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Abstract

We study cooperative interval games. These are cooperative games where the

value of a coalition is given by a closed real interval specifying a lower bound and

an upper bound of the possible outcome. For interval cooperative games, several

(interval) solution concepts have been introduced in the literature. We assume that

each player has a different attitude towards uncertainty by means of the so-called

Hurwicz coefficients. These coefficients specify the degree of optimism that each

player has so that an interval becomes a specific payoff. We show that a classical

cooperative game arises when applying the Hurwicz criterion to each interval game.

On the other hand, the same Hurwicz criterion can also be applied to any in-

terval solution of the interval cooperative game. Given this, we say that a solution

concept is Hurwicz compatible if the two procedures provide the same final pay-

off allocation. When such compatibility is possible, we characterize the class of

compatible solutions, which reduces to the egalitarian solution when symmetry is

required. The Shapley value and the core solution cases are also discussed.
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1 Introduction

Given a set of agents (or players), cooperative (or transferable utility) games assign to

each coalition of agents a real number. This number represents the maximum utility

that the members of this coalition can assure by themselves. Cooperative game theory

has addressed these problems by proposing relevant solutions, or values, that suggest one

or several payoff allocations satisfying certain desirable properties. Typically, the most

standard property is efficiency, which implies that the worth of the grand coalition is

shared. Some examples of efficient solutions are the core, the Weber set, the Shapley

value, and the nucleolus.

Cooperative interval games generalize the idea of cooperative games by assigning

to each coalition a closed interval. Analogously, efficient interval solutions propose an

allocation of the interval generated by the grand coalition. Many of the classical solutions

have been defined in the context of cooperative interval games by Alparslan-Gok et al.

(2008); Alparslan Gök et al. (2009c). See Branzei et al. (2010) for a survey.

Interval games have been applied to bankruptcy problems (Branzei and Alparslan Gök,

2008), airport games (Alparslan Gök et al., 2009a), minimum cost spanning tree problems

(Montemanni, 2006; Moretti et al., 2011), assignment problems (Pereira and Averbakh,

2011; van den Brink et al., 2017; Wu et al., 2018), and sequencing games (Alparslan-Gök

et al., 2013).

A classical interpretation of the intervals is that each of them represents the possible

worth range that a coalition can get by themselves. Examples are those that appear from

the so-called games with externalities (Thrall and Lucas, 1963), where the worth of a

coalition depends not only on the coalition itself but also on how the rest of the players

cooperate.1 van den Brink et al. (2017) propose a different motivation, where the worth

of a coalition varies between the (classical) pessimistic assumption that the rest of players

will try to harm them as much as possible and the most optimistic assumption given by

the dual problem.

At this point, we have to distinguish between risk and uncertainty. In a risky situation,

players are unsure of the final result of their cooperation, but they can assign a precise

probability to each possible outcome. This kind of riskiness has been deeply studied in

economic literature, from a cooperative and non-cooperative point of view. Frequently,

1 For example, assume that players form an oligopoly that plans to create a cartel. The cartel can then

anticipate their benefit as a monopoly. However, if two or more players are not present, the remaining

players can not anticipate their exact benefit, as it would depend on whether the other players merge or

not.
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it is assumed that each player has some private information and precise knowledge of

the probability distribution of how the others are. This approach does not fit into the

model proposed by interval games, where each interval does not depend on the private

information of the players. In other situations, the probability distribution is common

knowledge, but their consequences are not homogeneous among players (Alparslan-Gök

et al., 2013). Again, this approach neither fits interval games, where each interval is

coalition-dependent.

As opposed, under uncertainty, players are not only unsure of the outcome of their

potential cooperation but also the probability of these possible outcomes. When there

is no private information, i.e. all the players agree on the uncertainty that lies behind

the cooperation of each coalition, interval games provide a more realistic interpretation

of uncertainty.

An interval solution is then a way to share the uncertainty of the grand coalition

worth taking into account the uncertain worth of each coalition.

Given this, each player can have a different attitude towards uncertainty. For example,

a pessimistic player would prefer to maximize the minimum possible outcome (maximin

criterion), so that its preferred payoff is an interval with a high lower bound, whereas an

optimistic (maximax criterion) player would prefer intervals with a high upper bound.

An intermediate approach (Laplace criterion or criterion of rationality) is to assume

all the possible outcomes are equally probable, in the sense that they follow a uniform

distribution. Hence, players with a Laplace criterion prefer intervals with a high midpoint.

A generalization of these criteria is the so-called Hurwicz criterion (Hurwicz, 1951),

which states that there exists a fixed coefficient between 0 and 1 that measures the degree

of optimism. Hence, a pessimistic player would have a coefficient 0, an optimistic one 1,

and a rational one (in the sense of Laplace) 1
2
.

Once the Hurwicz coefficients are stated for each player, uncertainty disappears, and

players can uniquely assign a concrete value to each interval. The payoff allocation of the

grand coalition interval becomes a payoff allocation for the grand coalition. We can then

check the payoff allocation proposed by each interval solution.

