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Abstract

In the context of cost sharing in minimum cost spanning tree prob-

lems, we introduce a property called merge-proofness. This property

says that no group of agents can be better off claiming to be a single

node. We show that the sharing rule that assigns to each agent his

own connection cost (the Bird rule) satisfies this property. Moreover,

we provide a characterization of the Bird rule using merge-proofness.
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1 Introduction

Minimum cost spanning tree problems (mcstp) are used to model situations

where a group of agents, located at different geographical points, want a

particular service which is provided by a common supplier, or source. The

agents will be served through connections which entail some cost. However,

agents do not care whether they are connected directly or indirectly to the

source. Many economic situations can be modeled in this way, for instance,

some houses in a village may want to be connected to a common water source

or to a power plant. Other examples include communication networks such

as Internet, cable television or telephone.

The optimal network is a minimum cost spanning tree (mt). An algo-

rithm for building an mt is provided by Prim (1957). But building an mt

is only a part of the problem. Another important issue is how to divide the

cost associated with an mt among the agents. A rule is a mapping that

determines, for each problem, a division of the amount to be paid by the

agents involved in the problem.

Bird (1976) was the first to associate a coalitional game with any mc-

stp. Moreover, in case the mcstp has a unique mt, he showed that the rule

that assigns to each agent his own connection satisfies core selection, i.e.

the assignment (known as the Bird rule) always belongs to the core of the

coalitional game. Other rules derived from solutions in coalitional games,

such as the core itself and the nucleolus were further studied by Granot and

Huberman (1981, 1984). See Sharkey (1995) for a survey. More recently, ad-

ditional rules have been studied: Kar (2002) characterized the Shapley value

in the context of mcstp; Dutta and Kar (2004) proposed and characterized a

new rule, and furthermore they characterized the Bird rule using a property

of ”restricted consistency”; and Bergantiños and Vidal-Puga (2007a) defined
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and characterized another rule, ϕ. On the other hand, Bergantiños and

Lorenzo-Freire (2008) showed that ϕ coincides with a rule previously defined

by Feltkamp et al. (1994) and also studied in Bergantiños and Vidal-Puga

(2004). This rule has also been characterized in Branzei et al. (2004) and

Bergantiños and Vidal-Puga (2007b).

Different rules are usually associated with alternative sets of desired ax-

ioms. The aim of the axiomatic characterization is to identify a well-defined

set of properties for each rule. It allows to obtain different insights on the

principles underlying the rule, and on the type of problems for which it might

be suitable.

In this paper, we focus on a new property called merge-proofness. The

idea behind this property is that there exists a planner who wants to construct

a network to connect all the agents to a source. In this kind of situations

some agents may have incentives to join in advance in order to be treated as a

single agent. A rule satisfies merge-proofness if the agents have no incentives

to do so.

This property is related to others that have been studied in other con-

texts. For instance, a bankruptcy problem describes a situation in which

an arbitrator has to allocate a given amount among a group of agents who

have claims on it, those claims adding up to more than is available. A prop-

erty known as no-advantageous-merging (O’Neill1, 1982) has been studied

in this framework. This property means that no group of creditors have in-

centives to pool their claims and to present themselves as a single creditor.

We can find a different type of manipulation in Social Choice, where group-

strategyproofness ensures that no subset of agents can gain by reporting false

preferences.

We show that merge-proofness is a very strong property as no symmetric

rule satisfies it. We hence have to restrict ourselves to a smaller class of

mcstp. On the domain of problems in which all the connecting costs in any

mt are different or zero, we show that the Bird rule is the only rule satisfying

1O’Neill uses the name strategy-proofness.
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merge-proofness, no-subsidy, and independence of extreme null points. No-

subsidy states that no coalition of agents should subsidize the other agents,

paying more than the cost of connecting themselves to the source2.

Merge-proofness has been independently studied by Özsoy (2006) under

the name overt-merge-proofness. On the class of mcstp admitting a unique

mt with all its costs different, Özsoy shows that the Bird rule is the only

rule satisfying merge-proofness, no-subsidy3 and tree invariance. Hence, the

critical difference between Özsoy’s results and ours is this last property. Tree

invariance states that if the cost of the connections increases, but there is

an mt of the original problem that remains the same and its cost does not

increase, then each agent should pay the same in the new problem. On the

other hand, independence of extreme null points states that if an agent is a

leaf (extreme point) that connect at null cost to any mt, then the remaining

agents pay the same if we remove it from the problem4.

The paper is organized as follows. In Section 2 we introduce the model

and present the properties used in the characterization. In Section 3 we show

by an example that merge-proofness is a very strong property in the general

framework. We hence have to restrict ourselves to a smaller class of mcstp.

In Section 4 we present the domain restriction and prove that the Bird rule is

well-defined in this domain. In Section 5 we prove that the Bird rule satisfies

the properties and we also present the characterization result. In Section 6

we prove that the properties are independent.

2This property is equivalent to the property of core selection in the associated coalitional

game. See Bird (1976).
3Özsoy calls it core selection.
4Tree invariance and independence of extreme null points are different properties. For

example, the Dutta-Kar rule satisfies tree invariance but not independence of extreme null

points. On the other hand, consider the rule: ϕi(N0, C) = 0 if i is and extreme null point,

and ϕi(N0, C) = Shi((N\S)0, C) if i is not an extreme null point, where S is the set of

extreme null points and Sh is the Shapley value of (N0, C), as studied by Kar (2002). ϕ

satisfies independence of extreme null points but not tree invariance.
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2 The model

Let N be a finite set of agents who want to be connected to a source. Usually,

we denote the set of agents as N = {1, 2, ..., n}. Let N0 = N ∪ {0}, where 0

is the source.

A cost matrix on N0, C = (cij)i,j∈N0 gives the cost of direct link between

any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0, and

cii = 0 for each i ∈ N0.

