. If

a rejection is encountered, we say the offer is rejected. Otherwise, we say the

offer is accepted.

The coalitions of C1 play sequentially in the order C1, . . . ,Cm until either we find

Cq0 ∈ C1 and αq0 ∈ Cq0 such that the offer of αq0 is rejected, or for any Cq ∈ C1 the

offer of αq is accepted.

In the first case, player αq0 pays b
αq0
i to each player i ∈ Cq0 ∖ {αq0} and leaves the

non-cooperative game obtaining v({αq0}) −∑i∈Cq0∖{αq0} b
αq0
i . All players other than

αq0 proceed to play the LBM with (N ′, v′,C′) where N ′ = N ∖ {αq0}, v′ = v−αq0
,

and C′ = C−αq0
. Any player i ∈ Cq0 ∖ {αq0} obtains as his final payoff the sum of

the bids received, b
αq0
i , and the payoff outcome of the mechanism corresponding to

(N ′,C ′, v′). Any player i ∈ N ∖Cq0 obtains as his final payoff the payoff outcome of

the mechanism corresponding to (N ′,C ′, v′).

In the second case, for any Cq ∈ C1, player αq pays b
αq

i + yαq

i to every i ∈ Cq ∖ {αq}
and becomes the representative of coalition Cq. This means that player αq goes to

Round 2 with all the resources of Cq. Moreover, the payoff obtained by this player

in this round is p1
αq

= −∑i∈Cq∖{αq} (b
αq

i + yαq

i ). Any other player i ∈ Cq ∖ {αq} leaves

the non-cooperative game obtaining a final payoff of b
αq

i + yαq

i .

After finishing Round 1, for any Cq ∈ C1 we can find the representative (denoted by

rq) for this coalition.

Rounds 2 through h

The representatives play the LBM associated with the quotient game (C1, v/C1,C/C1),
where each rq plays the role of [Cq]. These rounds are well defined by induction on
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h. For any representative rq, we denote by p2
rq the payoff obtained by rq (or [Cq])

in these rounds.

The final payoff obtained by any representative rq is the sum of the payoffs obtained

in all the rounds, i.e. p1
rq + p2

rq .

Note that the LBM terminates in a finite number of moves.

Remark 3.1 Assume that in Round 1 the offer of player αq is accepted for any q < q0,

but the offer of αq0 is rejected. A new subgame begins, therefore, which coincides with the

LBM associated with (N ∖ {αq0}, v−αq0
,C−αq0

) . Moreover, when all the offers in Round

1 are accepted, another subgame begins, which is equivalent to the LBM associated with

(C1, v/C1,C/C1).

Before characterizing the SPNE outcomes of the levels bidding mechanism we need

the following result:

Proposition 3.1 Given a triple (N,v,C) ∈ LTU(N) such that (N,v) is zero-monotonic,

j ∈ Cq ∈ C1 ∈ C and {j} ⊊ Cq then

∑
i∈Cq

Ψi(N,v,C) ≥ ∑
i∈Cq∖{j}

Ψi(N ∖ {j}, v−j,C−j) + v({j}).

Proof. We take C/C1 = ([C1] , . . . , [Ch]) levels coalition structure. Assume C1 = {C1, . . . ,Cm}
and M = {1,2, . . . ,m}. Let Q = (Q1, . . . ,Qh) be the levels structure on M which equals

C/C1 except for the name of the players, i.e.

{q1, q2, . . . , qk} ∈ Ql⇔ {[Cq1] , [Cq2] , . . . , [Cqk]} ∈ [Cl] 1 ≤ l ≤ h.

We define the following games on M . For all R ⊂M,

u(R) = v (⋃
r∈R
Cr)

w1(R) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v ( ⋃
r∈R
Cr ∖ {j}) if q ∈ R

v ( ⋃
r∈R
Cr) if q ∉ R

w2(R) =
⎧⎪⎪⎨⎪⎪⎩

v ({j})
0

if q ∈ R
if q ∉ R

w = w1 +w2.

Note that the game u on M equals the quotient game v/C1 on C1. Thus, their levels

structure values are the same, namely,

Ψq(M,u,Q) = Ψ[Cq] (C1, v/C1,C/C1)
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by the quotient game property,

Ψq(M,u,Q) = ∑
i∈Cq

Ψi (N,v,C) .