In this paper, we study what happens when this statement is done on the interval

game before applying any interval value. We prove (Proposition 3.1) that this operation

generates a (classical) cooperative game so that we can compute its interval value.2

2 Other applications of Hurwicz coefficients in interval games appear in Lardon (2017) and Li (2016),

who also deduce a (classical) cooperative game by using a selection via degrees of optimism. However,

these degrees are coalition-dependent, not individual. Hence, they cannot be identified as Hurwicz

coefficients in the same way we do here.
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Therefore, we can proceed in two ways. On the one hand, we can compute the interval

value on the interval game, and then apply the Hurwicz criterion. On the other hand,

we can apply the Hurwicz criterion in the interval game to get a (classical) cooperative

game, then apply the interval solution.3 We are interested in studying which values are

compatible in the sense that both procedures provide the same final payoff allocation.

This property has the potential of solving situations where players have uncertain needs

for a resource when it has to be divided before uncertainty resolves (Xue, 2018).

Our second result (Proposition 3.2) implies that this property is incompatible with

efficiency in the more general setting. However, we focus on the only two situations where

they are compatible. On the one hand, we can assume that all the players have the same

Hurwicz coefficient. On the other hand, we can assume that uncertainty disappears when

the grand coalition forms. The latter is what happens in the motivating examples: both

games with externalities and the optimistic-pessimistic approach given by van den Brink

et al. (2017).

We prove (Theorem 4.1 and Theorem 5.1) that the unique compatible solutions are

the proportional ones. These are solutions that have recently received increasing atten-

tion from the economic and social choice theory (Abe and Nakada, 2019; Béal et al., 2016;

Koster and Boonen, 2019; Yokote et al., 2018). They state that the worth of the grand

coalition should be proportionally distributed. As a direct corollary, we deduce (The-

orem 4.2 and Theorem 5.2) that the unique anonymous (in the sense that symmetric

agents are treated symmetrically) compatible solution is the egalitarian one. This states

an equivalence between Hurwicz compatibility and the egalitarian notion given by the

Dutta and Ray (1989) interpretation ideally yielding Lorenz-dominant allocations but

without core-like participation constraints. Experimental evidence also backs egalitarian

outcomes (Bolton and Ockenfels, 2000). It is worthy to note that usual characterizations

of the egalitarian solution heavily rely on the properties of either additivity (Béal et al.,

2016, 2019; Bergantiños and Vidal-Puga, 2004; Casajus and Huettner, 2014a; Hougaard

and Moulin, 2018; van den Brink, 2007; van den Brink et al., 2015) or monotonicity

(Bergantiños and Vidal-Puga, 2009; Casajus and Huettner, 2013, 2014b), which are not

required here.

The rest of the paper is organized as follows. In Section 2, we present the notation.

In Section 3, we define the Hurwicz criterion and prove that it can only be applied in

two particular situations, which are analyzed in Section 4 and Section 5, respectively. In

Section 6, we focus on the core. In Section 7, we present some concluding remarks.

3This is always possible to do since interval cooperative games generalize classical ones.
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2 Notation

Let I := {a = [a, a] : a, a ∈ R, a ≤ a} be the set of closed intervals in R. Given a,b ∈ I,
we say that a 4 b when a ≤ b and a ≤ b. Notice that if a = [a, a] and b = [b, b] for some

a, b ∈ R, we have that a 4 b iff a ≤ b. Remark that 4 is a partial order relation in I; for

example [−1, 2] 4 [0, 2] but [−2, 3] and [−1, 2] are not comparable with respect to 4.

Given x ∈ R+ and a ∈ I, we define x · a := [x · a, x · a] ∈ I. Given αi ∈ R and a ∈ I,
we define

αi ◦ a := αi · a+ (1− αi) · a = a+ αi · (a− a) ∈ R.

Given a,b ∈ I, we define a ⊕ b :=
[
a+ b, a+ b

]
∈ I, and a � b :=

[
a− b, a− b

]
∈ I;

moreover, when a − b ≤ a − b, we define a 	 b :=
[
a− b, a− b

]
∈ I. When A =

{a1, . . . , ak} ⊂ I, we define ∑
a∈A

a := a1 ⊕ · · · ⊕ ak ∈ I

with the convention that
∑

a∈∅ a := [0, 0].

Let N = {1, . . . , n} be a finite set of players. A coalitional interval game is a pair

(N,v) where v : 2N → I is a function that assigns a closed interval v(S) = [v(S), v(S)]

to each coalition S ⊆ N with the property that v(∅) = [0, 0], i.e. v(∅) = v(∅) = 0. Let

IGN denote the class of all coalitional interval games with N as set of players. Since N

is fixed, from now on we write v instead of (N,v) and IG instead of IGN .

Notice that coalitional interval games generalize classical coalitional (transferable util-

ity, or TU) games. Just take v(S) = v(S) for all S ⊆ N . There are three trivial TU

games associated with any v ∈ IG. These are the border games v and v, and the length

game |v| given by |v|(S) = v(S)− v(S) for all S ⊆ N . Let G denote the set of TU games

with N as the player set. With some abuse of notation, we assume G ⊂ IG.

Given S ⊆ N , let RS denote the |S|-dimensional Euclidean space with generic element

x̂ = (xi)i∈S. Given S ⊆ N and x̂, ŷ ∈ RS, we define ẑ = x̂− ŷ ∈ RS as zi = xi − yi for all

i ∈ S. Moreover, given X, Y ⊂ RS, we define X − Y = {x̂− ŷ : x̂ ∈ X, ŷ ∈ Y } ⊆ RS.