We denote the set of all cost matrices on N as CN . Given two matrices

C,C ′ ∈ CN , we say C ≤ C ′ if cij ≤ c′ij for all i, j ∈ N0.

A minimum cost spanning tree problem, briefly mcstp, is a pair (N0, C)

where N is the set of agents, 0 is the source, and C ∈ CN .

A network g over N0 is a subset of {(i, j) : i, j ∈ N0}. The elements of g

are called arcs. We assume that the arcs are undirected, i.e. (i, j) and (j, i)

represent the same arc.

Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of distinct arcs {(ih−1, ih)}lh=1 satisfying (ih−1, ih) ∈ g for all

h ∈ {1, 2, ..., l}, i = i0 and j = il.

A tree over S ⊂ N0 is a network such that for all i, j ∈ S there exists a

unique path from i to j.

Given a network g, we say that two nodes i, j are connected in g if there

exists a path from i to j in g.

Let GN denote the set of all networks over N0. Let GN0 denote the set of

all networks over N0 such that every node in N is connected to the source.

Let T N0 denote the set of all trees over N0. Clearly, T N0 ⊂ GN0 ⊂ G
N .

Given g ∈ GN , we define the cost associated with g in (N0, C) as

c(N0, C, g) =
∑

(i,j)∈g

cij.

When there is no ambiguity, we write c(g) or c(C, g) instead of c (N0, C, g).

A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t ∈ T N0

such that c(t) = ming∈GN
0

c(g). Given an mcstp (N0, C), an mt always exists
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but it may not be unique. We denote the cost associated with any mt on

(N0, C) as m(N0, C).

Given S ⊂ N0, let CS denote the matrix C restricted to S. We denote the

restriction to S of the mcstp (N0, C) as (S,CS), and the cost associated with

any mt on (S,CS) as m(S,CS), that is, m(S,CS) is the cost of connection

of the agents in S among themselves. Note that when 0 �∈ S, m(S,CS) does

not include the cost of connection to the source.

Given a tree t, we define the predecessor set of a node i in t as P (i, t) =

{j ∈ N0 : j is in the unique path from i to the source}. We assume that i �∈

P (i, t) and 0 ∈ P (i, t) when i �= 0. For notational convenience, P (0, t) = ∅.

The distance from node i to the source in t is the cardinality of P (i, t). The

immediate predecessor of agent i in t, denoted as i0, is the node that comes

immediately before i, that is, i0 ∈ P (i, t) and k ∈ P (i, t) implies either k = i0

or k ∈ P (i0, t). Note that P (i0, t) ⊂ P (i, t) and P (i, t)\P (i0, t) = {i0}. The

follower set of an agent i in t is the set F (i, t) = {j ∈ N : i ∈ P (j, t)}. The

immediate followers of agent i in t, denoted as IF (i, t), is the set of agents

that come immediately after agent i, that is, IF (i, t) = {j ∈ F (i, t) : j0 = i}.

Let ΠN denote the set of all orders in N . Given π ∈ ΠN , let P
π
i denote

the set of elements in N which come before i in the order given by π, i.e.

P πi := {j ∈ N : π(j) < π(i)}.

Notice that, in this case, 0 /∈ P πi since 0 is not an agent in N .

Given S ⊂ N0, we say that i, j ∈ S, i �= j are (C, S)-connected (Norde et

al., 2004) if there exists a path g from i to j satisfying that ckl = 0 for all

(k, l) ∈ g.

We say that S ⊂ N0 is a C-component if two conditions hold: First, for

all i, j ∈ S, i and j are (C, S)-connected. Second, S is maximal, i.e. if S � T,

there exist i, j ∈ T, i �= j such that i and j are not (C, T )-connected.

The set of C-components constitutes a partition of N0.

There are several algorithms in the literature to construct an mt. Prim

(1957) provides one. Sequentially, the agents connect, either directly or in-
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directly to the source. At each stage, one of the cheapest arcs between the

connected and the unconnected agents is added.

Prim’s algorithm

Let S0g = {0} and g
0 = ∅.

Stage 1: Take an arc (0, i) such that c0i = min
j∈N

{c0j}. Now, S1g = {0, i}

and g1 = {(0, i)}.

Stage p: Assume we have defined Sp−1g ⊂ N0 and g
p−1 ∈ GN . We now

define Spg and gp. Take an arc (i, j), i ∈ Sp−1g , j ∈ N0\Sp−1g , such that

cij = min
k∈Sp−1g ,l∈N0\S

p−1
g

{ckl}. Now Spg = S
p−1
g ∪ {i} and gp = gp−1 ∪ {(i, j)}.

This process terminates in n stages. We say that gn is a tree obtained

via Prim’s algorithm.

This algorithm provides a mt. An mt may not be unique (when the min-

imizer arc is not unique), but each mt can be obtained via Prim’s algorithm.

A (cost allocation) rule is a function φ that assigns to each mcstp (N0, C)

a vector φ(N0, C) ∈ RN such that
∑

i∈N φi(N0, C) = m(N0, C), where

φi(N0, C) represents the cost assigned to agent i.

Notice that we implicitly assume that the agents build an mt.

Bird (1976) introduced a rule which is defined through Prim’s algorithm.

He assumed that there is a unique mt.

Definition 2.1 (Bird, 1976) Given an mcstp (N0, C) and an mt t = {(i0, i)}i∈N

in (N0, C), the Bird rule (B) is defined as:

Bti(N0, C) = ci0i

for each i ∈ N .

The idea of the Bird rule is quite simple: The agents connect to the source

following Prim’s algorithm and each agent pays the cost of the adjacent arc

in the path to the source.

We now introduce different properties of the rules.
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Definition 2.2 A rule φ satisfies no-subsidy if for all mcstp (N0, C) and

all S ⊂ N ,
∑

i∈S

φi(N0, C) ≤ m(S0, CS0).

This property says that no group of agents can be better off constructing

their own network instead of paying what the rule φ proposes to them.

