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Abstract

In coalitional games in which the players are partitioned into groups, we study

the incentives of the members of a group to leave it and become singletons. In

this context, we model a non-cooperative mechanism in which each player has to

decide whether to stay in her group or to exit and act as a singleton. We show that

players, acting myopically, always reach a Nash equilibrium.

Keywords: Bargaining, coalitional games, coalition structure, Owen value,

Nash equilibrium

1 Introduction

Endogenous formation of coalitions has been widely studied in the game theory literature.

For example, Chatterjee et al. (1993) and Okada (1996) study coalition formation models

in which players can agree on payoff division at the time they form a coalition.

In these models, the coalitions are formed along with the final payoff of their mem-

bers. An alternative approach is to assume that the final payoff is given by the coalition

structure. For example, Hart and Kurz (1983) and Bloch (1996) present models of en-

dogenous formation of coalitions in two stages: in the first stage, players decide the
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coalition structure. In the second stage, the final payoff is given according to the chosen

coalition structure. In Hart and Kurz’s model, the final payoff is given by the Owen value

(Owen, 1977). A similar model is given by Aumann and Myerson (1988), where players

decide how to connect through a graph, and the final payoff is given by the Myerson value

(Myerson, 1977) depending on the particular graph.

On the other hand, there are many situations in which the coalition structure is given

a priori. For example, consider the members of a Parliament. Even though all have

the same rights, they do not act independently, since they belong to different political

parties. Other examples include wage bargaining between firms and labor unions, tariff

bargaining between countries, and bargaining between the member states of a federated

country. Broadly speaking, these coalitions negotiate among them as single agents. The

fundamental feature is that the coalition structure is exogenously given by the problem,

which means that players do not choose which coalition they belong to.

In this paper, we take an intermediate approach between the endogenous and the

exogenous coalition structure models. We assume that there exists a prior coalition

structure (exogenous), but players inside a priori union may have the chance to act as

singletons (endogenous). For example, consider the parties with representation in the

European Parliament. Some of these parties may decide, prior to the discussion of an

issue, to collude and defend a common policy. By doing so, they join forces and act as a

single party.

Usually, this cooperation is useful because the colluded party is stronger than its

individual parties. It may happen, however, that this cooperation is not beneficial, as the

“joint-bargaining paradox” of Harsanyi (1977) shows. The paradox is that an individual

can be worse off bargaining as a member of a coalition than bargaining alone. (Chae and

Heidhues, 2004, p.47) justify this paradox as follows: treating a group as a single bargainer

reduces multiple “rights to talk” to a single right and thereby benefits the outsiders. See

also Chae and Moulin (2010) and Vidal-Puga (2012) for a study of the Harsanyi paradox

from an axiomatic and a cooperative point of view, respectively.

Supranational parties such like the EPP-ED1 or the Socialist Group usually do not

act as single agents, because its members are not committed to follow the same policies

on the same issues. Instead, these supranational associations provide a common working

environment is which cooperation agreements are easier to settle, but only if they are

beneficial for everyone.

In this framework, we define a mechanism2 in two stages: in the first stage, players

1European People’s Party (Christian Democrats) and European Democrats.
2We use the term mechanism instead of non-cooperative game to avoid confusion with coalitional
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simultaneously announce whether they stay or exit their coalition. The decision to stay

is interpreted as the agreement to act as a single player in the second stage. The players

who decide to leave their coalition act as singletons. Thus, a new coalitional structure

derives from players’ decisions. In the second stage, the final payoff is given by the Owen

value.

A similar mechanism is presented by Thoron (1998) based on a model defined by

d’Aspremont et al. (1983) in the context of cartel formation in oligopolistic markets. In

those papers, however, firms are identical (only the cartel membership can distinguish

them) an the total worth to the shared depends on the actual cartel size. As opposed, the

model presented in this paper allows for all the player heterogeneity that a coalitional

game can provide. Furthermore, the total worth to be shared, as given by the Owen

value, is always efficient and independent of the actual coalition structure.

A different approach to coalitional games is considered in Arin et al. (2012), where a

noncooperative allocation procedure for coalitional games with veto player is studied.

In games with coalition structure, the Owen value is a relevant solution concept.