Apart from coalitional interval games, another generalization of TU games is non-

transferable utility games or NTU games. An NTU game V with player set N is given by

a characteristic function V : 2N →
⋃
S⊆N RS, with the convention R∅ = {0}, satisfying,

for all S ⊆ N :

1. V (S) ⊆ RS

2. V (S) 6= ∅

3. V (S) closed
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4. V (S) bounded from above, i.e. ∃x̂ ∈ RS such that V (S) ∩ {ŷ ∈ RS : x̂ ≤ ŷ} = ∅,
where x̂ ≤ ŷ means xi ≤ yi for all i ∈ S.

5. V (S) comprehensive, i.e. x̂ ∈ V (S), ŷ ≤ x̂ =⇒ ŷ ∈ V (S).

It is well known that any TU game v can be written as an NTU game V with V (S) ={
x̂ ∈ RS :

∑
i∈S xi ≤ v(S)

}
for all S ⊆ N . Clearly, V (S) can be also be written as

V (S) =
{
x̂ ∈ RS :

∑
i∈S xi = v(S)

}
−RS

+ for all S ⊆ N . Notice that, in general, X −RS
+

builds the comprehensive cover of X ⊂ RS.

Analogously, we can write any interval game v ∈ IG applying natural generalization

of NTU games as follows:

V(S) =

{
a ∈ IS :

∑
j∈S

aj 4 v(S)

}
(1)

for all S ⊆ N . We then say that V is an interval game written in NTU form.

A relevant class of coalitional interval games is the following Alparslan Gök et al.

(2009b). A coalitional interval game v is size monotonic if |v|(S) ≤ |v|(T ) for all S ⊆
T ⊆ N . We denote as SMIG the set of size monotonic interval game with N as the

player set. Clearly, all TU games are size monotonic interval games, i.e. G ⊂ SMIG.

A solution in the set of TU games is a function σ : G → RN that assigns to each

TU game v ∈ G a payoff allocation σ(v) ∈ RN . A solution σ in the set of TU games is

efficient if
∑

j∈N σj(v) = v(N) for all v ∈ G. A well-known efficient solution in the set of

TU games is the Shapley value (Shapley, 1953).

Let IB be a subset of IG such that it contains all the TU games, i.e. G ⊆ IB. An

efficient solution for IB is a function σ : IB → IN that assigns to each v ∈ IB a payoff

allocation σ(v) ∈ IN such that
∑

i∈N σi(v) = v(N) for all v ∈ IB.

3 Hurwicz criterion

Hurwicz (1951) first stated the most well-known criterion to deal with uncertainty. As-

sume that each player i ∈ N has a coefficient αi ∈ [0, 1] which determines its degree of

optimism. This means that if player i is assigned to an interval a ∈ I, its valuation of it

would be αi ◦ a.

Given α̂ ∈ [0, 1]N and an interval game solution σ : IB → IN , we define α̂ ◦σ : IB →
RN as the function given by applying the Hurwicz criterion to σ with coefficients in α̂,

i.e.

(α̂ ◦ σ)i(v) := αi ◦ σi(v) ∈ R (2)
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for all v ∈ IB and all i ∈ N .

Analogously, given α̂ ∈ [0, 1]N and v ∈ IG, we define α̂ ◦V as the NTU game given

by applying the Hurwicz criterion to each v(S) with coefficients in α̂. Formally,

(α̂ ◦V)(S) :=
{

(αi ◦ ai)i∈S ∈ RS : â ∈ V(S)
}
− RS

+ (3)

for all S ⊆ N , where V is defined as in (1). As usual, −RS
+ allows us to assure compre-

hensiveness (despite the incompleteness of the partial order 4).

Proposition 3.1 Given α̂ ∈ [0, 1]N and v ∈ IG, the associated NTU game α̂ ◦ V is

equivalent to the TU game α̂ ◦ v defined as follows:

(α̂ ◦ v)(S) :=

(
max
i∈S

αi

)
◦ v(S) ∈ R (4)

for all S ⊆ N , S 6= ∅.

Proof. Fix S ⊆ N , S 6= ∅. We first prove that, given b ∈ I,{
(αi ◦ ai)i∈S ∈ RS : â ∈ IS,

∑
i∈S

ai 4 b

}
− RS

+

=

{
(αi ◦ ai)i∈S ∈ RS : â ∈ IS,

∑
i∈S

ai = b

}
− RS

+.

