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Abstract A power measure is monotone if a player with a larger weight is assigned
at least as much power as a player with a smaller weight in the same weighted ma-
jority game. Failure of a power index to satisfy monotonicity is often considered a
pathological feature. In this paper, we show that monotonicity may fail in the unique
subgame perfect equilibrium of a noncooperative bargaining game. A player with a
smaller weight may have a higher expected payoff than a player with a larger weight.
This is possible even though coalition formation and payoff division are endogenous,
all players are rational and there is no asymmetry between the players other than in
the weights.
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1. Introduction

A power measure has the monotonicity property if a larger player is always
assigned at least as much power as a smaller player in the same weighted
voting game. It is well known that some power indices like the public good
index (Holler and Packel, 1983) and the Deegan-Packel (1978) index fail
to satisfy this property. Violations of monotonicity have been considered
unacceptable in a power measure (for example, Felsenthal and Machover,
1998, regard nonmonotonicity as a ‘serious pathology’).
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Holler and Napel (2004) question whether nonmonotonicity should auto-
matically disqualify an index. They point out that there is more to a decision
rule than weights and quota. Monotonicity may be violated due to the rel-
ative position of the players in a policy space. Owen (1971) and Shapley
(1977) constructed generalizations of the Shapley-Shubik index assuming
that players have an ideal point in the policy space and prefer policies that
are closer to their ideal point; these power indices are not necessarily mono-
tonic. Similarly, Laruelle and Valenciano (2005) note that a voter with a
greater weight may be less likely to be decisive because of the probability
distribution over vote configurations. If there is one large right-wing party
and three small left-wing parties, it may be that the small parties tend to vote
together in which case the large party cannot affect the outcome.

In this paper we provide an example of nonmonotonicity that does not
rely on any asymmetry of players’ preferences. There is a resource to be
divided and players have symmetric preferences: each player would like to
keep the whole resource. Players bargain over the resource according to a
noncooperative bargaining procedure that treats all players symmetrically
ex ante. Hence, the only way in which players differ from each other is in
their weight. We will show that a player with a greater weight may have
a lower expected payoff than a player with a smaller weight in the unique
subgame perfect equilibrium of this game.

The noncooperative game is essentially the demand commitment bar-
gaining model introduced by Morelli (1999) and further analyzed by Mon-
tero and Vidal-Puga (2007). In this game, players demand a share of the
resource sequentially, and a coalition may form as soon as it has enough
votes and its members have compatible demands. In case there is more than
one feasible coalition, the player who made the last demand also decides
which coalition forms. The order of moves is determined in advance by the
first mover.

The weighted majority game in our example is an apex game. Apex
games are weighted majority games with one major player (the apex player)
and n−1 minor players (in order for the game to be asymmetric, n must be at
least 4). There are two types of minimal winning coalitions: the apex player
together with one of the minor players, and all the minor players together.

We will show that the apex player’s expected payoff is smaller than that
of a minor player, thus the equilibrium of this game violates monotonicity.
By choosing a particularly favorable order of moves, a minor player is able
to get the entire resource as a first mover; the apex player is not able to do the
same. If all players have the same probability of being first mover, it follows
that a minor player expects a greater share of the resource on average.
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The intuition for this result is as follows. Suppose there are three minor
players. If one of the minor players is chosen to be the first mover, it can
choose an order of moves such that the apex player moves last and then
demand the entire resource. The next minor player to move might then try
to form a coalition with the apex player by demanding a positive payoff.
However, this demand can always be undercut by the third minor player, so
the second minor player is helpless: any attempts to form a coalition with
the apex player will be sabotaged. Hence the second mover may as well go
along with the first mover and demand 0. Once the second mover demands
0, the third mover is helpless as well: any positive demand on its part will
result in the apex player forming a coalition with the second mover, so the
third mover may as well go along with the first mover and demand 0. This
is the unique subgame perfect equilibrium outcome of the game as we will
discuss in section 2. In comparison, the apex player cannot demand more
than 2/3 as a first mover. If it demands more, there is no obstacle to the
three minor players demanding 1/3 each and excluding the apex player.1

2. The Model

2.1 Simple Games

A simple game is a pair (N,W ) where N = {1,2, ...,n} be the set of players,
and W ⊆ 2N be the list of winning coalitions. It is assumed that N ∈W
and ∅ /∈W . It is also assumed that extra players can never turn a winning
coalition into a losing one (T ∈W whenever S ∈W for S ⊆ T ⊆ N) and
two disjoint coalitions cannot both be winning (S ∈W and T ∈W implies
S∩T 6= ∅). We assume that there is a resource of size 1 to be divided, and
W is the list of coalitions that are able to enforce a division of the resource.