Analogously, the game w1 on M equals the quotient game v−j/C1
−j on C1

−j. Thus,

Ψq(M,w1,Q) = ∑
i∈Cq∖{j}

Ψi (N ∖ {j}, v−j,C−j) .

Finally, the levels structure value of q for the game w2 is

Ψq(M,w2,Q) = v({j}).

By applying the zero-monotonicity of v, we get Ψq(M,u,Q) ≥ Ψq(M,w,Q). By the

additivity of the levels structure value,

∑
i∈Cq

Ψi(N,v,C) = Ψq(M,u,Q) ≥ Ψq(M,w,Q) = Ψq(M,w1 +w2,Q)

= Ψq(M,w1,Q) +Ψq(M,w2,Q)

= ∑
i∈Cq∖{j}

Ψi (N ∖ {j}, v−α,C−j) + v({j}).

In order to cope with the technical problems of ties, we need an additional assumption

in regard to the SPNE. These problems of ties appear when players are indifferent as to

two or more strategies yielding the same payoff. In Section 4 we will study an example of

a game where the associated LBMs have SPNE outcomes whose payoff is different from

the levels structure value.

Vidal-Puga and Bergantiños (2003) modified their mechanism, so that the player who

rejects an offer and the proposer whose offer is rejected must pay a small penalty ε > 0.

In this article, we will not move in that direction. Moldovanu and Winter (1994)

assume that a player prefers agreements which involve larger rather than smaller coalitions

(provided his final payoff is the same in both agreements). Hart and Mas-Colell (1996)

assumed that players “break ties in favor of quick termination of the game”2. In this

paper we make both assumptions.

As a consequence of our assumptions, we can define a tie-breaking rule satisfying the

following conditions:

• If a player is indifferent to accepting or rejecting an offer from a proposer, he always

accepts the offer.

2However, tie-breaking rules are not needed in Hart and Mas-Colell’s model.
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• If a proposer α ∈ Cq is indifferent to offering bα or b̃α with bα likely to be rejected

by some player i ∈ Cq ∖ {α} and b̃α likely to be accepted by each player in Cq ∖ {α},

he always offers b̃α.

In the rest of the section, by SPNE we mean an SPNE satisfying this tie-breaking

rule.

A similar approach by means of the tie-breaking rule for SPNE can be found in

Navarro and Perea (2001). In their model, a player is required to choose prices, propose

offers and accept or reject offers3. If a player is indifferent to accepting or rejecting an

offer, he is supposed to accept. If, under certain circumstances, a player is indifferent to

proposing ∆ or ∆̃ with ∆ < ∆̃, he is supposed to propose ∆̃. If a player is indifferent to

choosing between price p or p̃ with p < p̃, he is supposed to choose price p.

Theorem 3.1 The LBM implements the levels structure value in SPNE.

Proof. Althought the structure of this proof is similar to that of the main result by

Vidal-Puga and Bergantiños (2003), the computations are different.

We proceed by double induction on h and n. For h = 1, the mechanism coincides

with that by Pérez-Castrillo and Wettstein (2001). Thus, we assume that the players

play according to a strategy profile described in Pérez-Castrillo and Wettstein (2001)

when they construct, for any zero-monotonic game, an SPNE that yields the Shapley

value of this game as a payoff outcome. It is easy to check that this SPNE satisfies the

tie-breaking rule. So, the mechanism implements the levels structure value.

Assume the result is true for levels structures of degree h − 1 or less.

We now prove the result when the degree is h. If there is only one player it is trivial.

Assume that if there are at most n − 1 players the LBM implements the levels structure

value in SPNE and, moreover, that all the Round 1 offers are accepted in equilibrium.

We now prove that the same holds when there are n players.

We first prove that the levels structure value is indeed an equilibrium outcome. We

explicitly construct an SPNE which yields the levels structure value as an SPNE outcome.

We consider the following strategies.

Round 1. First, we define the strategies in the LBM associated with any Cq ∈ C1.