(5)

The “⊇” part follows from the fact that
∑

i∈S ai = b implies
∑

i∈S ai 4 b. For the “⊆”

part, let â ∈ IS such that
∑

i∈S ai 4 b, i.e.
∑

i∈S ai ≤ b and
∑

i∈S ai ≤ b. Then, fix

i0 ∈ S and define ĉ ∈ IS as

ci0 = min

{
b−

∑
i∈S

ai, b−
∑
i∈S

ai

}
,

ci0 = max

{
b−

∑
i∈S

ai, b−
∑
i∈S

ai

}
,

and ci = [0, 0] otherwise. Hence, (αi ◦ c)i∈S ∈ RS
+. Now, it is straightforward to check

that (αi ◦a)i∈S = (αi ◦ (a⊕c))i∈S− (αi ◦c)i∈S,
∑

i∈S(a⊕c)i = b, and hence the following

statement (equivalent to the “⊆” part in (5)) holds:{
(αi ◦ ai)i∈S ∈ RS : â ∈ IS,

∑
i∈S

ai 4 b

}
⊆{

(αi ◦ ai)i∈S ∈ RS : â ∈ IS,
∑
i∈S

ai = b

}
− RS

+.
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If S = {j}, then

(α̂ ◦V)(S) = (α̂ ◦V)({j}) (3)(1)
= {αj ◦ aj : aj 4 v({j})} − R{j}+

(5)
= {αi ◦ v({j})} − R{j}+ =

{
x ∈ R{j} : x ≤ αi ◦ v({j})

}
≡ αj ◦ v({j}) =

(
max
i∈S

αi

)
◦ v(S).

Take S ⊆ N , |S| > 1, and j ∈ arg maxi∈S αi. In case of more than one possible j, we

take any one of them. Let T = S \ {j} 6= ∅. For each a ∈ I, let |a| := a− a. Then,

(α̂ ◦V)(S)

(3)
=
{

(αi ◦ ai)i∈S ∈ RS : â ∈ V(S)
}
− RS

+

(1)
=

{
(αi ◦ ai)i∈S ∈ RS :

∑
i∈S

ai 4 v(S)

}
− RS

+

(5)
=

{
(αi ◦ ai)i∈S ∈ RS :

∑
i∈S

ai = v(S)

}
− RS

+

=

{
(xi + αi · yi)i∈S∈ RS :

∑
i∈S

xi = v(S), x̂ ∈ RS,
∑
i∈S

yi = |v|(S), ŷ ∈ RS
+

}
− RS

+.

Given that x̂ ∈ RS is only restricted by
∑

i∈S xi = v(S), this amount v(S) can be freely

transferable among the players, so that the Pareto frontier is reached when
∑

i∈S αi · yi
is maximum, given that ŷ ∈ RN

+ and
∑

i∈S yi = |v|(S). Since αj ≥ αi for all i ∈ S, this

maximum is αj · |v|(S), reached at least when yj = |v|(S) and yi = 0 otherwise. Hence,

(α̂ ◦V)(S) =

{
(xi)i∈T × (xj + αj · |v|(S)) ∈ RS :

∑
i∈S

xi = v(S)

}
− RS

+

=

{
x̂ ∈ RS :

∑
i∈S

xi = v(S) + αj · |v|(S)

}
− RS

+

≡ αj ◦ v(S) =

(
max
i∈S

αi

)
◦ v(S).

Under Proposition 3.1, any coalitional interval game v ∈ IG turns into a unique TU

game α̂ ◦ v ∈ G by applying the Hurwicz criterion with coefficients in α̂.

Given α̂ ∈ [0, 1]N and an interval game solution σ : IB → IN , we define σ ◦ α̂ : IB →
RN as the function given by applying σ to α̂ ◦ v for each v ∈ IB, i.e.

(σ ◦ α̂)i(v) := σi(α̂ ◦ v) ∈ R (6)
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for all v ∈ IB and i ∈ N .

Notice that both (2) and (6) apply an interval solution and the Hurwicz criterion with

some coefficients. The difference between both approaches is the order in which they do

so.

It is then natural to require this order to be irrelevant, i.e. both α̂ ◦ σ and σ ◦ α̂
should coincide. We call this property Hurwicz compatibility.

Definition 3.1 An interval game solution σ : IB → IN is Hurwicz compatible in IB if

(σ ◦ α̂)(v) = (α̂ ◦ σ)(v) for all v ∈ IB and all α̂ ∈ [0, 1]N .

Proposition 3.2 For all α̂ ∈ [0, 1]N and all v ∈ IG,∑
i∈N

(α̂ ◦ σ)i(v) ≤
∑
i∈N

(σ ◦ α̂)i(v)

for all efficient solution σ : IG → IN . Moreover,

• Equality holds for all v ∈ IG and all efficient solution σ : IG → IN if and only if

αi = αj for all i, j ∈ N .

• Equality holds for all α̂ ∈ [0, 1]N if and only if |v|(N) = 0.

Proof. Under efficiency,∑
i∈N

(α̂ ◦ σ)i(v)
(2)
=
∑
i∈N

αi ◦ σi(v) =
∑
i∈N

(σi(v) + αi · |σi(v)|)

= v(N) +
∑
i∈N

αi · |σi(v)| ≤ v(N) +

(
max
i∈N

αi

)
·
∑
i∈N

|σi(v)|

= v(N) +

(
max
i∈N

αi

)
· |v|(N) =

(
max
i∈N

αi

)
◦ v(N)

(4)
= (α̂ ◦ v) (N) =

∑
i∈N

σi(α̂ ◦ v)
(6)
=
∑
i∈N

(σ ◦ α̂)i(v).

Notice that this statement has a unique inequality. Hence, equality holds when this

inequality is not strict. That is, equality holds iff∑
i∈N

αi · |σi(v)| =
(

max
i∈N

αi

)
·
∑
i∈N

|σi(v)|

which is equivalent to either αi = αj for all i, j ∈ N or |σi(v)| = 0 for all i ∈ N . Since

|x| is always nonnegative, this second condition is equivalent to |v|(N) = 0.