The simple game is a weighted majority game if there is a vector w =
(w1, ...,wn) of non-negative voting weights and a quota q such that S is
winning iff ∑i∈S wi ≥ q. Our assumptions above imply 0 < ∑i∈N wi

2 < q ≤
∑i∈N wi.

Apex games have one major player (the apex player) and n−1 identical
minor players (n ≥ 3). There are two types of minimal winning coalitions:
the apex player together with one of the minor players, and all the minor
players together. Apex games are a particular type of weighted majority
games with w = (n−2,1, ...,1) and q = n−1.

1 Montero and Vidal-Puga (2007) already noted that a player may be able to get the entire
resource using the weighted majority game with w = (3,2,2,1,1) and q = 5 as an example.
Their example does not violate monotonicity because all players are able to obtain the entire
resource by moving first, so that expected payoffs are 1/5 for each player.
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A power measure y is a mapping that assigns a non-negative real value
to each player i in the simple game. We will denote the power of player i in
the game (N,W ) as yi(N,W ), or simply yi. A power measure is monotone if
wi ≥ w j implies yi ≥ y j for any two players in the same weighted majority
game [q,w].

2.2 The Noncooperative Bargaining Model

Bargaining proceeds as follows. A player is chosen to be the first mover
(we will assume each player is equally likely to be selected regardless of its
weight). The first mover then chooses an order of moves for the remaining
players. Once the order of moves is determined, each player i makes a
payoff demand di, following the order of moves, where di ∈ [0,1] is the
share of the resource player i claims. If, after player i makes its demand,
there exists a winning coalition S such that all members of S have already
stated their demands and ∑ j∈S d j ≤ 1, player i has the additional choice of
forming coalition S, in which case payoffs are distributed according to the
demands made. If there is more than one possible S, player i decides which
one is formed.2 If the last mover forms no coalition, the game ends with
each player getting zero.

2.3 Example of Nonmonotonicity

Consider the simplest possible asymmetric apex game with w = (2,1,1,1)
and q = 3. We now show that a minor player can obtain the whole resource
when moving first, even though the rules of the bargaining procedure allow
the next movers to form a coalition without the first mover.

Claim 1 Suppose a minor player is designated as the first mover, and
chooses an order of moves so that the apex player moves last. Then the first
mover obtains the entire resource in any subgame perfect equilibrium (SPE)
of the game.

Proof Suppose a minor player (say, player 2) is designated as the first
mover and chooses an order of moves so that the apex player moves last,
such as 2, 3, 4, 1. We solve the game by backward induction. The challenge
will be in showing the uniqueness of SPE payoffs, and for this we will need

2 Note that player i is not forced to form a coalition whenever feasible; this feature of the
game is essential to ensure the existence of a SPE at all subgames.
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to show that players 3 and 4 must demand 0 in equilibrium after player 2
demands 1.

We start by analyzing the subgame in which player 1 gets the move. If
player 1 gets the move, it faces demands d2, d3, d4. If 1−min(d2,d3,d4) >
0, it is optimal for player 1 to set d1 = 1−min(d2,d3,d4) and form a coali-
tion with the minor player whose demand is minimal (or any of them if there
is more than one). If 1−min(d2,d3,d4) = 0, any d1 ∈ [0,1] is optimal for
player 1, since no coalition can ever be formed unless d1 = 0. The case
1−min(d2,d3,d4) < 0 is not possible because d2,d3,d4 ≤ 1. Hence, there
exists a SPE of this subgame and:

If 1−min(d2,d3,d4) > 0, then for each SPE of this subgame there exists
some i ∈ argmin j∈{2,3,4} d j, such that player 1 sets d1 = 1−mindi and
forms coalition {1, i} (or a larger coalition if d j = 0 for more than one
j ∈ {2,3,4}).
If 1−min(d2,d3,d4) = 0, then there are multiple SPE of this subgame.
In particular, for each i ∈ argmin j∈{2,3,4} d j, there exists a SPE such that
the apex player sets d1 = 0 and forms coalition {1, i}.