It has been supported axiomatically (Owen, 1977; Hart and Kurz, 1983, 1984; Winter,

1992; Calvo et al., 1996; Hamiache, 1999, 2001; Peleg and Sudhölter, 2003; Albizuri and

Zarzuelo, 2004; Gómez-Rúa and Vidal-Puga, 2010) and also non-cooperatively (Vidal-

Puga and Bergantiños, 2003). It has been applied to cost allocation problems (Vázquez-

Brage et al., 1997; Fragnelli and Iandolino, 2004), political situations (Carreras and Owen,

1988, 1996; Vázquez-Brage et al., 1996; Ono and Muto, 2001), and differential informa-

tion economies (Krasa et al., 2003). Moreover, it has been successfully generalized to

several levels of cooperation (Winter, 1989), games without transfer utility (Winter, 1991;

Bergantiños and Vidal-Puga, 2005; Bergantiños et al., 2007), generalized coalition con-

figurations (Albizuri et al., 2006) and generalized characteristic functions (Sánchez and

Bergantiños, 1999). In Vidal-Puga (2005) it is also shown that the Owen value arises in

equilibrium of a mechanism that models the bargaining among heterogeneous groups.

Hence, it seems justifiable to assume that, once the coalition structure is formed, the

final payoff is given by the Owen value. Notice that this assumption is also made by Hart

and Kurz (1983).

In Sections 2 and 3 we present the notation and the model of coalition formation. We

are interested in finding the stability of the resulting coalition structure. We focus on the

incentives of each player to stay or leave her group. These incentives are given by the

difference between what they get by changing their strategies and what they get by not

games.
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doing so. In Section 3, we show that these differences are independent of the order in

which players move. As a consequence, there are no cycles. Players, acting myopically,

can reach a Nash equilibrium. In Section 4, we study a possible generalization of the

model. In Section 5, we present some concluding remarks.

2 Preliminaries

We consider a coalitional game as a pair (N, v) with a finite set of players N = {1, 2, . . . , n}
and a characteristic function v : 2N → R with v(∅) = 0. Following usual practice, we

often refer to “the game v” instead of “the coalitional game (N, v).”

Given two games v, w, let v + w define the game (v + w) (S) = v (S) + w (S) for all

S ⊆ N .

Given a scalar α and a game v, let αv define the game (αv) (S) = αv (S) for all

S ⊆ N .

Given a nonempty coalition T ⊆ N , we define the unanimity game (N, uT ) with

carrier T as the coalitional game given by

uT (S) =

{
1 if T ⊆ S

0 otherwise.

According to Harsanyi (1959), unanimity games form a basis for the space of coali-

tional games, i.e., v =
∑
∅6=T⊆N λT (v)uT where the Harsanyi dividends λT (v) are given

by λT (v) =
∑

S⊆T (−1)|T |−|S| v (S) for all T ⊆ N .

A coalition structure over N is a partition P = {S1, . . . , Sp} on the set of players N .

We denote the set of all games (N, v, P ) over N with coalition structure as CG(N).

A value is a function Ψ : CG (N) → RN that assigns to each cooperative game with

coalition structure (N, v, P ) a vector in RN , so that Ψi (N, v, P ) represents the payoff

assigned to player i ∈ N . With a slight abuse of notation, we say that Ψi (N, v, P ) is the

value of player i.

Let Π be the set of permutations of the elements of N . We say that π ∈ Π is

compatible with P if the members of the same coalition keep together. We denote the

set of all permutations compatible with P as ΠP ⊆ Π. Namely, π ∈ ΠP if and only if it

satisfies:

∀i, j ∈ Sq ∈ P, ∀k ∈ N π(i) < π(k) < π(j) =⇒ k ∈ Sq.

Given π ∈ Π, the set of predecessors of i with respect to π is defined as

Pr(i, π) := {j ∈ N : π(j) < π(i)}.

4



The Owen (coalitional) value (Owen, 1977) is defined as follows:

Φi(N, v, P ) :=
1

|ΠP |
∑
π∈ΠP

[v(Pr(i, π) ∪ {i})− v(Pr(i, π))] .

When the game is clear, we use Φ(P ) instead of the more cumbersome Φ(N, v, P ).