Corollary 3.1 No efficient solution in the set of (size monotonic) coalitional interval

games is Hurwicz-compatible.
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In view of Proposition 3.2, we can only find Hurwicz compatibility in efficient solutions

when we restrict ourselves to two possible situations:

1. All the Hurwicz coefficients coincide (equal degree of optimism).

2. There is no uncertainty when all players cooperate (grand coalition certainty).

The second situation arises in particular for some economic situations such as oligopolies,

as commented in the Introduction as a particular case of games with externalities. On

the other hand, the first situation completes the class of conditions under which Hurwicz

compatibility is possible, and it is a reasonable requirement to study its implications un-

der the symmetry of the players (apart from the differences derived from the characteristic

function).

4 Uniform degree of optimism

In this Section, we study which interval solutions are Hurwicz compatible when all coef-

ficients coincide.

Definition 4.1 Given IB ⊆ IG, an interval game solution σ : IB → IN is uniform

Hurwicz compatible in IB if, for all α0 ∈ [0, 1], we have (σ ◦ α̂)(v) = (α̂ ◦ σ)(v) for all

v ∈ IB, where αi = α0 for all i ∈ N .

Let us consider a coalitional interval game v and α̂ ∈ [0, 1]N the vector of players’ Hurwicz

coefficients. We denote αS := maxi∈S αi and

nS :=
|S|!(n− 1− |S|)!

n!

for each S ⊆ N . By convention, α∅ := 0.

We consider here the Shapley value of the TU game α̂ ◦ v, i.e.

Shi(α̂ ◦ v) :=
∑

S⊆N\{i}

nS ·
(
αS∪{i} ◦ v(S ∪ {i})− αS ◦ v(S)

)
(7)

for each i ∈ N . On the class of size monotonic coalitional interval games, Alparslan Gök,

Brânzei and Tijs (Alparslan Gök et al., 2010) define a generalization of the Shapley value,

which we call the interval Alparslan Gök-Brânzei-Tijs (ABT) solution, as follows:

ABTi(v) :=
∑

S⊆N\{i}

nS · (v(S ∪ {i})	 v(S))

10



for each v ∈ SMIG and each i ∈ N . Analogously, Han, Sun and Xu (Han et al., 2012)

define another generalization of the Shapley value, which we call the interval Han-Sun-Xu

(HSX) solution, as follows:

HSXi(v) :=
∑

S⊆N\{i}

nS · (v(S ∪ {i})� v(S))

for each v ∈ IG and each i ∈ N .

Proposition 4.1 The interval ABT solution is uniform Hurwicz compatible in SMIG.

Proof. The interval ABT solution can be written as

ABTi(v)

=

 ∑
S⊆N\{i}

nS · (v(S ∪ {i})− v(S)) ,
∑

S⊆N\{i}

nS · (v(S ∪ {i})− v(S))


for each v ∈ SMIG and each i ∈ N . Since all the Hurwicz coefficients coincide (α1 =

α2 = · · · = αn = α0), then α̂ ◦ABT(v) = Sh(α̂ ◦ v). In particular,

α̂ ◦ABTi(v)

= (1− α0) ·

 ∑
S⊆N\{i}

nS · (v(S ∪ {i})− v(S))


+ α0 ·

 ∑
S⊆N\{i}

nS · (v(S ∪ {i})− v(S))


=

∑
S⊆N\{i}

nS · ((1− α0) · (v(S ∪ {i})− v(S)) + α0 · (v(S ∪ {i})− v(S)))

=
∑

S⊆N\{i}

nS

· (((1− α0) · v(S ∪ {i}) + α0 · v(S ∪ {i}))− ((1− α0) · v(S) + α0 · v(S)))

=
∑

S⊆N\{i}

nS · (α0 ◦ v(S ∪ {i})− α0 ◦ v(S)) = Shi(α̂ ◦ v)

= ABTi(α̂ ◦ v) = (ABT ◦ α̂)i (v)

for each v ∈ SMIG and each i ∈ N .

Theorem 4.1 An efficient solution σ : IG → RN is uniform Hurwicz compatible in

IG if and only if there exist two vectors δ̂ ∈ RN and γ̂ ∈ RN
+ with

∑
i∈N δi = 0 and∑

i∈N γi = 1, and such that

σi(v) = δi · [1, 1] + γi · v(N) (8)
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for all v ∈ IG and all i ∈ N .

Proof. (⇐) Assume σ is defined as in (8). It is clear that such a solution is efficient.

We now check that it is uniform Hurwicz compatible. Fix v ∈ IG. Let α0 ∈ [0, 1] and let

α̂ ∈ [0, 1]N defined as αi = α0 for all i ∈ N . We have to prove that (σ◦α̂)(v) = (α̂◦σ)(v).

For each i ∈ N ,

(σ ◦ α̂)i(v) = σi(α̂ ◦ v)

= δi · [1, 1] + γi · (α̂ ◦ v(N))

≡ δi + γi · (α̂ ◦ v(N))

and

(α̂ ◦ σ)i(v) = α̂ ◦ σi(v)

= α̂ ◦ (δi · [1, 1] + γi · v(N))

= δi + γi · (α̂ ◦ v(N)).