Not all SPE of this subgame can be extended to an SPE of the overall
game because ties cannot always be broken in an arbitrary way (see Bennett
and van Damme, 1991). Players may have to solve ties in a certain way in
order to ensure that players moving earlier in the game have a best response
as we will see below.

We now analyze the subgame in which player 4 gets the move. If player
4 gets the move, it faces demands d2,d3. Excluding dominated strategies,
player 4 has two alternatives: setting d4 = 1− d2− d3 (this is feasible if
1− d2− d3 ≥ 0) and forming coalition {2,3,4}, or setting some d4 ≥ 1−
d2−d3 and let the apex player move. From the discussion above, we know
that the apex player always forms coalition {1,4} when d4 < min(d2,d3)
and never does it when d4 > min(d2,d3). Moreover, the apex player can
form a coalition with player 4 when d4 = min(d2,d3). There are several
possible cases, depending on how 1− d2− d3 compares with min(d2,d3)
and on whether player 4 can get a strictly positive payoff:

If 1− d2 − d3 < min(d2,d3) and min(d2,d3) > 0, then there exists a
unique SPE. Player 4 sets d4 = min(d2,d3), and the apex player sets
d1 = 1− d4 and forms coalition {1,4}. The apex player must choose
{1,4} even though it is indifferent, because otherwise player 4 would be
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optimizing in the open set 0 < d4 < min(d2,d3) and would not have a
best response.

If 1−d2−d3 > min(d2,d3) and 1−d2−d3 > 0, then there exists a unique
SPE. Player 4 sets d4 = 1−d2−d3 and forms coalition {2,3,4}.
If 1− d2− d3 = min(d2,d3) > 0, there are two SPE in pure strategies:
either player 4 forms {2,3,4}, or it gives the move to the apex player,
who must then form coalition {1,4} (the second of these two equilibria
will not be extensible to the overall game as we will see below).

If max(1− d2− d3,min(d2,d3)) = 0, then {d2,d3} = {0,1} (it follows
from d2,d3 ∈ [0,1]) and hence 1−d2−d3 = min(d2,d3) = 0. There are
multiple SPE in this case. In particular, there exists a SPE where player
4 sets d4 = 0 and forms coalition {2,3,4}.

We now analyze the subgame in which player 3 gets the move. If player
3 gets the move, it faces demand d2. From the above discussion, we know
that player 3 can only get a positive payoff if d2 < 1 and coalition {2,3,4}
is formed (any attempts to form a coalition with the apex player will be sab-
otaged by player 4). Coalition {2,3,4} can only be formed if 1−d2−d3 ≥
min(d2,d3). We now look for the maximum value of d3 that satisfies 1−
d2− d3 ≥ min(d2,d3). Let f be the real-valued function f (x) = 1− d2− x
and let g be the real-valued function g(x) = min(d2,x). Since both functions
are continuous, f strictly decreasing and g increasing, it is straightforward
to check that the maximum value of x that yields f (x) ≥ g(x) is uniquely
given by x∗ = 1− 2d2 when d2 < 1

3 , and x∗ = 1−d2
2 when d2 > 1

3 . In both
cases, x∗ ∈ [0,1] and hence d3 = x∗ is a feasible demand for player 3. When
x∗ > 0, any d3 ∈ (0,x∗) would induce {2,3,4}. Moreover, x∗ = 0 iff d2 = 1.
Hence, there exists a SPE of this subgame and:

If 0 ≤ d2 ≤ 1
3 , then the SPE payoff is unique: player 3 sets d3 = 1−

2d2, and player 4 sets d4 = 1− d2 − d3 and forms coalition {2,3,4}.
Player 4 must form coalition {2,3,4} because otherwise player 3 would
be optimizing in the open set d3 < 1− 2d2 and would not have a best
response.