Stage 1. For any i ∈ Cq, bij = Ψj (N,v,C) −Ψj (N ∖ {i}, v−i,C−i) for any j ∈ Cq ∖ {i}.

Stage 2. Player αq, the proposer, offers y
αq

j = Ψj (N ∖ {αq}, v−αq ,C−αq) to every

j ∈ Cq ∖ {αq}.

3These offers are differences in payoffs to be received at the end of the mechanism.
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Stage 3. A player i ∈ Cq∖{αq} accepts the offer of αq if and only if y
αq

j ≥ Ψj (N ∖ {αq}, v−αq ,C−αq)
for every j ∈ Cq ∖ {αq}.

If some offer is rejected, for instance, the offer of αq0 , we go to the subgame where

all players other than αq0 play this mechanism in (N ∖ {αq0}, v−αq0
,C−αq0

) . We assume

that players in N ∖ {αq0} play according to the strategy profiles of some SPNE with

associated payoff Ψ (N ∖ {αq0}, v−αq0
,C−αq0

) (by induction hypothesis on n we can find

such an SPNE).

Rounds 2 through h. We assume that the representatives play according to the

strategies of some SPNE with associated payoff Ψ (C1, v/C1,C/C1). Again, by induction

hypothesis on h, we can find such an SPNE.

Proving that these strategies satisfy the tie-breaking rule is quite straightforward.

First, we prove that according to these strategies any player i ∈ N receives as payoff

the levels structure value Ψi(N,C, v). Note that for any Cq ∈ C1 the offer of αq is accepted.

Then player αq goes to Round 2 as the representative of Cq.

Given Cq ∈ C1 and i ∈ Cq ∖ {αq}, the payoff obtained by player i is b
αq

i + yαq

i =

Ψi(N,v,C) −Ψi (N ∖ {αq}, v−αq ,C−αq) +Ψi (N ∖ {αq}, v−αq ,C−αq)

= Ψi(N,v,C).

We now compute the payoff for any representative rq. As v is superadditive we have

that v/C1 is also superadditive. By induction hypothesis on h, we know that the payoff

obtained by rq in Rounds 2 through h (p2
rq) coincides with the levels structure value of

(C1, v/C1,C/C1). The final payoff obtained, therefore, by rq is

p1
rq + p2

rq = − ∑
i∈Cq∖{rq}

b
rq
i − ∑

i∈Cq∖{rq}
y
rq
i +Ψ[Cq] (C1, v/C1,C/C1)

= − ∑
i∈Cq∖{rq}

[Ψi(N,v,C) −Ψi (N ∖ {rq}, v−rq ,C−rq)]

− ∑
i∈Cq∖{rq}

Ψi (N ∖ {rq}, v−rq ,C−rq) +Ψ[Cq] (C1, v/C1,C/C1)

by rearranging terms and applying the quotient game property,

= − ∑
i∈Cq∖{rq}

Ψi(N,v,C) + ∑
i∈Cq

Ψi(N,v,C) = Ψrq(N,v,C).

We now prove that these strategies are an SPNE. By induction hypothesis on h, we

conclude that in the subgames obtained after Round 2 these strategies induce an SPNE.
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By induction hypothesis on n, in all the subgames obtained after the rejection of the

offer of some proposer αq, these strategies induce an SPNE.

We only have to prove that these strategies induce an SPNE in the bidding mechanism

associated with any coalition Cq (Round 1).

Stage 3. Assume that player i rejects the offer of αq. The LBM mechanism of

(N ∖ {αq}, v−αq ,C−αq) is played and, by induction hypothesis on n, after rejection player

i can obtain at most c = Ψi (N ∖ {αq}, v−αq ,C−αq). Hence, it is optimal for player i to

accept any offer which is at least equal to c (notice the tie-breaking rule), and reject any

offer which is lower than c.

Stage 2. If player αq offers to some player i ∈ Cq less than

Ψi (N ∖ {αq}, v−αq ,C−αq) ,

the offer is rejected and player αq obtains, therefore, a final payoff of

v ({αq}) − ∑
i∈Cq∖{αq}

[Ψi(N,v,C) −Ψi (N ∖ {αq}, v−αl
,C−αq)] .