Before moving on to the next property, we introduce the concept of an

extreme null point.

Definition 2.3 Given an mcstp (N0, C) and an mt t in (N0, C), we say that

i ∈ N is an extreme point in t if F (i, t) = ∅.

Definition 2.4 Given an mcstp (N0, C) we say that i ∈ N, in all the mt

in (N0, C), is an extreme null point if it is an extreme point and moreover

ci0i = 0.

Dutta and Kar (2004) defined the concept of extreme point. They argued

that since node i is an extreme point, this node is of no use to the rest of the

network since no node is connected to the source through node i.

We argue the same for every extreme null point. Moreover, since i con-

nects to the source with null cost, it does not increase the total cost of the

network. Hence, we can consider that node i is not beneficial for the rest

of agents but neither is a problem for them. So, it seems reasonable that

the allocation of the rest of the agents does not change if he connects to the

source.

The property that we define states that if agent i is an extreme null point,

no agent j will pay a different cost in order to include agent i in the network.

Formally:

Definition 2.5 A rule φ satisfies independence of extreme null points if for

all mcstp (N0, C) and all extreme null point i ∈ N ,

φj(N0\{i}, CN0\{i}) = φj(N0, C)

for all j ∈ N\{i}.
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This property implies that each extreme null point pays zero.

Remark 2.1 This property is similar to one defined by Derks and Haller

(1999) for TU coalitional games, called “Null Player Out”, which requires

that a null player (that is, an individual whose contribution to any coalition

is zero) does not influence the utility allocation within the rest of the society5.

We next consider the possibility that a group of agents S ⊂ N joins in

advance to be treated as a single node α ∈ S.

The result is a new problem, called reduced problem, where the cost of

connection between some node i in N0\S and α is the minimal connection

cost between node i and any of the agents in S. The other costs remain as

in the initial problem. Formally,

Definition 2.6 Given an mcstp (N0, C) and α ∈ S ⊂ N , the reduced

problem (NSα
0 , C

Sα) is defined as NSα = (N\S) ∪ {α}, cSαij = cij for all

i, j ∈ N0\S, and cSαiα = min
j∈S
{cij} for all i ∈ N0\S.

We introduce a new property in mcstp:

Definition 2.7 A rule φ satisfies merge-proofness if for all mcstp (N0, C),
∑

i∈S

φi(N0, C) ≤ φα(N
Sα
0 , C

Sα) +m(S,CS)

for all α ∈ S ⊂ N .

This property asserts that no group of agents have any incentive to join

in advance, paying the cost, to be treated as a single agent.

3 Two examples

In this section we introduce two examples. The first one illustrates merge-

proofness and shows that this property is incompatible with symmetry. The

second example shows that some of the rules in the literature are not merge-

proof.

5Hamiache (2006) uses the term ”Independence of Irrelevant Players”.
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Example 3.1 There are three agents, 1, 2 and 3. The connection cost be-

tween each agent and the source is 28. The connection cost between agents 1

and 2 and between agents 1 and 3 is 16. The connection cost between agents

2 and 3 is 8.

This problem is represented in the following figure:

2

31

0

16

28
28

8

16

28

where 0 is the source.

The minimum connection cost is 52 (there exist more than one minimum

cost spanning tree).

Let xi be the assignment that a rule proposes to each agent i.

Suppose now that the agents in {2, 3} join and act as a single one. The

resulting problem can be represented as follows6:

0

{2,3}1

28 28

16

6Formally speaking, agent {2, 3} should be replaced by either agent 2 or agent 3.
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By a symmetry argument, the allocation in this problem should be (22, 22).

Moreover, since the cost of connecting agents 2 and 3 is 2, under merge-

proofness the rule should assign them no more than 30, i.e. x2+x3 ≤ 22+8.

Proceeding in the same way with coalitions {1, 2} and {1, 3}, we obtain

x1+x2 ≤ 18+16 and x1+ x3 ≤ 18+16. However, the minimum connection

cost is 52, hence we have an incompatibility.

Remark 3.1 Even without symmetry, Özsoy (2006, Proposition 2) shows

that there exists no merge-proofness rule on the general domain.

It may be argued that this is a special example, because there are more

than one possible minimum cost spanning tree. In the literature of mcstp it

is usual to assume a unique minimum cost spanning tree, or even that there

are not two arcs with the same cost (see, for instance, Bird (1976) and Dutta

and Kar (2004)). We study this situation next.

Example 3.2 Consider the problem represented in the following figure:

2

31

0

18

72
84

24

12

90

where 0 is the source.

We study the assignment proposed by several rules in the literature. These

are given in the following table. The rules with an asterisk are the rules that
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satisfy no-subsidy.

1 2 3

Shapley value (Kar, 2002) 37 28 37

Bird* (1976) 18 72 12

Dutta and Kar* (2004) 12 18 72

Nucleolus* (Granot and Huberman, 1984) 32 32 38

Bergantiños and Vidal-Puga* (2007a) 33 36 33

Assume now that the agents in {2, 3} join and act as one. The resulting

problem can be represented as follows:

0

{2,3}1

90 72

12

In this case, the proposal given by each of the previous rules is:

1 {2, 3}

Shapley value (Kar, 2002) 51 33

Bird (1976) 12 72

Dutta and Kar (2004) 72 12

Nucleolus (Granot and Huberman, 1984) 51 33

Bergantiños and Vidal-Puga (2007a) 42 42

The question is: Do these rules satisfy merge-proofness? If we compare
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the costs that agents 2 and 3 have to pay in both situations, we have

Shapley value (Kar, 2002) 28 + 37 > 33 + 24

Bird (1976) 72 + 12 < 72+ 24

Dutta and Kar (2004) 18 + 72 > 12 + 24

Nucleolus (Granot and Huberman, 1984) 32 + 38 > 33 + 24

Bergantiños and Vidal-Puga (2007a) 36 + 33 > 42 + 24

Hence, in this example, only the rule defined by Bird (1976) satisfies

merge-proofness. We will prove that this result holds in general.