If 1
3 < d2 < 1, then the SPE payoff is unique: player 3 sets d3 = 1−d2

2 ,
player 4 sets d4 = 1−d2−d3 and coalition {2,3,4} is formed. Player 4
must set d4 = 1−d2−d3 because otherwise player 3 would be optimizing
in the open set d3 < 1−d2

2 and would not have a best response.
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If d2 = 1, then any d3 ∈ [0,1] is optimal for player 3, and there are mul-
tiple SPE payoffs. In particular, there exists a SPE in which player 3 sets
d3 = 0, player 4 sets d4 = 0 and coalition {2,3,4} is formed.

We now analyze the main game in which player 2 gets the (first) move.
We have shown that any d2 < 1 would induce coalition {2,3,4}, and d2 = 1
may also induce coalition {2,3,4}. Hence, there exists a unique SPE where
player 2 sets d2 = 1, player 3 sets d3 = 0, player 4 sets d4 = 0 and coalition
{2,3,4} is formed. Player 3 and player 4 must set d3 = d4 = 0 because
otherwise player 2 would be optimizing in the open set d2 < 1 and would
not have a best response. 2

Minor players are able to exploit the asymmetry between the remaining
players to their advantage. Given the order chosen by the first mover, there
is no minimal winning coalition of players moving consecutively and im-
mediately after the first mover, hence the remaining players are not able
to coordinate on a reaction to an excessive demand on the part of the first
mover. The apex player is not able to do the same because the remaining
players are symmetric.

The case in which the apex player moves first is essentially a particu-
lar case of corollary 1 of Bennett and van Damme (1991). Their model is
slightly different because each mover is chosen by the previous one rather
than being determined in advance. However, since all minor players are
identical, the order in which they move makes no difference to the apex
player. The result is also a particular case of theorem 1 of Montero and
Vidal-Puga (2011).

Claim 2 Suppose the apex player is designated as the first mover. Then
the apex player demands d1 = 2

3 in any subgame perfect equilibrium.

Proof Suppose without loss of generality that the apex player chooses 1, 2,
3, 4 as the order of moves. The game can be solved by backward induction.

Player 4 compares 1− d1 and 1− d2− d3. It sets d4 = 1− d2− d3 and
forms the minor player coalition {2,3,4} if 1−d2−d3≥ 1−d1; otherwise it
sets d4 = 1−d1 and forms a coalition with the apex player. Player 4 breaks
ties in favor of the minor player coalition in order for players who move
earlier to have a best response.

Player 3 has two options: it can either set d3 = 1−d1 and form a coalition
with the apex player, or it can set a demand that will induce player 4 to form
the minor player coalition. Since player 4 solves ties in favor of the minor
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player coalition, the highest value of d3 that still induces the minor player
coalition is well defined as the solution of the equation 1−d2−d3 = 1−d1,
which is d3 = d1− d2. Player 3 then chooses to induce the minor player
coalition if d1− d2 ≥ 1− d1, or equivalently if d2 ≤ 2d1− 1. Ties must be
solved in favor of the minor player coalition in order for player 2 to have a
best response earlier on.

Player 2 has two options: it can either set d2 = 1−d1 and form a coalition
with the apex player, or it can set d2 = 2d1−1 and induce the minor player
coalition. Note that d2 = 2d1−1 can be written as d2 = 1−2(1−d1): player
2 allows a payoff of 1−d1 for the other two minor players (so that they do
not prefer to form a coalition with the apex player) and claims the residual.

Player 2 forms a coalition with the apex player iff 1− d1 ≥ 2d1− 1, or
equivalently if d1 ≤ 2

3 .
The apex player realizes that, in order to get a positive payoff, the highest

demand it can make is d1 = 2
3 , and this is the demand it makes in any SPE.

(Note that if player 2 solved ties in favor of the minor player coalition the
maximum achievable value of d1 would not be well defined, which is why
in order for strategies to constitute a SPE player 2 must solve ties in favor
of player 1). 2

There are two ways in which monotonicity is violated in the SPE of this
game. If we look at what a player can get conditional on being the first
mover, a small player is able to get more than the large player. If we look at
the situation from an ex ante point of view, assuming that all players have
the same probability of being first mover, it is still true that each small player
has a greater expected payoff than the apex player. The apex player can get
only 2

3 , and only when it is the first mover. A minor player can get 1 as
a first mover (and may get 1

3 with some probability, depending on how the
apex player chooses the second mover).