We consider the Owen value as a solution of the game.

3 The model

Let (N, v, P ) be a game with coalition structure. Fix Sq ∈ P . We consider the following

mechanism in two stages for players in Sq:

First stage Simultaneously, each player in Sq announces whether she wants to stay or

to exit the coalition. Given the announcements of each player, a coalition structure

is formed. The players who announced to exit act as singletons.

Second stage Each player receives her Owen value.

Thus, the set of strategies for each player is {in, out}, where ‘in’ means “to stay” and

‘out ’ means “to exit”. We work only with pure strategies. Let γ (i) ∈ {in, out} be the

strategy of player i. Let γ = (γ (i))i∈Sq
be a strategy profile. We denote the resulting

coalition structure as Pγ, namely

Pγ :=
{
{i}i∈Sq :γ(i)=in

}
∪ {{i}}i∈Sq :γ(i)=out ∪ {Sr}r 6=q .

In particular, if γ (i) = in for all i ∈ Sq, then Pγ = P .

The final payoff for the players is given by the Owen value under this coalition struc-

ture Φ (Pγ).

Example 3.1 Let3 P = {123|45|6} and Sq = {1, 2, 3}. Assume γ (1) = γ (2) = in

and γ (3) = out. Then, Pγ = {12|3|45|6}. Assume γ′ (1) = in and γ′ (2) = γ′ (3) =

out. Then, Pγ′ = {1|2|3|45|6}. Assume γ′′ (1) = γ′′ (2) = γ′′ (3) = out. Then, Pγ′′ =

{1|2|3|45|6}.

A strategy profile γ is a Nash equilibrium if, for all i ∈ Sq, Φi (Pγ) ≥ Φi (Pγ′) where

γ′ is defined as γ′ (j) = γ (j) for all j ∈ Sq\ {i} and γ′ (i) 6= γ (i).

Consider the strategy profile γ given by γ (i) = out for all i ∈ Sq. This γ is clearly

a Nash equilibrium, because the coalition structure does not change by the individual

3For simplicity, we write {123|45|6} instead of {{1, 2, 3} , {4, 5} , {6}}, and so on.

5



deviation of a player. We name this specific γ as an inessential equilibrium. Analogously,

we name a Nash equilibrium in which there exists some i ∈ Sq with γ (i) = in as an

essential equilibrium.

Assume that players begin playing γ with γ (i) = in for some i, and change their

strategies myopically. This means that they sequentially change their strategies only

if the payoff in the new coalition structure is larger for them. More precisely, when

players change their strategies myopically there is an ordered list of strategy profiles = =

[γ = γ0, γ1, . . . , γm] (and therefore a sequence of coalition structures Pγ0 , Pγ1 , . . . , Pγm)

such that γl differs from γl−1 (l = 1, . . . ,m) only in the strategy chosen by a player

il ∈ Sq and, moreover, Φil (Pγl) > Φil

(
Pγl−1

)
.

Following Monderer and Shapley (1996), we say that such a = is an improvement

path.

Proposition 3.1 An inessential equilibrium cannot be reached following this myopic be-

havior.

Proof. The proof is straightforward. Assume that, after player im ∈ Sq changes her

strategy, an inessential equilibrium is reached. This means that player im was the only

player in Sq choosing ‘in’ and thus the resulting coalition structure does not change (and

neither player i’s payoff does). This contradicts that Φim (Pγm) > Φim

(
Pγm−1

)
.

Given a strategy profile γ, we say that Pγ derives from P , and it is a derived coalition

structure. We say that two strategy profiles γ and γ′ are adjacent through i ∈ Sq, and

we write γ ∼i γ′, if γ(j) = γ′(j) for all j ∈ Sq\{i} and γ(i) 6= γ′(i). We then call player

i the link between γ and γ′. We say that γ and γ′ are adjacent, and we write γ ∼ γ′, if

there exists a link i ∈ Sq such that γ ∼i γ′. Two derived coalition structures Pγ and Pγ′

are adjacent through i if their respective strategy profiles γ and γ′ are adjacent through

i. Also, Pγ and Pγ′ are adjacent if there exists a link i such that Pγ and Pγ′ are adjacent

through i. We denote these as Pγ ∼i Pγ′ and Pγ ∼ Pγ′ , respectively.