4 The domain restriction

In this Section we define the domain restriction on the set of permissible

cost matrices that will be used. This restriction is necessary because of the

incompatibility presented in Section 3. Additionally, we required the domain

to be closed under the operation of merging, i.e. if a coalition S ∋ α merges,

the resulting problem
(
NSα
0 , C

Sα
)
should also belong to the domain.

Definition 4.1 For each C ∈ CN , let g∗ (C) be the set of arcs that belong to

at least one mt in C. We define D := {C ∈ CN : no two arcs in g∗ (C) with

positive cost have the same value}.

Remark 4.1 Dutta and Kar (2004) define two different domain restrictions.

These definitions are the following:

C1 := {C ∈ CN : C induces a unique mt},

C2 := {C ∈ C1 : no two edges of the unique mt have the same cost}.

It is clear that C2 is contained in D. The domain C1 is not contained in

D. In fact, any domain that contains C1 is not closed under the operation of

merging. Take N = {1, 2, 3, 4, 5, 6}, and C ∈ C1 defined by c01 = c02 = c03 =

28; c14 = 8; c25 = c36 = 16 and cij = 30 otherwise. It is clear that there

exists a unique mt. After players {2, 4}, {3, 5} and {1, 6} merge, we have a

13



problem that is not in C1 and, moreover, it coincides with the one presented

in Example 3.1 to show the non existence of symmetric, merge-proof rules7.

In the next Proposition we state that in the reduced problem the matrix

CSα belongs to D when C also belongs to D.

Proposition 4.1 If C∈ D, then CSα ∈ D for all α ∈ S ⊂ N .

The proof is straightforward and we omit it.

Recall that Bird (1976) defines the Bird rule when there is a unique mt.

Over D, there might exist several mt. The next Proposition states that even

though this is true, the Bird assignment is the same for all of them.

Proposition 4.2 Let C ∈ D and let t, t′ be two different mt on (N0, C).

Then, Bti(N0, C) = B
t′

i (N0, C) for all i ∈ N .

Proof. We will construct t and t′ following Prim’s algorithm.

Since C ∈ D, both trees have the same arcs until one agent connects to

the source with null cost. In that case, more than one arc with the same

cost may exist. Assume this happens in stage p. Hence, tp−1 = t′p−1 and

Sp−1t = Sp−1t′ . By definition of the Bird rule, Bti(N0, C) = Bt
′

i (N0, C) for all

i ∈ Sp−1t = Sp−1t′ .

Since we have found an arc with null cost, we have a non-trivial C-

component, say S ⊂ N0. Since all the agents in S, but the first one, con-

nect with null cost, whatever the order of connection of the agents from

the C-component, each of them should pay zero under t and t′. Hence

Bti(N0, C) = B
t′

i (N0, C) for all i ∈ S.

When all the agents in S are connected to the source, the following arc

that connects to the source, if any, has positive cost. Hence, the domain D

requires that the arcs formed in both trees, t and t′ be the same again until

a new C-component appears.

7Despite the domain in the characterization result cannot contain C1, it is still possible

to prove that the Bird rule satisfies merge-proofness in C1. See Özsoy (2006, Proposition

3).
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The procedure for the remaining C-components is analogous because all

the agents in the C-component (but the first one) connect at zero cost, and

they pay zero.

5 The main result

In this section we present a characterization of the Bird rule on D. It is

the only rule satisfying no-subsidy, independence of extreme null points and

merge-proofness. First, in Proposition 5.1, we prove that the Bird rule sat-

isfies the mentioned properties.

Proposition 5.1 Over the domain D, the Bird rule satisfies no-subsidy, in-

dependence of extreme null points, and merge-proofness.

Proof. B satisfies no-subsidy. See Bird (1976).

B satisfies independence of extreme null points. It is straightforward.

B satisfies merge-proofness:

Let t = {(i0, i)}i∈N be an mt in the problem (N0, C). Let α ∈ S ⊂ N .

Consider now (S,CS) and let τ be an mt in (S,CS), i.e. c(τ) = m(S,CS).

Let i∗ be the first agent in S that connects to the source following Prim’s

algorithm in t (i.e. Spt ∩ S = {i∗} and Sp−1t ∩ S = ∅). Note that i∗0 ∈ N0\S.

Given t, we construct a new network in the problem (N0, C). Let

t∗ = (t\{(i0, i)}i∈S) ∪ {(i
∗0, i∗)} ∪ τ .

It is straightforward to check that t∗ is a tree in (N0, C).

Since t is an mt in this problem, c (t) ≤ c (t∗). Hence,

c (t) ≤ c (t)−
∑

i∈S

ci0i + ci∗0i∗ + c(τ)

that is,

∑

i∈S

ci0i ≤ ci∗0i∗ + c(τ) = ci∗0i∗ +m(S,CS).
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Since i∗ is the first agent in S to be connected, ci∗0i∗ = min
j∈S
{ci∗0j} = c

Sα
i∗0α.

Hence, we can rewrite the above expression as:

∑

i∈S

ci0i ≤ c
Sα
i∗0α +m(S,CS).

It is clear that, following Prim’s algorithm, we can construct an mt t′ in

(NSα
0 , C

Sα) such that (i∗0, α) ∈ t′. Hence, by definition of the Bird rule,

∑

i∈S

Bi(N0, C) ≤ Bα(N
Sα
0 , C

Sα) +m(S,CS).

Now we present a characterization of the Bird rule.

Theorem 5.1 On the domain D, a rule φ satisfies merge-proofness, no-

subsidy, and independence of extreme null arcs if and only if φ = B.

Proof. We know by Proposition 5.1 that B satisfies these properties. Let

t = {(i0, i)}i∈N be an mt in the problem (N0, C). Let φ be a rule satisfying

merge-proofness, no-subsidy and independence of extreme null points.