By Proposition 3.1, this payoff is no greater than Ψαq(N,v,C), which means that

player αq does not improve his payoff.

If player αq offers to any player i ∈ Cq ∖ {αq} at least Ψi (N ∖ {αq}, v−αq ,C−αq) , the

offer is accepted. It is simple to prove that player αq obtains, at the most, Ψαq(N,v,C).

Stage 1. First, we prove that for any i ∈ Cq ∈ C1, Bi = 0.

Bi = ∑
j∈Cq∖{i}

bij − ∑
j∈Cq∖{i}

bji

= ∑
j∈Cq∖{i}

[Ψj(N,v,C) −Ψj (N ∖ {i}, v−i,C−i)]

− ∑
j∈Cq∖{i}

[Ψi(N,v,C) −Ψi (N ∖ {j}, v−j,C−j)] .

As the levels structure value satisfies balanced contributions, we have that for any

j ∈ Cq ∖ {i},

Ψi (N,v,C) −Ψi (N ∖ {j}, v−j,C−j) = Ψj (N,v,C) −Ψj (N ∖ {i}, v−i,C−i)

and hence Bi = 0.

Assume that player i ∈ Cq makes a different bid b∗. If B∗i < 0, the proposer will be

another player of Cq. In that case player i cannot increase his payoff.

13



If B∗i > 0, he becomes the proposer but must pay ∑j∈Cq∖{i} b
∗i
j to the other players of

Cq ∖ {i}. It is straightforward to prove that player i can obtain, at most, a final payoff of

Ψi(N,v,C) − ∑
j∈Cq∖{i}

b∗ij + ∑
j∈Cq∖{i}

bij

which is lower than Ψi(N,v,C).
If B∗i = 0 and player i is not the proposer, using similar arguments to those used when

B∗i < 0, we can conclude that player i does not increase his payoff. If B∗i = 0 and player

i is the proposer, using similar arguments to those used when B∗i > 0 we can conclude

that player i does not increase his payoff.

We will now prove that the payoff in all SPNE outcomes coincides with the levels

structure value. We will do this in several steps.

Step A. At every SPNE outcome, and for every Cq ∈ C1, the offer from the proposer

αq to each player i ∈ Cq ∖ {αq} is y
αq

i = Ψi (N ∖ {αq}, v−αq ,C−αq) and every i ∈ Cq ∖ {αq}
accepts this offer.

Assume that in each coalition Cq ∈ {C1, . . . ,Cm−1}, the offer from a proposer αq ∈ Cq
is accepted. Considering the subgame starting with the last coalition Cm, let αm ∈ Cm
be the proposer in Cm, let yαm be an offer from αm, and let the order of reply for the

players in Cm ∖ {αm} be i1, . . . , ik.

Claim 1. At each SPNE, the strategies of the players in Cm ∖ {αm} must satisfy the

following statements:

(i) If yαm
i ≥ Ψi (N ∖ {αm}, v−αm ,C−αm) for every i ∈ Cm∖{αm}, then every i ∈ Cm∖{αm}

accepts yαm .

(ii) If yαm
j < Ψj (N ∖ {αm}, v−αm ,C−αm) for some j ∈ Cm ∖ {αm} , then some player in

Cm ∖ {αm} rejects yαm .

(i) Consider the strategy of the last player ik. Assuming that his decision node is

reached, if he accepts the offer yαm then he receives bαm
ik

+ yαm
ik
, whereas if he rejects yαm

then by the induction hypothesis he obtains bαm
ik

+Ψik (N ∖ {αm}, v−αm ,C−αm) . Hence, at

any SPNE,

● if yαm
ik

> Ψik (N ∖ {αm}, v−αm ,C−αm) , then ik accepts the offer because it is optimal;

● if yαm
ik

= Ψik (N ∖ {αm}, v−αm ,C−αm) , then ik accepts the offer because of the tie-

breaking rule.

Repeating the same argument in reverse, we can show that players ik−1, . . . , i1 accept

the offer.
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(ii) Supposing, to the contrary, that there exists j ∈ Cm∖{αm} with yαm
j < Ψj (N ∖ {αm}, v−αm ,C−αm) ,

but all the players in Cm ∖ {αm} accept the offer yαm . In this case, player j receives

bαm
j + yαm

j . However, if player j deviates and rejects the offer, then he obtains bαm
j +

Ψj (N ∖ {αm}, v−αm ,C−αm) , which is more than bαm
j + yαm

j . Hence, the strategies of the

players in Cm ∖ {αm} cannot constitute an SPNE.

