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1 Introduction

Coalition structures are important in many real-world contexts, such as the for-
mation of cartels or bidding rings, alliances or trading blocs among nation states,
research joint ventures, and political parties.
These situations can be modelled through transferable utility (TU , for short)

games, in which the players partition themselves into coalitions for the purpose
of bargaining. All players in the same coalition agree before the play that any
cooperation with other players will only by carried out collectively. That is, either
all the members of the coalition take part of it or none of them (Malawski, 2004).
Given a coalition structure, bargaining occurs between coalitions and between

players in the same coalition. The main idea is that the coalitions play among
themselves as individual players in a game among coalitions, and then, the profit
obtained by each coalition is distributed among its members. Owen (1977) stud-
ied the allocation that arises from applying the Shapley value (Shapley, 1953b)
twice: first in the game among coalitions, and then in a reduced game inside each
coalition.
The same two-step approach has been applied by Pulido and Sánchez-Soriano

(2009) to generalize the core and Weber, and by Casas-Méndez et al. (2003) to
generate the τ -value (Tijs, 1981).
In general, this approach assumes a symmetric treatment for each coalition.

As Harsanyi (1977) points out, in unanimity games this procedure implies that
players would be better off bargaining by themselves than joining forces. This is
known as the join-bargaining paradox, or the Harsanyi paradox.
An alternative approach is to give a different treatment, or weight, to each

coalition. Following this idea, Levy and McLean (1989) apply the weighted Shap-
ley value (Shapley, 1953a; Kalai and Samet, 1987, 1988) in the game among
coalitions, as well as in the reduced games. Other weighted version of the Shapley
value is provided by Haeringen (2006), whereas a weighted version of the Banzhaf
value is provided by Radzik et al. (1997) and Nowak and Radzik (2000).
In all these works, the weigth system is exogenously given. Hoewever, a natural

weight for each coalition can also be endogenously provived by its own cardinality.
In fact, a motivation for the weighted Shapley value is precisely the difference in
size1. Moreover, Kalai and Samet (1987, Corollary 2 in Section 7) show that the

1Kalai and Samet (1987) present the example of large constituencies with many individuals,
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cardinality of coalitions are appropriate weights for the players. The reason is
that if we force the players in a coalition to work together (by destroying their
resources when they are not all together), then the aggregated Shapley value of
each coalition in the new game coincides with the weighted Shapley value of the
game among coalitions, with weights given by the cardinality of the coalition2.
It is then reasonable to apply the Levy and McLean value with intracoalitional

symmetry and weights given by the cardinality of the coalition. However, in
Levy and McLean’s model, the weight of the subcoalitions in the reduced game
remains constant, even though these subcoalitions may have different cardinality.
An alternative approach is to vary the weight of the coalitions in the reduced
game. Vidal-Puga (2006) follows this approach to define a new coalitional value.
This new coalitional value does not present the Harsanyi paradox.
We have then, three reasonable generalizations of the Shapley value for games

with coalition structure: the coalitional Owen value (Owen, 1977), the coalitional
Levy-McLean weighted value (Levy and McLean, 1989) with the weights given
by the size of the coalition, and the new value presented by Vidal-Puga (2006).
In order to compare the three coalitional values, we can study which properties
are satisfied by each of them, so that we can decide from these properties which
is the most reasonable one for each particular situation. Moreover, when these
properties completely characterize the values, we can be sure that the properties
catch their essence.
In this paper, we characterize the above coalitional values. These three values

have in common the following feature: First, the worth of the grand coalition is
divided among the coalitions following either the Shapley value (Owen), or the
weighted Shapley value with weights given by the size of the coalitions (Levy and
McLean, Vidal-Puga), and then the profit obtained by each coalition is distributed
among its members following the Shapley value of an appropriately defined ”re-
duced” game.
Some of the axioms used in the characterizations (efficiency, intracoalitional

symmetry, and linearity) are standard in the literature, others (independence of

in contrast with constituencies composed by a small number of individuals.
2Another possibility is to give the worth of any coalition to any of its nonempty subcoalitions.

In this case, the aggregated Shapley value of each coalition coincides with the weighted Shapley
value of the dual game among coalitions (see Kalai and Samet, 1987, Section 7, for further
details).
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null coalitions and two intracoalitional versions of balanced contributions) are used
in many different frameworks. The property of independence of null coalitions is
related to the standard property of null player. However, the role of null players
is important as their only presence affects the size of the coalition. In fact, two
of the three values (Owen, Levy and McLean) satisfy the null player property,
whereas the third one (Vidal-Puga) does not.
Additionally, we introduce new properties in this kind of problems: coordina-

tion (which asserts that internal changes in a coalition which do no affect the game
among coalitions, do not influence the final payment of the rest of the players)
and two properties of sharing in unanimity games (which establish how should
the payment be under the grand coalition in unanimity game).
The properties of efficiency, linearity, intracoalitional symmetry and indepen-

dence of null coalitions are natural extensions of the classical properties that
characterize the Shapley value (efficiency, linearity, symmetry and null player,
respectively) to the game among coalitions. On the other hand, the properties
of balanced contributions are applied to the game inside a coalition, and each of
them is a natural extension of the property of balanced contribution that also
characterizes, with efficiency, the Shapley value (Myerson, 1980). Moreover, the
property of balanced intracoalitional contributions is used to characterize the value
proposed by Vidal-Puga (2006) in Gómez-Rúa and Vidal-Puga (2008). Hence, the
three values proposed here can be seen as natural extensions of the Shapley value
for games with coalition structure. Additionally, the property of coordination for-
malizes the idea presented by Owen that the players inside a coalition negotiate
among them, but always assuming that the rest of the coalitions remain together
(see for example the game v1 defined by Kalai and Samet, 1987, Section 7).
The paper is organized as follows. In Section 2 we introduce the model. In