Since t is anmt, we have
∑

i∈N φi (N0, C) =
∑

i∈N ci0i. Hence, it is enough

to prove that, for each i ∈ N , ci0i ≤ φi(N0, C).

Let Fi = F (i, t) and let η = |IF (i, t)|. This means that there are η agents

connected directly to agent i in the mt, maybe η = 0.

Consider a new problem (N ǫ
0, C

ǫ) similar to (N0, C), but adding an ”im-

perfect substitute” for agent i. Formally, N ǫ
0 = N0 ∪ {α} with ǫ > 0 suffi-

ciently small, cǫjj′ = cjj′ for all j, j
′ ∈ N0, cǫiα = 0, cǫjα = cji + ǫj , ǫj ≤ ǫ for

all j ∈ IF (i, t), and cǫjα large enough for all j ∈ N0\ (IF (i, t) ∪ {i}). Under

these conditions, tǫ := t ∪ {(i, α)} is an mt for (N ǫ
0, C

ǫ), c(tǫ) = c(t), and α

is an extreme null point in (N ǫ
0, C

ǫ).

Assume the agents in Fi∪{α} join to be treated as a single node α. That

is, consider the reduced problem8 (N ǫSα
0 , CǫSα) with S = Fi ∪ {α}.

By definition, cǫSαiα = min
j∈S
{cǫij}, hence c

ǫSα
iα ≤ cǫiα. Since c

ǫ
iα = 0, cǫSαiα = 0.

8We write N ǫSα
0

instead of (N ǫ)Sα
0

and CǫSα instead of (Cǫ)Sα.
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It is straightforward to check that t′ = {(j0, j)}j∈N\Fi∪{(i, α)} is an mt in

(N ǫSα
0 , CǫSα) and, moreover, (i, α) is an extreme null point for

(
N ǫSα
0 , CǫSα

)
.

Since φ satisfies merge-proofness,

∑

j∈S

φj(N
ǫ
0, C

ǫ) ≤ φα(N
ǫSα
0 , CǫSα) +m(S,CǫS).

Under independence of extreme null points, φα(N
ǫSα
0 , CǫSα) = 0. Hence,

∑

j∈S

φj(N
ǫ
0, C

ǫ) ≤ m(S,CǫS). (1)

We study both terms.

Let K = N\Fi. Note that i ∈ K and K = N ǫ\S.

Claim I
∑

j∈S

φj(N
ǫ
0, C

ǫ) = m(N0, C)−
∑

j∈K\{i}

φj(N
ǫ
0 , C

ǫ)− φi(N
ǫ
0, C

ǫ).

In the problem (N ǫ
0, C

ǫ),

m(N ǫ
0, C

ǫ) =
∑

j∈K\{i}

φj(N
ǫ
0, C

ǫ) + φi(N
ǫ
0 , C

ǫ) +
∑

j∈S

φj(N
ǫ
0, C

ǫ).

Clearly, m(N ǫ
0, C

ǫ) = m(N0, C) and hence the result.

Claim II m (S,CǫS) ≤ m(N0, C)−m
(
K0\{i}, CǫK0\{i}

)
− ci0i + ηǫ.

Let IFi = IF (i, t). By definition of Cǫ, for an ǫ sufficiently small, we

can construct an mt τ on (S,CǫS) such that the immediate followers of

agent i in t connect to α and the rest of agents in S connect to the

same nodes as in t, i.e. τ = {(j0, j)}j∈Fi\IFi ∪ {(α, j)}j∈IFi is an mt on

(S,CǫS).

Hence, m(S,CǫS) =
∑

j∈Fi\IFi

cǫj0j +
∑

j∈IFi

cǫαj .

By definition, cǫj0j = cj0j for all j ∈ Fi\IFi and c
ǫ
αj ≤ cij + ǫ for all

j ∈ IFi. Since η = |IFi|,

m(S,CǫS) ≤
∑

j∈Fi

cj0j + ηǫ. (2)

Consider now (Fi ∪ {i}, CFi∪{i}). It is straightforward to check that we
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can construct an mt t∗ on (Fi ∪{i}, CFi∪{i}) such that each agent in Fi

connects to the same nodes as in t, i.e. t∗ = {(j0, j)}j∈Fi is an mt on

(Fi ∪ {i}, CFi∪{i}).

Hence, m(Fi ∪ {i}, CFi∪{i}) =
∑

j∈Fi

cj0j.

Replacing this expression in (2),

m(S,CǫS) ≤ m(Fi ∪ {i}, CFi∪{i}) + ηǫ.

On the other hand, since no agent in K connects to the source through

agent i in t,

m(N0, C) = m(K0\{i}, CK0\{i}) + ci0i +m(Fi ∪ {i}, CFi∪{i}).

Combining the last two expressions:

m(S,CǫS) ≤ m(N0, C)−m(K0\{i}, CK0\{i})− ci0i + ηǫ

= m(N0, C)−m(K0\{i}, C
ǫ
K0\{i}

)− ci0i + ηǫ

and hence Claim II is proved.

Applying Claim I, Claim II and equation (1),

m(K0\{i}, C
ǫ
K0\{i}

)−
∑

j∈K\{i}

φj(N
ǫ
0, C

ǫ) + ci0i − ηǫ ≤ φi (N
ǫ
0, C

ǫ) .

Since φ satisfies no-subsidy,

ci0i − ηǫ ≤ φi (N
ǫ
0, C

ǫ) .

Under independence of extreme null points, φi (N
ǫ
0, C

ǫ) = φi (N0, C).

Thus, ci0i − ηǫ ≤ φi (N0, C). But φi(N0, C) does not depend on ǫ. Hence,

ci0i ≤ φi(N0, C).
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6 Independence of the axioms

In this section we show that the three axioms used in Theorem 5.1 are inde-

pendent.