Claim 2. At every SPNE outcome, each i ∈ Cm ∖ {αm} accepts the offer from the

proposer αm.

Supposing, to the contrary, that at some SPNE outcome, there exists i ∈ Cm ∖ {αm}
who rejects the offer yαm . In this case, the proposer obtains

e = v ({αm}) − ∑
i∈Cm∖{αm}

bαm
i .

Supposing that the proposer αm proposes zαm
i = Ψi (N ∖ {αm}, v−αm ,C−αm) to every

i ∈ Cm ∖ {αm} . By Claim 1 (i), every i ∈ Cm ∖ {αm} accepts zαm . Hence, player αm is

the representative of coalition Cm in Round 2. Now, in Rounds 2 through h, there are

m players {α1, . . . , αm} , where, for any coalition Cq ∈ C1, αq is the representative of

coalition Cq. As the representatives are playing an SPNE for the LBM associated with

(C1, v/C1,C/C1), by induction hypothesis on h we know that the payoff obtained by player

αm in Rounds 2 through h is Ψ[Cm] (C1, v/C1,C/C1), which, by the quotient game property,

equals ∑i∈Cm
Ψi (N,v,C) . The final payoff of player αm is, therefore,

ẽ = ∑
i∈Cm

Ψi(N,v,C) − ∑
i∈Cm∖{αm}

Ψi (N ∖ {αm} , v−αm ,C−αm) − ∑
i∈Cm∖{αm}

bαm
i .

By Proposition 3.1 we know that

∑
i∈Cm

Ψi(N,v,C) − ∑
i∈Cm∖{αm}

Ψi (N ∖ {αm}, v−αm ,C−αm) ≥ v ({αm}) .

Thus, e ≤ ẽ.
● If e < ẽ, to offer yαm cannot be an SPNE strategy of the proposer αm, which is a

contradiction.

● If e = ẽ, then αm is indifferent to offering yαm or zαm . By Claim 1 (i), offer zαm is

accepted by each i ∈ Cm ∖ {αm}. By the tie-breaking rule αm must propose zαm better

than yαm , which is a contradiction.

Claim 3. At each SPNE, and for each i ∈ Cm∖{αm}, we have yαm
i = Ψi (N ∖ {αm},C−αm , v−αm).

Let yαm be the offer from αm at an SPNE. By Claim 2, yαm must be accepted

by every i ∈ Cm ∖ {αm} . It follows, therefore, from Claim 1 (ii) that for every i ∈
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Cm∖{αm} , yαm
i ≥ Ψi (N ∖ {αm}, v−αm ,C−αm) . Suppose that for some j ∈ Cm∖{αm} , yαm

j >
Ψj (N ∖ {αm}, v−αm ,C−αm) . For each i ∈ Cm∖{αm}, we define wαm

i = Ψi (N ∖ {αm}, v−αm ,C−αm) .
Assuming that the proposer αm deviates and offers wαm . Then, by Claim 1 (i), each

i ∈ Cm ∖ {αm} accepts wαm . Moreover, since

∑
i∈Cm∖{αm}

wαm
i = ∑

i∈Cm∖{αm}
Ψi (N ∖ {αm}, v−αm ,C−αm) < ∑

i∈Cm∖{αm}
yαm
i ,

the proposer αm obtains a greater payoff by offering wαm than by offering yαm . Hence, to

offer yαm cannot be an SPNE strategy, which is a contradiction.

Repeating the same arguments for coalitions Cm−1, . . . ,C1, we can prove Step A.

Step B. Assume that we are in Stage 1 of Round 1 of the LBM associated with

Cq ∈ C1. For any SPNE, Bi = 0 for any i ∈ Cq.

It is not difficult to prove that ∑i∈Cq
Bi = 0. We take

X = {i ∈ Cq ∶ Bi = max
j∈Cq

Bj} .