3. Concluding Remarks

The lack of monotonicity of power indices such as the Deegan-Packel
(1978) index3 can be attributed to the exogenous nature of coalition for-
mation and payoff division in their model. If we keep payoff division as
assumed by Deegan and Packel but allow for endogenous coalition forma-
tion, it would not be possible for larger players to be worse-off than smaller
players.

3 Our results cannot be directly compared with the public good index since we assume that
the resource to be divided is rival in consumption.
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For example, consider the weighted majority game [7;4,3,3,1,1]. There
are four minimal winning coalitions in this game, {1,2}, {1,3}, {2,3,4} and
{2,3,5}. Deegan and Packel assume that minimal winning coalitions must
divide the total payoff equally, and each coalition is equally likely to form.
Under this assumption, player 1 expects a payoff of 1

4 , whereas player 2
expects 7

24 > 1
4 . However, if we endogenize coalition formation and assume

that a player will not join a particular coalition if there is another coalition
in which it can get a greater payoff, coalitions {2,3,4} and {2,3,5} would
be ruled out. The coalition structure core under equal payoff division would
be ( 1

2 , 1
2 ,0,0,0) and ( 1

2 ,0, 1
2 ,0,0), corresponding to coalitions {1,2} and

{1,3}. A coalition like {2,3,4} with payoff division (0, 1
3 , 1

3 , 1
3 ,0) would be

vulnerable to a deviation by {1,2} or {1,3}. If we accept that only coalitions
with the lowest number of players will form, and that each of those is equally
likely to form, a player with a larger weight must get at least the same payoff
as a player with a smaller weight.4

It is worth noting that Gamson’s (1961) model of coalition formation also
violates monotonicity. In this model, it is assumed that the coalition that
forms must divide the payoff proportionally to the players’ weights. Play-
ers prefer to have a greater share of the resource, thus the winning coalition
with the smallest total weight is unanimously preferred by its members (we
can think of this theory as selecting the coalition structure core of a game
with exogenous payoff division, as in the discussion above). For example,
if weights are 4,3,2 and the quota is 5, the player with 4 votes is always
excluded. Players in this example are actually symmetric in terms of W , but
monotonicity can also be violated when the larger player is strictly more de-
sirable than the smaller player. In the example [6;5,2,2,2], which is equiva-
lent to [3;2,1,1,1], the largest player is always excluded and has a payoff of
0. Nonmonotonicity in Gamson’s model can be attributed to the assumption
of exogenous payoff division: for example, in the game [5;4,3,2], it can be
argued that endogenous payoff division would lead to a symmetric situation
in which all three members have the same power.

We have shown that nonmonotonicity is not confined to power indices,
but can occur in the equilibrium of a noncooperative bargaining game with
endogenous coalition formation and payoff division, even though players
are rational and differ only in their weight. The bargaining procedure can be

4 Let m be the least number of players in a winning coalition, let S be the set of winning
coalitions with m players, and let Sk be the set of winning coalitions with m players involving
player k. Player k’s expected payoff would be 1

m
|Sk |
|S| . Let i and j be such that wi < w j . It is

clear that |Si| ≤ |S j|. This follows immediately if Si is a subset of S j . If not, it is easy to see
that for each coalition in Si\S j there exists a coalition in S j\Si. Let T be a coalition in Si\S j .
Coalition T ′ = T\{i}∪{ j} is also winning and has m members, hence T ′ ∈ S j\Si.
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extended to allow for a finite number of bargaining rounds without affecting
equilibrium payoffs.5

The lack of monotonicity of payoffs in our example could be avoided
by modifying the noncooperative bargaining procedure. Bennett and van
Damme (1991) study a more elaborated version in which each mover se-
lects the next mover, so that the order of moves is not known in advance.
Vidal-Puga (2004) assumes that the order of moves is randomly determined
in advance, and only the last mover can form a coalition. Fréchette et al.
(2005) assume that the next mover is randomly determined after each move.
All these models lead to monotone expected equilibrium payoffs in our ex-
ample, though some of them need refinements of SPE in order to achieve a
unique prediction. Also using refinements, it can be shown that monotonic-
ity is always satisfied in the proposal-based legislative bargaining model of
Baron and Ferejohn (see Montero, 2012).
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