The following rule assigns to each agent half of the cost of his adjacent

arcs in the mt. Moreover, the agents that connect directly to the source pay

the entire connection cost with the source. Formally,

φ1i (N0, C) :=






c0i +
1
2

∑

j∈IF (i,t)

cij if i0 = 0

1
2
ci0i +

1
2

∑

j∈IF (i,t)

cij if i0 �= 0

for all C ∈ D and i ∈ N .

This rule satisfies a stronger property than merge-proofness, which states

that if a group of agents S join in advance in order to be treated as a single

node, no agent in N\S gets worse off in the reduced problem. Formally,

Definition 6.1 Let C ∈ D and α ∈ S ⊂ N. A rule φ satisfies strong merge-

proofness if

φi
(
NSα
0 , C

Sα
)
≤ φi (N0, C)

for all i ∈ N\S.

Remark 6.1 It is not difficult to check that strong merge-proofness implies

merge-proofness. The opposite is not true. For example, the Bird rule does

not satisfy strong merge-proofness: Consider the mcstp (N0, C) with N =

{1, 2, 3, 4}, c01 = 5, c12 = 10, c23 = 8, c34 = 9 and cij > 10 for the rest

of the arcs. The unique mt is t = {(0, 1), (1, 2), (2, 3), (3, 4)}. In this case,

Bt3(N0, C) = 8.

Assume now that the agents in {1, 4} join. The resulting problem will be:

NSα = {1, 2, 3}, cSα01 = 5, cSα13 = 9, cSα23 = 8, and cSαij > 10 for the rest of the

arcs. Now the unique mt is tSα = {(0, 1), (1, 3), (3, 2)}, and Bt3(N0, C
Sα) = 9.

Even though strong merge-proofness is defined for any S ⊂ N , we can

restrict ourselves to the case |S| = 2. The reason is that any rule that satisfies
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strong merge-proofness for |S| = 2 will also satisfy strong merge-proofness

for every |S| > 2. To see why, assume the agents in S merge one by one.

Each time an agent joins the merging coalition, strong merge-proofness for

two-agent coalitions implies that no agent in N\S is worse off.

Hence, it is useful to study the reduced problem when S = {α, β}. Given

an mt t in (N0, C), we can construct an mt in
(
NSα
0 , C

Sα
)
by simply deleting

the most expensive arc in the path that joins α and β, as shown in Figure 1.

k

α

β

l

0 0

α β

a) b)

l

k

Figure 1: Figure 1a) represents an mt in (N0, C). The most expensive arc in

the path that connects α and β is (k, l). In Figure 1b) nodes α and β join

and the most expensive arc is removed. The resulting tree is an mt in the

reduced problem.

This result is formally stated in the next lemma:

Lemma 6.1 Let (N0, C) be an mcstp and let t be an mt in (N0, C). Given

S = {α, β} ⊂ N , let ταβ be the path that connects α and β in t. Let t̂ : =

t\ {(k, l)} for some (k, l) ∈ argmax(i,j)∈ταβ cij.

The network

tSα :=
(
t̂\ {(β, i)}(β,i)∈t̂

)
∪ {(α, i)}(β,i)∈t̂

is an mt on
(
NSα
0 , C

Sα
)
.
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Proof. Consider themcstp (N0, C
′) defined as c′ij = cij for all {i, j} �= {α, β}

and c′αβ = ckl. It is straightforward to check that t is also an mt on (N0, C
′)

(see for example the proof of Proposition 2.2iii in Aarts and Driessen (1993)).

Since the cost of the arc (α, β) does not affect the definition of
(
NSα, CSα

)
,

CSα and C ′Sα coincide. Hence, it is enough to prove that tSα is an mt on
(
NSα, C ′Sα

)
. We proceed by a contradiction argument. Assume there exists a

tree t∗ on
(
NSα, C ′Sα

)
such that c

(
t∗, C ′Sα

)
< c

(
tSα, C ′Sα

)
. The counterpart

of t∗ in (N0, C
′) is defined as follows. Let

Oβ :=
{
(α, i) ∈ t∗ : c′Sααi = c′βi

}

be the set of arcs in t∗ that would be adjacent to β (the rest of the arcs

(α, i) ∈ t∗ satisfy c′Aααi = c′αi). We define the following tree in (N0, C
′):

t′ := (t∗\Oβ) ∪ {(α, β)} ∪ {(β, i)}(α,i)∈Oβ .

To see that t′ is indeed a tree in (N0, C
′), notice that it has exactly n arcs

(n−1 arcs from t∗ plus (α, β)) and all of the nodes in N are connected to the

source: those that connect to the source through Oβ in t∗ will now connect

first to β and then to α through (α, β).

We will prove that c (t′, C ′) < c (t, C ′), which is a contradiction because t

is an mt on (N0, C
′). Notice that c′Sαij = c′ij for all (i, j) ∈ t

∗\Oβ. Thus,

c (t∗\Oβ, C
′) = c

(
t∗\Oβ, C

′Sα
)
.

Hence,

c (t′, C ′) = c (t∗\Oβ, C
′) + c′αβ +

∑

(α,i)∈Oβ

c′βi

= c
(
t∗\Oβ, C

′Sα
)
+ c′αβ +

∑

(α,i)∈Oβ

c′Sααi

= c
(
t∗, C ′Sα

)
+ c′αβ < c

(
tSα, C ′Sα

)
+ c′αβ ≤ c (t, C

′)
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where the last inequality comes from

c
(
tSα, C ′Sα

)
= c

(
t̂\ {(β, i)}(β,i)∈t̂ , C

′Sα
)
+
∑

(β,i)∈t̂

c′Sααi

≤ c
(
t̂\ {(β, i)}(β,i)∈t̂ , C

′
)
+
∑

(β,i)∈t̂

c′βi

= c
(
t̂, C ′

)
= c (t, C ′)− c′kl = c (t, C

′)− c′αβ.