Example 3.2 Let P = {123}, P1 = {12|3}, and P2 = {1|2|3}. Then, P , P1 and P2

derive from P . Moreover, P and P1 are adjacent. Player 3 is the link between P and P1.

Similarly, P1 and P2 are adjacent, and they have two possible links, player 1 or player 2.

However, P and P2 are not adjacent.

Notice that two adjacent derived coalition structures may be equal, as the next ex-

ample shows.
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Example 3.3 Let P = {12}, γ(1) = γ(2) = out, γ′(1) = out, γ′(2) = in. Then,

Pγ ∼ Pγ′ and Pγ = Pγ′ = {1|2}. However, γ 6= γ′.

A path over P is an ordered list of strategy profiles = = [γ0, γ1, . . . , γm] such that

γl−1 ∼ γl for all l = 1, . . . ,m. We say that = has length m. If γm = γ0, we say that =
is a closed path. We say that = is a simple closed path if, in addition, γj 6= γk for every

1 ≤ j 6= k ≤ m. Let [i1, i2, . . . , im] be the list of links between the strategy profiles, i.e.,

γl−1 ∼il γl for all l = 1, . . . ,m. Let [P0, P1, . . . , Pm] be the list of coalition structures

derived from =, i.e., Pl = Pγl for all l = 0, 1, . . . ,m.

Definition 3.1 Given a value Ψ, a closed path = = [γ0, γ1, . . . , γm] is a cycle for Ψ if

Ψil (Pl−1) < Ψil (Pl) for all l = 1, 2, . . . ,m, where Pl = Pγl is the coalition structure

derived from γl and il is the link between γl−1 and γl, for all l = 1, 2, . . . ,m.

Example 3.4 Let P = {123} and v ({1, 2, 3}) = 30. Let Ψ be a value such that Ψ (P ) =

(10, 10, 10). If the coalition structure is Pγ = {12|3}, the players get Ψ (Pγ) = (4, 11, 15).

If Pγ = {1|23}, they get Ψ (Pγ) = (11, 4, 15). If Pγ = {13|2}, they get Ψ (Pγ) = (15, 4, 11).

If Pγ = {1|2|3}, they get Ψ (Pγ) = (10, 10, 10). Then, every coalition structure belongs to

a cycle.4 Moreover, the only Nash equilibrium is the inessential equilibrium (see Figure

1).

We study the existence of cycles for the Owen value. Hence, from now on, when we

say cycle, we mean cycle for Φ.

The existence of cycles may indicate an instability in the mechanism, as the next

lemma shows:

Lemma 3.1 If the only Nash equilibrium is the inessential equilibrium, then there exists

a cycle.

Proof. Assume the only Nash equilibrium is the inessential equilibrium and there are

no cycles. Let γ0 be a strategy profile that is not the inessential equilibrium. Then,

there exists a player i1 ∈ Sq who benefits from changing her strategy γ0(i1). Let γ1

be the adjacent strategy profile (i.e., γ0 ∼i1 γ1) and let P0 and P1 be their respective

coalition structures (i.e., P0 = Pγ0 and P1 = Pγ1). By Proposition 3.1, γ1 is not the

inessential equilibrium. Moreover, Φi1(P0) < Φi1(P1). Since γ1 is not a Nash equilibrium,

there exists another player i2 ∈ Sq who benefits from changing γ1(i2). Let γ2 be the

adjacent strategy profile and let P2 be its derived coalition structure. Then, γ2 is not

4We thank Maŕıa Montero for proposing this example.
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Figure 1: The arrows represent the adjacent strategy profiles. The number next to each

arrow indicates the link. Each arrow points to the strategy profile that increases the

payoff of the link. Notice that the inessential equilibrium (out, out, out) is not reachable

by the arrows (see Proposition 3.1).

the inessential equilibrium, and Φi2(P1) < Φi2(P2). The process is repeated with all the

players who are willing to change their strategies. Since there exist no cycles, we cannot

come back to a previous strategy profile. So, there should be a strategy profile γm (which

is not the inessential equilibrium) in which no player can improve her payoff by changing

her strategy, i.e., γm is a Nash equilibrium. This contradiction proves the result.