(⇒) Let σ : IG → IN be an efficient, Hurwicz compatible solution in IG. Let v ∈ IG.

Let 1̂ ∈ [0, 1]N defined as 1i = 1 for all i ∈ N , and let 0̂ ∈ [0, 1]N defined as 0i = 0 for all

i ∈ N . Then, for each v ∈ IG and i ∈ N ,

σi(v) = 1̂ ◦ σi(v) = σi(1̂ ◦ v) = σi(v) (9)

and

σi(v) = 0̂ ◦ σi(v) = σi(0̂ ◦ v) = σi (v) . (10)

Since both v and v are TU games, we deduce that σ only depends on its restriction on

TU games, i.e., once we define σ(v) for each v ∈ G, we can deduce σ(v) for any other

v ∈ IG. Moreover, given v, w ∈ G with v(S) ≤ w(S) for all S ⊆ N , it holds σ(v) ≤ σ(w)

(otherwise, σ(w) with w(S) = [v(S), w(S)] for all S ⊆ N would not be well-defined).

Now, for each v ∈ G, define v−, v+ ∈ G as follows:

v+(S) :=

{
v(N) if v(S) ≤ v(N)

v(S) if v(S) > v(N)

v−(S) :=

{
v(S) if v(S) ≤ v(N)

v(N) if v(S) > v(N)

for all S ⊆ N . Clearly, v−(S) ≤ v(S) ≤ v+(S) for all S ⊆ N . Hence, σ(v−) ≤ σ(v) ≤
σ(v+). Moreover, v−(N) = v(N) = v+(N) and hence σ(v−) = σ(v) = σ(v+). For each

12



x ∈ R, define ux ∈ G as follows:

ux(S) :=

{
x if S = N

0 if S 6= N

for all S ⊆ N . On the one hand, either uv(N)(S) ≤ v+(S) for all S ⊆ N (when v(N) > 0)

or v−(S) ≤ uv(N)(S) for all S ⊆ N (when v(N) ≤ 0). On the other hand, uv(N)(N) =

v(N) = v+(N) = v−(N). Hence, either σ(uv(N)) = σ(v+) (when v(N) > 0) or σ(uv(N)) =

σ(v−) (when v(N) ≤ 0). In either case,

σ(v) = σ
(
uv(N)

)
(11)

i.e. the only relevant value is v(N). Let

f(x) := σ(ux) (12)

for all x ∈ R. Now, we prove that

fi(α0 · x) = α0 · fi(x) + (1− α0) · fi(0) (13)

for all i ∈ N , all α0 ∈ [0, 1], and all x ∈ R. We assume x > 0. Case x < 0 is analogous

and case x = 0 is trivial. Define u0x ∈ IG as follows:

u0x(S) :=

{
[0, x] if S = N

0 if S 6= N

for all S ⊆ N . Let α̂ ∈ [0, 1]N defined by αi = α0 for all i ∈ N for some α0 ∈ [0, 1].

Hence,

fi(α0 · x) = fi(α0 · x+ (1− α0) · 0) = σi
(
uα0·x+(1−α0)·0

)
= σi

(
α̂ ◦ u0x

)
= (σ ◦ α̂)i

(
u0x
)

for all i ∈ N . By uniform Hurwicz compatibility of σ:

fi(α0 · x) = (α̂ ◦ σ)i
(
u0x
)

= α0 ◦ σi
(
u0x
)

= α0 ◦
[
σi
(
u0
)
,σi (u

x)
]

= α0 · σi (ux) + (1− α0) · σi
(
u0
)

= α0 · fi(x) + (1− α0) · fi(0)

for all i ∈ N , and hence (13) holds. This implies that, for each i ∈ N , there exist

δi, γi ∈ R such that

fi(x) = δi + γi · x (14)

13



0 α0 · x x

fi(0)

fi(x)

α0 · fi(x) + (1− α0) · fi(0) fi(α0 · x)

Figure 1: Visual proof that (13) implies (14).

for all x ∈ R (see Figure 1).

Clearly, δi = fi(0) for all i ∈ N . Moreover, γi ≥ 0 for all i ∈ N because otherwise

σi(v) /∈ I when |v|(N) > 0. By efficiency of σ:∑
i∈N

δi =
∑
i∈N

fi(0) =
∑
i∈N

σi
(
u0
)

= u0(N) = 0

and ∑
i∈N

γi =
∑
i∈N

(γi · 1) =
∑
i∈N

(fi(1)− δi) =
∑
i∈N

σi
(
u1
)
−
∑
i∈N

δi = u1(N)− 0 = 1.

Finally, for all v ∈ IG and all i ∈ N ,

σi(v)
(10)(9)

= [σi (v) ,σi (v)]

(11)
=
[
σi
(
uv(N)

)
,σi
(
uv(N)

)]
(12)
= [fi(v(N)), fi (v(N))]

(14)
= [δi + γi · v(N), δi + γi · v(N)]

= δi · [1, 1] + γi · [v(N), v(N)] = δi · [1, 1] + γi · v(N).