Proposition 6.1 On the domain D, φ1 satisfies strong merge-proofness and

independence of extreme null points.

Proof. Let C ∈ D and let t be an mt in (N0, C).

It is straightforward to check that φ1 satisfies independence of extreme

null points.

We prove that φ1 satisfies strong merge-proofness.

We can assume that |S| = 2. Let S = {α, β} ⊂ N .

Under Lemma 6.1, tSα is an mt in
(
NSα
0 , C

Sα
)
.

We prove that no agent i ∈ NSα\{α} is worse off in the reduced problem

than in (N0, C).

Let (i, j) ∈ tSα, i �= α. We have two cases:

• If j = α, by definition of tSα, (i, α) ∈ t or (i, β) ∈ t. By definition,

cSαiα = min{ciα, ciβ}. Hence, whatever agent i pays in the reduced

problem for (i, α) is not more than what he pays in (N0, C) for (i, α)

or (i, β).

• If j �= α, by definition of tSα, (i, j) ∈ t. Moreover, cSαij = cij. Hence,

whatever agent i pays in the reduced problem for (i, j) is the same as

what he pays in (N0, C) for (i, j).

This rule violates no-subsidy. Consider the mcstp (N0, C) with N =

{1, 2}, c01 = 10, c02 = 15, and c12 = 6. The unique mt is t = {(0, 1), (1, 2)}.

In this case, φ11(N0, C) = 13 > 10 = m({0, 1}, C{0,1}).
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Now we present a rule that satisfies no-subsidy and strong merge-proofness

(and hence merge-proofness) but does not satisfy independence of extreme

null points. We describe the rule in four steps.

Step 1: Order the agents following their cost of direct link to the source.

Since the order does not have to be unique, let Π′N denote the set of such

orders.

Step 2: Given an order π ∈ Π′N , let t
π be an mt obtained from Prim’s

algorithm such that the indifferences are solved in favor of the agent that is

before in the order π. For each i ∈ N , select the highest cost in the unique

path in tπ between agent i and each j ∈ P πi ∪ {0}.

Step 3: The rule φ2π assigns to agent i the minimum of such numbers.

Step 4: The rule φ2 assigns to the agents the average of these φ2π over

all the orders in Π′N .

We define the rule formally as follows:

Let Π′N := {π ∈ ΠN : π(i) < π(j)⇒ c0i ≤ c0j}. Given π ∈ Π′N , let t
π be

the unique mt obtained from Prim’s algorithm solving indifferences using the

preference order π. Given i, j ∈ N , let τπij denote the path that connects i

and j in tπ. The rule φ2 is defined as follows: For each N , each C ∈ D and

i ∈ N ,

φ2πi (N0, C) := min
j∈Pπi ∪{0}

{

max
(k,l)∈τπij

{ckl}

}

and

φ2i (N0, C) :=
1

|Π′N |

∑

π∈Π′
N

φ2πi (N0, C) .

This rule appears in Bergantiños and Vidal-Puga (2007a, after Corollary

4.1) with a different formulation.

Consider the following example:

Example 6.1 Let (N0, C) such that N = {1, 2, 3, 4}, c01 = 10, c03 = 15,

c04 = 15, c12 = 2, c14 = 6, c34 = 0, and cij = 20 otherwise.
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We compute φ2(N0, C). There are two orders in Π′N : π = (1, 2, 3, 4) and

π′ = (1, 2, 4, 3). The respectivemt are tπ = tπ
′

= {(0, 1) , (1, 2) , (1, 4) , (4, 3)}.

We compute φ2π (N0, C).

Agent 1: We have P π1 ∪ {0} = {0} and τπ10 = {(1, 0)}. Hence,

φ2π1 (N0, C) = c10 = 10.

Agent 2: We have P π2 ∪ {0} = {0, 1}, τπ20 = {(2, 1) , (1, 0)} and τπ21 =

{(2, 1)}. Hence,

φ2π2 (N0, C) = min {max {c21, c10} , c21}

= min {max {2, 10} , 2} = 2.

Agent 3: We have P π3 ∪ {0} = {0, 1, 2}, τπ30 = {(3, 4) , (4, 1) , (1, 0)},

τπ31 = {(3, 4) , (4, 1)} and τ 32 = {(3, 4) , (4, 1) , (1, 2)}. Hence,

φ2π3 (N0, C) = min {max {c34, c41, c10} ,max {c34, c41} ,max {c34, c41, c12}}

= min {max {0, 6, 10} ,max {0, 6} ,max {0, 6, 2}} = 6.

Agent 4: We have P π4 ∪ {0} = {0, 1, 2, 3}, τπ40 = {(4, 1) , (1, 0)}, τπ41 =

{(4, 1)}, τπ42 = {(4, 1) , (1, 2)}, and τ43 = {(4, 3)}. Hence,

φ2π4 (N0, C) = min {max {c41, c10} , c41,max {c41, c12} , c43}

= min {max {6, 10} , 6,max {6, 2} , 0} = 0.

Hence, φ2π (N0, C) = (10, 2, 6, 0). By an analogous reasoning, we get

φ2π
′

(N0, C) = (10, 2, 0, 6) .

Thus, the rule assigns φ2 (N0, C) = (10, 2, 3, 3) which is different from

assignment proposed by the Bird rule B (N0, C) = (10, 2, 0, 6).

As φ1 does, φ2 satisfies strong merge-proofness and hencemerge-proofness.

We prove this result in the next proposition.

Proposition 6.2 Over the domain D, φ2 satisfies strong merge-proofness

and no-subsidy.
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Proof. First we prove that φ2 satisfies no-subsidy :

Bergantiños and Vidal-Puga (2007a, after Corollary 4.1) prove that this

rule satisfies Population Monotonicity (PM), and moreover PM implies no-

subsidy9.

We now prove in a intuitive way that φ2 satisfies strong merge-proofness:

Let C ∈ D and let t be an mt on (N0, C).