Definition 3.2 Given a path = = [γ0, γ1, . . . , γm], the differential of = in v is the number:

δ (=, v, P ) :=
m∑
l=1

[Φil(Pl)− Φil(Pl−1)] (1)

where Pl = Pγl is the coalition structure derived from γl, and il is the link between γl−1

and γl, for all l = 1, 2, . . . ,m.

For simplicity, we write δ (=, v) instead of δ (=, v, P ).

Notice that each term in (1) represents the amount by which a player il improves her
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payoff when the strategy profile changes from γl−1 to γl, which is the change that she is

capable to do.

Before presenting the next result we recall that the Owen value satisfies the property

of Additivity, that is:

Φ(N, v + w,P ) = Φ(N, v, P ) + Φ(N,w, P )

for all (N, v, P ), (N,w, P ) ∈ CG(N).

Lemma 3.2 The differential δ (=, v) is additive on v, i.e.,

δ (=, v + w) = δ (=, v) + δ (=, w)

for all = and all games v, w.

Proof. Immediate from the additivity of the Owen value.

The following result has been presented by Monderer and Shapley (1996):

Theorem 3.1 (Monderer and Shapley, 1996) The following claims are equivalent and

characterize a potential game:

• δ(=, v) = 0 for every finite closed paths =.

• δ(=, v) = 0 for every finite simple closed paths = of length 4.

Proposition 3.2 The differential of any closed path is 0.

Proof. Let = = [γ0, γ1, . . . , γm] be a closed path with links [i1, . . . , im]. Let [P0, P1, . . . , Pm]

be their associated coalition structures. We proceed by induction on m. First, note that

m should be an even number, because each link il should change her strategy γ(il) an

even number of times, so that the strategy profile goes back to its original position, i.e.,

γ0 = γm.

Form = 2, the result is trivial, because i1 = i2 and Φi2(P1)−Φi2(P0) = − (Φi1(P0)− Φi1(P1)) .

9



Figure 2: T = [γ0, γ1, γ2, γ3, γ0] is a closed path of length 4.

For m = 4, we have = = [γ0, γ1, γ2, γ3, γ4] and three cases: a) i1 = i2, i3 = i4; b)

i1 = i3, i2 = i4; and c) i1 = i4, i2 = i3. In cases a) and c), we have two closed paths

of length 2, so the differential is 0. We prove the result for case b) (Figure 2). Assume

without loss of generality that in γ0 both players play ‘in’.

Assume we are in a unanimity game uT , and both players belong to the carrier T .

In particular, this implies |Sq ∩ T | ≥ 2. Let p0 be the number of coalitions in P0 with

nonempty intersection with T .

We distinguish two cases:

Case 1. |Sq ∩ T | > 2.

Then, it is well-known (Owen, 1995, p.307) that the Owen values for i1 and i2 in P0

are

Φi1(P0) = Φi2(P0) =
1

p0|Sq ∩ T |
.
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Analogously,

Φi1(P1) =
1

p0 + 1
, Φi2(P1) =

1

(p0 + 1) (|Sq ∩ T | − 1)
,

Φi1(P2) =
1

p0 + 2
, Φi2(P2) =

1

p0 + 2
,

Φi1(P3) =
1

(p0 + 1) (|Sq ∩ T | − 1)
, Φi2(P3) =

1

p0 + 1
.

Thus,

δ (=, uT ) = [φi1(P1)− φi1(P0)] + [φi2(P2)− φi2(P1)]

+ [φi1(P3)− φi1(P2)] + [φi2(P0)− φi2(P3)]

= 0.

Case 2. If |Sq ∩ T | = 2. All the assignments are equal than before, except

Φi1(P2) =
1

p0 + 1
, Φi2(P2) =

1

p0 + 1

from where it is not difficult to check that δ (=, uT ) = 0.

When one of the players does not belong to the carrier (say, player i1), then Φi1 (Pγ) =

0 for any γ and we distinguish two cases:

Case 1 |Sq ∩ T | > 1. Then,

Φi2 (P0) = Φi2 (P1) =
1

p0 |Sq ∩ T |
,

Φi2 (P2) = Φi2 (P3) =
1

p0 + 1
.