If X = Cq, the result holds because ∑i∈Cq
Bi = 0.

If X ≠ Cq, a contradiction results from proving that player i ∈ X has a deviation

which improves his final payoff. We take j ∈ Cq ∖X such that Bj ≥ Bk for any k ∈ Cq ∖X.

Assume that player i makes a new bid b′i, where b′ik = bik + δ if k ∈ X ∖ {i}, b′ij = bij − ∣X ∣δ,
and b′ik = bik if k ∈ Cq ∖ (X ∪ {j}).

For any k ∈ Cq, we compute B′k assuming that b′k = bk for any k ∈ Cq ∖ {i}. Then

B′k = Bk − δ if k ∈X, B′j = Bj + ∣X ∣δ, and B′k = Bk if k ∈ Cl ∖ (X ∪ {j}).
Since Bj < Bi, we can find δ > 0 satisfying Bj + ∣X ∣δ < Bi − δ. Moreover, X ′ =

{k ∈ Cq ∶ B′k = maxh∈Cq B
′h} = X. This means that any player of X is the proposer with

the same probability under bi and b′i. When player i is not the proposer, which happens

with probability ∣X ∣−1
∣X ∣ , he obtains, by Step A, the same by making a bid bi or b′i. But

if player i is the proposer, which happens with probability 1
∣X ∣ , he obtains, by Step A, δ

units more with b′i than with bi.

Step C. Assume that we are in Stage 1 of Round 1 of the LBM associated with

Cq ∈ C1. Then, at each SPNE, the payoff for any player i ∈ Cq is the same regardless of

who is chosen as the proposer.

By Step B, we know that Bi = 0 for any i ∈ Cq.
Assume that some player i strictly prefers to be (not to be) the proposer. In that case

player i can improve his payoff by slightly increasing (decreasing) one of his bids bij. But

this is impossible in an SPNE.
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Step D. In any SPNE outcome for the LBM any player i ∈ N obtains as his final

payoff his levels structure value.

Assume that players are playing according to some SPNE. Given i ∈ Cq ∈ C1, we denote

by pi the final payoff obtained by player i in this SPNE.

By Step B, any player of Cq is the proposer with probability 1
∣Cq ∣ .

If player i is the proposer, we know, by Step A, that his final payoff is

∑
j∈Cq

Ψj (N,v,C) − ∑
j∈Cq∖{i}

Ψj (N ∖ {i}, v−i,C−i) − ∑
j∈Cq∖{i}

bij.

If j ∈ Cq ∖ {i} is the proposer then the final payoff of player i is, by Step A,

bji +Ψi (N ∖ {j}, v−j,C−j) .

By Step C, we know that

∣Cq ∣pi = ∑
j∈Cq

Ψj (N,v,C) − ∑
j∈Cq∖{i}

Ψj (N ∖ {i}, v−i,C−i) − ∑
j∈Cq∖{i}

bij

+ ∑
j∈Cq∖{i}

[bji +Ψi (N ∖ {j}, v−j,C−j)] .

By Step B, we know that −∑j∈Cq∖{i} b
i
j +∑j∈Cq∖{i} b

j
i = −Bi = 0.

Hence, ∣Cq ∣pi =

∑
j∈Cq∖{i}

[Ψi (N ∖ {j}, v−j,C−j) −Ψj (N ∖ {i}, v−i,C−i)] + ∑
j∈Cq

Ψj (N,v,C) .

Since the levels structure value satisfies the property of balanced contributions, we

have

∣Cq ∣pi = ∑
j∈Cq∖{i}

[Ψi (N,v,C) −Ψj (N,v,C)] + ∑
j∈Cq

Ψj (N,v,C)

= (∣Cq ∣ − 1)Ψi (N,v,C) − ∑
j∈Cq∖{i}

Ψj (N,v,C) + ∑
j∈Cq

Ψj (N,v,C)

= ∣Cq ∣Ψi (N,v,C) .

Therefore, pi = Ψi (N,v,C).