In particular, when δi = δj and γi = γj for all i, j ∈ N , then δi = 0 and γi = 1
n

for all

i ∈ N , and so we obtain the interval egalitarian solution:

ei (v) :=
1

n
· v(N)

for all i ∈ N .

An important implication of Theorem 4.1 is the following:

Theorem 4.2 The interval egalitarian solution is the only efficient, symmetric, and uni-

form Hurwicz compatible solution in IG.
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Proof. It follows from Theorem 4.1 and the fact that the interval egalitarian solution is

the only symmetric one in the family of efficient, uniform Hurwicz-compatible solutions.

Corollary 4.1 For n > 1, the interval HSX solution is not uniform Hurwicz compatible

in IG.

Proof. It follows from Theorem 4.2 and the fact that the interval HSX solution is efficient,

symmetric, defined in all IG, and (for n > 1) different from the interval egalitarian

solution.

5 Grand coalition certainty

Let IC denote the set of interval coalitional games v ∈ IG satisfying v(N) = v(N).

Clearly, G ⊂ IC.
A simple family of efficient solutions in IC is given by

eωi (v) := ωi(v(N))

for all i ∈ N , where ω(x) ∈ RN satisfies
∑

i∈N ωi(x) = x for all x ∈ R. In particular,

when ωi(x) = ωj(x) for all i, j ∈ N and all x ∈ R, we obtain the egalitarian solution:

ei(v) :=
1

n
· v(N)

for all i ∈ N .

Theorem 5.1 An efficient solution σ : IC → RN is Hurwicz-compatible in IC if and

only if there exists a function ω that assigns to each x ∈ R a vector ω(x) ∈ RN with∑
i∈N ωi(x) = x and such that

σ(v) = eω(v)

for all v ∈ IC.

Proof. Since we are in IC, α̂ ◦ σ = σ for all efficient solution σ and all α̂ ∈ [0, 1]N .

Hence, Hurwicz compatibility is equivalent to

σ(v) = σ(α̂ ◦ v)

for all v ∈ IC and all α̂ ∈ [0, 1]N . It is not difficult to check that, given ω : R → RN

with
∑

i∈N ωi(x) = x for all x ∈ R, eω is Hurwicz-compatible for IC. Let σ : IC → RN
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be an efficient Hurwicz compatible solution for IC. For each x ∈ R, let ex ∈ IC defined

as ex(N) = [x, x] and ex(S) = [0, 0] otherwise. Let

ωi(x) = σi(e
x)

for all x ∈ R and all i ∈ N . By efficiency of σ, we deduce
∑

i∈N ωi(x) = x for all x ∈ R.

We prove that σ(v) = eω(v) for all v ∈ IC by induction on the cardinality of

Θ(v) = {S ⊂ N,S 6= ∅ : v(S) 6= [0, 0]} .

Assume first |Θ(v)| = 0. Then, v = ev(N) and hence

σ(v) = σ
(
ev(N)

)
= ω(v(N)) = eω(v).

Assume now the result holds when the cardinality of Θ(v) is less than θ > 0, and let

|Θ(v)| = θ. Let S ∈ Θ(v). We have three cases:

Case 1: 0 ∈ v(S). Since S ∈ Θ(v), we deduce that there exists some α0 ∈ [0, 1] such

that 0 = α0 ◦ v(S). Let αi = α0 for all i ∈ N and let v−S ∈ IC defined as follows:

v−S(T ) :=

{
v(T ) if T 6= S

[0, 0] if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦ v = α̂ ◦ v−S. Under Hurwicz

compatibility of σ and the induction hypothesis,

σ(v) = σ(α̂ ◦ v) = σ
(
α̂ ◦ v−S

)
= σ

(
v−S

)
= eω(v−S(N)) (v−S) = eω(v(N)) (v) .

Case 2: 0 < v(S). Let αi = 1 for all i ∈ N . Let v−0,S ∈ IC defined as follows:

v−0,S(T ) :=

{
v(T ) if T 6= S

[0, v(S)] if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦v = α̂ ◦v−0,S. Under Hurwicz

compatibility of σ,

σ(v) = σ(α̂ ◦ v) = σ
(
α̂ ◦ v−0,S

)
= σ

(
v−0,S

)
and we proceed as in Case 1 with

(
v−0,S

)
.
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Case 3: v(S) < 0. Let αi = 0 for all i ∈ N . Let v+0,S ∈ IC defined as follows:

v+0,S(T ) :=

{
v(T ) if T 6= S

[v(S), 0] if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦v = α̂ ◦v+0,S. Under Hurwicz

compatibility of σ,

σ(v) = σ(α̂ ◦ v) = σ
(
α̂ ◦ v+0,S

)
= σ

(
v+0,S

)
and we proceed as in Case 1 with v+0,S.

An important implication of Theorem 5.1 is the following:

Theorem 5.2 The egalitarian solution is the only efficient and symmetric Hurwicz com-

patible solution in IC.

Proof. It follows from Theorem 5.1 and the fact that the egalitarian solution is the only

symmetric one in the family of efficient, Hurwicz-compatible solutions.