Case 2. |Sq ∩ T | = 1. Then,

Φi2 (Pγ) =
1

p0

for all γ.

Thus, in both cases we have again that δ (=, uT ) = 0.

In case that both agents do not belong to the carrier, Φij (Pγ) = 0 for any γ and

j = 1, 2. Then it is trivial that δ (=, uT ) = 0.

For a general game v =
∑

T⊆N λT (v)uT , the additivity property of the differential

implies

δ (=, v) =
∑
T⊆N

λT (v) δ (=, uT ) = 0.

Applying now Theorem 3.1, we conclude that δ (=, v) = 0 for any closed path =.
An important consequence of Proposition 3.2 is that there are no cycles.
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Corollary 3.1 There exist no cycles in the mechanism.

Proof. Assume there is a cycle =. Then, δ (=, v) is positive, which contradicts Proposi-

tion 3.2.

As another consequence of Proposition 3.2, we have the following definition:

Definition 3.3 Given two strategy profiles γ,γ′, the differential of γ′ with respect to γ is

the differential of any path from γ to γ′.

This differential is well-defined: Assume there are two paths from γ to γ′, i.e., = =

{γ, γ1, γ2, . . . , γm = γ′} and =′ = {γ, γ′1, γ′2, . . . , γ′m′ = γ′}. Then, the closed path =′′ =

{γ, γ1, γ2, . . . , γm, γ
′
m′−1, . . . , γ

′
1, γ} has its differential 0 and

0 = δ (=′′, v) = δ (=, v)− δ (=′, v) .

Thus, δ (=, v) = δ (=′, v).

Theorem 3.2 Players, acting myopically, always reach a Nash equilibrium.

Proof. Fix some strategy profile γ. Suppose that there exists a player i ∈ Sq who benefits

from changing her strategy γ(i). Let γ′ be the adjacent strategy profile (i.e., γ ∼i γ′)
and let Pγ and Pγ′ be their respective coalition structures. Then, φi(Pγ) < φi(Pγ′) and

the differential of γ′ with respect to γ is positive. Suppose that in the new strategy

profile there exists another player j ∈ Sq who benefits from changing her strategy γ′(j).

Let γ′′ be the adjacent strategy profile and let Pγ′′ be its respective coalition structure.

Then, φj(Pγ′) < φj(Pγ′′) and the differential of γ′′with respect to γ is again positive. We

repeat the process with all the players who are willing to change their strategy. Since the

differential is always positive, coming back to a previous strategy profile is not possible.

So, there should be a strategy profile γm in which no player can improve her payoff by

changing her strategy, i.e., γm is a Nash equilibrium.

Note that Theorem 3.2 cannot be deduced from Corollary 2.2 in Monderer and Shapley

(1996) that establishes that “Every finite ordinal potential game possesses a pure-strategy

equilibrium.”

Theorem 3.3 There exists an essential Nash equilibrium.

Proof. It is an immediate consequence of Lemma 3.1 and Corollary 3.1.
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4 The mechanism with all the coalitions

In the previous section, it was assumed that only the players of a fixed coalition Sq have

the chance to exit the coalition. When a coalition negotiate a common behavior among

their members (i.e., decide which of them act as a single player), it is natural to assume

that the players do so independently of the other coalitions.

However, one may wonder what happens when all the coalitions play simultaneously.

Thus, we study the following modification of the mechanism:

First stage Simultaneously, each player in N announces whether she wants to stay or

to exit her coalition. Given the announcements of each player, a coalition structure

is formed. The players who announced to exit act as singletons.

Second stage Each player receives her Owen value.

Thus, the set of strategies for each player i is again γ (i) ∈ {in, out}. Let γ = (γ (i))i∈N

be a strategy profile. The derived coalition structure Pγ is given by

Pγ :=
⋃
Sq∈P

{
{i}i∈Sq :γ(i)=in

}
∪ {{i}}γ(i)=out .

The definitions of a path, a closed path, a link, and the differential of a closed path

are analogous to those of Section 3. Let γ be a Nash equilibrium. Then, γ is a inessential

equilibrium if there exists a coalition Sq ∈ P such that γ (i) = out for all i ∈ Sq. Notice

that, in this case, there are more than one possible inessential equilibrium.