4 Conclusions

In this paper we have developed a bidding mechanism that implements the levels struc-

ture value of every game with a levels structure of cooperation. The mechanism is a

generalization of the bidding model described by Pérez-Castrillo and Wettstein (2001).
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In equilibrium, we have imposed the condition that players prefer larger to smaller

coalitions. The next example shows that this condition is necessary. Note that players

from coalition {1,2} are indifferent to leaving the game and staying in it (they obtain

0 anyway). Players in {3,4}, however, are sensitive to player 1 or player 2 leaving the

game.

Consider (N,v,C) with h = 2, whereN = {1,2,3,4}, C = {C0,C1,C2}, C1 = {{1,2} ,{3,4}}.

Moreover, v is the characteristic function associated with the weighted majority game

where the quota is 3 and the weights are 1, 1, 1, and 2 respectively. This means that

v(S) = 1 if and only if S contains some of the following subsets: {1,2,3}, {1,4}, {2,4},

or {3,4}.

It is straightforward to prove that

Ψ (N,v,C) = (0,0, 1
2 ,

1
2
)

Ψ (N ∖ {1}, v−1,C−1) = (−,0, 1
4 ,

3
4
)

Ψ (N ∖ {2}, v−2,C−2) = (0,−, 1
4 ,

3
4
)

Ψ (N ∖ {3}, v−3,C−3) = (1
4 ,

1
4 ,−, 1

2
)

Ψ (N ∖ {4}, v−4,C−4) = (1
4 ,

1
4 ,

1
2 ,−) .

The LBM in this example is as described as follows: Players 1 and 2 simultaneously

choose bids b1
2 and b2

1, respectively. If b1
2 > b2

1, then player 1 proposes y1
2. If b1

2 < b2
1, then

player 2 proposes y2
1. If b1

2 = b2
1, then a randomly chosen player (1 or 2) proposes y1

2 or y2
1.

Let α1 be the proposer and β1 be the other player. Player β1 can either accept or reject.

Assume first that player β1 accepts. Then, players 3 and 4 simultaneously choose bids b3
4

and b4
3, respectively. Let α2 be the player with the highest bid and let β2 be the player

with the lowest bid (as before). Player α2 proposes yα2

β2
and player β2 either accepts or

rejects. If player β2 accepts, then player αl pays bαl

βl
+ yαl

βl
to player βl for l = 1,2. Players

β1 and β2 give their resources to α1 and α2 (respectively) and leave the game. Players α1

and α2, with their new resources, repeat the procedure.

If player β2 rejects, player α2 pays bα2

β2
to player β2 and leaves the game. Players in

N ∖ {α2} should then repeat the procedure from the beginning.

Now assume that player β1 rejects. In this case, player α1 pays bα1

β1 to player β1 and

leaves the game. Players in N ∖ {α1} repeat the procedure from the beginning.

The mechanism when there is a single player in one of the coalitions (C1 or C2) is

similar to the above. However, the only player in the singleton becomes representative

for sure, but only with his own resources.

We now define an SPNE whose payoff outcome is (0,0, 1
4 ,

3
4
).
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Round 1. First, we describe the strategies of players 1 and 2. The bids are b1
2 = b2

1 = 0.

The proposer α is randomly chosen between 1 and 2. Moreover, yαj = 0 and player j

accepts the offer of α if and only if α offers him something strictly positive (hence, under

these strategies, the proposal is rejected).

We now describe the strategies of players 3 and 4. In the subgame obtained after

the offer of α is accepted, the strategies of players 3 and 4 coincide with the strategies

whose payoff outcome is the levels structure value. We know that these strategies exist

by Theorem 3.1. In the subgame obtained after the offer of α is rejected, the strategies of

players 3 and 4 coincide with the strategies whose payoff outcome is the levels structure

value of (N ∖ {α}, v−α,C−α).
Round 2. We assume the representatives play according to the strategies described in

Pérez-Castrillo and Wettstein (2001), which implement the levels structure value.

It is not difficult to confirm that these strategies are an SPNE. However, they do not

satisfy the tie-breaking rule.

According to these strategies, the offer of player α is rejected, which means that player

α obtains a final payoff of v ({α}) = 0. Players of N ∖ {α}, therefore, obtain as their final

payoff Ψ (N ∖ {α}, v−α,C−α). This means that the final payoff induced by these strategies

is (0,0, 1
4 ,

3
4
).
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