6 A comment on the core

Let us consider a coalitional interval game v ∈ IG and α̂ ∈ [0, 1]N . For any coalition

S ⊆ N , we denote αS = maxi∈S αi. The core of the TU game α̂◦v defined as (α̂◦v)(S) =

αS ◦ v(S), for all S ⊆ N , S 6= ∅ is given by the set:

C(α̂ ◦ v) :=

{
x̂ ∈ RN :

∑
i∈N

xi = αN ◦ v(N), αS ◦ v(S) ≤
∑
i∈S

xi,∀S ⊆ N

}
.

6.1 The interval core

Let us recall that the interval core with N players as defined in Alparslan Gök et al.

(2009a) as the set

C(v) :=

{
a ∈ IN :

∑
i∈N

ai = v(N),v(S) 4
∑
i∈S

ai,∀S ⊆ N

}

together with conditions that guarantee C(v) 6= ∅.
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In this case, we can apply the Hurwicz criterion to C(v) and obtain the set

α̂ ◦ C(v) :=
{

(α̂ ◦ ai)i∈N ∈ RN : a ∈ C(v)
}

=

{
(ai + αi · |ai|)i∈N ∈ RN :

∑
i∈N

ai = v(N),v(S) �
∑
i∈S

ai,∀S ⊆ N

}
where ∑

i∈N

ai = v(N)⇐⇒
∑
i∈N

ai = v(N) and
∑
i∈N

|ai| = |v|(N)

and

v(S) �
∑
i∈S

ai ⇐⇒ v(S) ≤
∑
i∈S

ai and |v|(S) ≤
∑
i∈S

|ai|

for all S ⊆ N . Notice that � has a different formal meaning than 4. In particular, �
implies 4 but the opposite does not hold. For example, [0, 1] 4 [2, 2] but [0, 1] 6� [2, 2]

because |[0, 1]| > |[2, 2]|.

Proposition 6.1 If all the Hurwicz coefficients coincide, αi = α0 for all i ∈ N , then

α̂ ◦ C(v) ⊆ C(α̂ ◦ v). (15)

Proof. Let us consider x̂ ∈ α̂ ◦ C(v). Then, xi = ai + α0 · |ai| for any i ∈ N ,
∑

i∈N ai =

v(N) and
∑

i∈N |ai| = |v|(N), and v(S) ≤
∑

i∈S ai and |v|(S) ≤
∑

i∈S |ai| for any S ⊆ N .

Then, ∑
i∈N

xi =
∑
i∈N

ai + α0 ·
∑
i∈N

|ai| = α0 ◦ v(N)

and, for any S ⊆ N ,

α0 ◦ v(S) ≤
∑
i∈S

ai + α0 ·
∑
i∈S

|ai| =
∑
i∈S

xi

so x̂ ∈ C(α̂ ◦ v).

Observe that inclusion (15) holds also when C(v) = ∅. Inclusion C(α̂ ◦ v) ⊆ α̂ ◦ C(v)

is not always true, as in the following example.

Example 6.1 Consider n = 2 and the interval cooperative game v given by v({1}) =

v({2}) = [1, 3] and v({1, 2}) = [2, 4]. For this game, C(v) = ∅, while if we consider

α1 = α2 = 0, the game α̂ ◦ v has non emptycore: 0 ◦ v({1}) = 1, 0 ◦ v({2}) = 1 and

0 ◦ v({1, 2}) = 2, so C(α̂ ◦ v) = {(1, 1)}.

Then we can deduce the next result.

Proposition 6.2 The interval core is not uniform Hurwicz-compatible in IG.

Remark 6.1 If we consider in the previous example the grand coalition certainty, in

particular if we assume v({1, 2}) = [2, 2], we have still that the inclusion C(α̂ ◦ v) ⊆
α̂ ◦ C(v) does not hold.
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6.2 The interval square core

Given an interval cooperative game v ∈ IG, we call border games the two (classical)

cooperative games defined as v and v where for any S ⊆ N , v(S) = [v(S), v(S)]. In

Alparslan Gök et al. (2009c) the square interval core C (v)�C (v) has been defined as:

C (v)�C (v) :=

{
a ∈ IN :

∑
i∈N

ai = v(N), a ∈ C (v) , a ∈ C (v)

}

and it has been proved that if C(v) 6= ∅ then C (v)�C (v) = C(v). Then, the same

considerations of the interval core on the Hurwicz compatibility can be done.

7 Concluding remarks

In this paper we study interval cooperative games. These are games where the worth

of coalitions are uncertain. Both a lower and an upper bound of the possible outcome

is assigned to each coalition. For these games, several solution concepts provide interval

allocations to the players and leave uncertainty on the exit. To mitigate this uncertainty,

assuming some degree of optimism (or pessimism) of the players (given by real numbers

between 0 and 1), we introduce a TU cooperative game applying the Hurwicz criterion.

This procedure allows having a standard solution concept once the degree of optimism is

fixed.

Another possibility of approaching the uncertainty is the following: consider any in-

terval solution concept in the original interval game and then apply the Hurwicz criterion

to the interval allocation. The question posed in the paper is if the two approaches lead

to the same result. We give the idea of Hurwicz compatibility and investigate under

which conditions it holds. In the case of a uniform degree of optimism/pessimism or of

the grand coalition certainty, we prove that the only compatible solutions are the pro-

portional ones, or the egalitarian in case symmetry is required. Some considerations on

the Shapley value and the core solution are also discussed.
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