Proposition 4.1 The differential of a closed path is not always zero.

Proof. Let N = {1, 2, 3, 4, 5} and consider the unanimity game (N, uN). Let P =

{123|45} and let γ0 = (in, in, in, in, in), γ1 = (out, in, in, in, in), γ2 = (out, in, in, out, in),

γ3 = (in, in, in, out, in), and γ4 = γ0. The associated coalition structures are P0 = P ,

P1 = {1|23|45}, P2 = {1|23|4|5}, P3 = {123|4|5} and P4 = P , respectively. Then, it is

straightforward to check that:

Φ1 (P0) =
1

6
, Φ4 (P0) = 1

4
,

Φ1 (P1) =
1

3
, Φ4 (P1) = 1

6
,

Φ1 (P2) =
1

4
, Φ4 (P2) = 1

4
,

Φ1 (P3) =
1

9
, Φ4 (P3) = 1

3
,

Φ1 (P4) =
1

6
, Φ4 (P4) = 1

4
.
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Let T = [γ0, γ1, γ2, γ3, γ4] be a closed path. Then, δ (T, v) = 1
36
6= 0.

As the differential is not always zero, a natural question is whether there exist essential

equilibria. The next example shows that there exist games whose unique Nash equilibria

are the inessential equilibria.

Example 4.1 Let n = 6 and let v be given by the following table:5

S v (S)

1, 2, 3, 4, 5, 6, 13, 14, 16, 23, 24, 34 0

46, 146 1

12, 25, 35, 123, 134, 234 3

15, 124, 125, 135, 235, 1234 4

26, 36, 45, 56, 126, 136, 145, 156, 236, 245, 246, 345, 346, 356, 456, 1246, 1346 5

1235, 1345, 2345, 2346 6

1236, 1245, 12345 8

1256, 1356, 1456, 2356, 12346, 12356 9

2456, 3456, 12456, 23456 10

N 13

This game in monotonic and superadditive.6 Moreover, all Nash equilibria are inessen-

tial equilibria. For six players, it is tedious to write all the possible strategy profiles. In

Figure 3, four of these strategy profiles (which form a cycle) are represented.

5We write 146 instead of {1, 4, 6}, and so on.
6 A game v is monotonic if v (S) ≤ v (T ) for all S ⊆ T , and superadditive if v (S) + v (T ) ≤ v (S ∪ T )

for all S, T with S ∩ T = ∅.
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Figure 3: A cycle of length 4.

Notice that the previous example has three players in one of the coalitions. If we

consider coalitions with size of at most two, we recover the existence of Nash equilibria.

Formally:

Proposition 4.2 If |Sq| ≤ 2, for all Sq ∈ P, then there exists an essential Nash equilib-

rium.

Proof. The proof is obtained following the same reasoning as in Theorem 3.3 and we

omit it.

5 Concluding remarks

In this paper we model situations where players are exogenously divided into coalitions.

These coalitions constitute associations where cooperation agreements to act as a single

unit are possible, but not obligatory. In particular, players inside a coalition may decide to

leave the coalition and act as singletons. Stability is guaranteed as long as two conditions

hold: no player who has decided to be a singleton benefits from joining the coalition, and

no player who has decided to join the coalition benefits from becoming a singleton.
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In this sense, stability is always possible (Theorem 3.3) when players in other groups

have not the option to become singletons. This holds trivially when the coalition structure

is trivial, or all the groups but one are singletons. Otherwise, stability may fail (Example

4.1).

Owen (1977) defines his coalitional value in such a way that the coalitions first play

a game among themselves and, then, the total amount received for each coalition is

distributed among its players through an internal game. Hart and Kurz (1983) prove

that this internal game can be replaced by two alternative definitions. Our approach is

closely related to one of them, in which players that leave their coalitions remain in the

coalition structure as singletons.

In the other definition of the internal game proposed by Hart and Kurz (1983), players

that leave their coalition are joined into a new one formed by all of them. The results

obtained in this paper are also satisfied under this approach. Note, however, that this

latter approach does not completely follow the motivation given in the Introduction.

Once an agreement is not reached inside a supranational organization, the outsiders have

not a clear protocol to collude.
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