We can assume that |S| = 2. Let S = {α, β} ⊂ N .

Under Lemma 6.1, tSα is an mt in (NSα
0 , C

Sα).

We prove that every agent i ∈ N\S is not worse off in the reduced problem

than in (N0, C).

Let ΩC1 := argmini∈N c0i be the set of agents in N with the lowest cost

to the source. Let ΩC2 := argmini∈N\ΩC
2

c0i be the set of agents in N with

the second-lowest cost the source, and so on. Let γ be the number of such

groups. Hence, an order π belongs to Π′N if and only if the agents in ΩC1 come

first, then the agents in ΩC2 , and so on. In particular, |Π′N | =
∣∣ΩC1

∣∣!...
∣∣ΩCγ

∣∣!.
We also define ΩC

Sα

l in an analogous way. In particular,
∣∣Π′

NSα

∣∣ =∣∣∣ΩC
Sα

1

∣∣∣!...
∣∣∣ΩC

Sα

η

∣∣∣!.
Assume α ∈ ΩCk and β ∈ ΩCk′ . We can assume wlog k ≤ k′. We have two

cases:

Case 1: k < k′. In this case, it is straightforward to check that ΩC
Sα

l =

ΩCl for all l �= k′, whereas ΩC
Sα

k′ = ΩCk′\ {β}. Notice that we implicitly assume

ΩC
Sα

k′ = ∅ in the particular case ΩCk′ = {β}, so that γ = η.

Case 2: k = k′. In this case, ΩC
Sα

l = ΩC
Sα

l for all l �= k, whereas

ΩC
Sα

k = ΩCk \ {β}.

In both cases, it is straightforward to check that
∣∣Π′

NSα

∣∣ = |Π′N | /
∣∣ΩCk′

∣∣.
Moreover, each order in Π′

NSα is induced by exactly
∣∣ΩCk′

∣∣ different orders in

Π′N . Hence, given i ∈ N\S, it is enough to prove that φ2π
Sα

i

(
NSα
0 , C

Sα
)
≤

φ2πi (N0, C) for any π ∈ Π′N and πSα ∈ Π′
NSα such that πSα is induced by π.

Fix i ∈ N\S, π ∈ Π′N , and π
Sα ∈ Π′

NSα such that πSα is induced by π.

It is straightforward to check that when t = tπ, we have that, essentially,

9No-subsidy is called Core Selection in Bergantiños and Vidal-Puga (2007a).
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tSα = tπ
Sα

(they may change in the identity of the arcs in a C-component,

which is irrelevant in the posterior analysis). Hence, we omit the superscript.

Let j ∈ P πi ∪ {0}. It is enough to prove that the maximum cost of the

path between i and j in tSα (we take α when j = β) is not more than the

maximum cost of the path between i and j in t. Let (k, l) be the most

expensive arc in the path from α to β in t. We distinguish two cases:

• If (k, l) does not belong to the path from i to j in t, the path from i to

j in tSα is the same. Hence, the maximum cost of the path from i to j

is the same in t as in tSα.

• If (k, l) belongs to the path from i to j in t, the cost from i to j in tSα is

not more because we have removed the most expensive arc of the path

from α to β.

This rule violates independence of extreme null points. Consider the mc-

stp given in Example 6.1. Agent 3 is an extreme null point. If removed,

φ24(N0\ {3} , CN0\{3}) = 6 �= 3 = φ24(N0, C).

Finally, we define a rule, φ3, that satisfies no-subsidy and independence

of extreme null points but does not satisfy merge-proofness.

This rule is similar to the Dutta-Kar rule (Dutta and Kar, 2004). How-

ever, φ3 assigns zero cost to the extreme null points and the assignment of

the rest of the agents does not depend on the extreme null points.

Formally:

Let Ω := {i ∈ N : i is an extreme null point in (N0, C)}.

Consider the following algorithm:

Let S0 = {0}, t0 = ∅, p0 = 0. Let S0c = N0\S
0.

Step 1: Choose an ordered pair (a01, a1) such that (a
0
1, a1) ∈ arg min

(i,j)∈S0×S0c
j �∈Ω

cij .

Define p1 = max(p0, ca0
1
a1), S

1 = S0 ∪ {a1}, t1 = t0 ∪ {(a01, a1)}, S
1
c =

N0\S
1.
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Step k: Assume we have defined pk−1, Sk, tk−1 and Skc . Take an ordered

pair (a0k, ak) ∈ arg min
(i,j)∈Sk−1×Sk−1c

j �∈Ω

cij . Now, S
k = Sk−1 ∪ {ak}, t

k = tk−1 ∪

{(a0k, ak)}, p
k = max(pk−1, ca0

k
ak
) and Skc = N0\S

k.

Also,

φ3ak−1(N0, C) = min(pk−1, ca0
k
ak
). (3)

The algorithm terminates at step m = |N | \ |Ω| . We define:

φ3am(N0, C) = p
m (4)

and

φ3i (N0, C) = 0 for all i ∈ Ω. (5)

The rule φ3 is described by equations (3),(4) and (5).

If the set of extreme null points is empty, φ3 coincides with the rule

proposed by Dutta and Kar (2004).

To show that φ3 does not satisfy merge-proofness, we use Example 3.2.

For this example, the assignment proposed by φ3 coincides with the assign-

ment proposed by the Dutta-Kar rule because there are no extreme null

points.

Proposition 6.3 Over the domain D, φ3 satisfies no-subsidy and indepen-

dence of extreme null points.

Proof. It is clear that φ3 satisfies independence of extreme null points.

On the other hand, the proof that φ3 satisfies no-subsidy is similar to the

proof that the Dutta-Kar rule satisfies no-subsidy10 (Dutta and Kar, 2004,

Theorem 1) and we omit it.

10No-subsidy is called core selection in Dutta and Kar (2004).
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