Section 3 we define a family that includes the three coalitional values. In Section
4 we present the properties used in the characterization and we study which prop-
erties the coalitional values satisfy. In Section 5 we present the characterization
results. In Section 6 we prove that the properties are independent. In Section 7
we present some concluding remarks.

2 Notation

Let U = {1, 2, ...} be the (infinite) set of potential players.
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Given a finite subset N ⊂ U , let Π(N) denote the set of all orders in N . Given
π ∈ Π(N), let Pre(i, π) denote the set of the elements in N which come before i
in the order given by π, i.e. Pre(i, π) = {j ∈ N : π(j) < π(i)}. For any S ⊂ N ,
πS denotes the order induced in S by π (for all i, j ∈ S, πS(i) < πS(j) if and only
if π(i) < π(j)).
Let |C| denote the cardinality of a set C.
A transfer utility game, TU game, or simply a game, is a pair (N, v) where

N ⊂ U is finite and v : 2N → R satisfies v(∅) = 0. When N is clear, we can also
denote (N, v) as v. Given a TU game (N, v) and S ⊂ N , v(S) is called the worth
of S. Given S ⊂ N , we denote the restriction of (N, v) to S as (S, v).
For simplicity, we usually write S ∪ i instead of S∪{i}, N\i instead of N\{i},

and v (i) instead of v ({i}).
Two players i, j ∈ N are symmetric in (N, v) if v (S ∪ i) = v (S ∪ j) for all

S ⊂ N\ {i, j}. A player i ∈ N is null in (N, v) if v(T ∪ i) = v(T ) for all T ⊂ N\i.
The set of non-null players in (N, v) is the minimal carrier of (N, v), and we
denote it as MC (N, v). Given two games (N, v), (N,w), the game (N, v + w) is
defined as (v + w)(S) = v(S) + w(S) for all S ⊂ N . Given a game (N, v) and a
real number α, the game (N,αv) is defined as (αv) (S) = αv (S) for all S ⊂ N .
Given N ⊂ U finite, we call coalition structure over N a partition of the

player set N , i.e. C = {C1, C2, ...., Cm} ⊂ 2
N is a coalition structure if it satisfies⋃

Cq∈C
Cq = N and Cq ∩ Cr = ∅ when q �= r. We also assume Cq �= ∅ for all q.

We say that Cq ∈ C is a null coalition if all its members are null players.
For any S ⊂ N, we denote the restriction of C to the players in S as CS, i.e.

CS = {Cq ∩ S : Cq ∈ C and Cq ∩ S �= ∅}.
For any S ⊂ Cq ∈ C, we will frequently study the case in which the players in

Cq\S leave the game. In this case, we write CS instead of the more cumbersome
CN\(Cq\S).
Given a game (N, v) and a coalition structure C = {C1, C2, ...., Cm} over N ,

the game among coalitions is the TU game (M,v/C) where M = {1, 2, ...,m} and

(v/C) (Q) = v
(⋃

q∈QCq
)
for all Q ⊂M .

We denote the game (N, v) with coalition structure C = {C1, C2, ...., Cm}
over N as (N, v, C) or (v, C). When no confusion can arise, we write v instead
of (N, v, C).
Given S ⊂ N , S �= ∅, the unanimity game with minimal carrier S, (N,uSN) is

defined as uSN(T ) = 1 if S ⊂ T and uSN(T ) = 0 otherwise, for all T ⊂ N . We call
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(N, uNN) the unanimity game.
A value is a function that assigns to each game (N, v) a vector in RN repre-

senting the amount that each player in N expects to get in the game. One of the
most important values in TU games is the Shapley value (Shapley, 1953b). We
denote the Shapley value of the TU game (N, v) as Sh(N, v) ∈ RN .
Similarly, a coalitional value is a function that assigns to each game with

coalition structure (N, v, C) a vector in RN . Each value can also be considered
as a coalitional value. Hence, we define the coalitional Shapley value of the game
(N, v, C) as Sh (N, v, C) = Sh (N, v). One of the most important coalitional values
is the Owen value (Owen, 1977).
Another generalization for a value is the following: a weighted value φω is a

function that assigns to each TU game (N, v) and each x ∈ RN+ a vector φ
x (N, v)

in RN . For each i ∈ N , xi is the weight of player i. We will say that a weighted
value φω extends or generalizes a value φ if φx (N, v) = φ (N, v) for any weight
vector x with xi = xj for all i, j ∈ N . The most prominent weighted generalization
of the Shapley value is the weighted Shapley value Shω (Shapley (1953a), Kalai
and Samet (1987, 1988)), which is defined as

Shωi (N, v) =
∑

S∋i

ωi∑
j∈S ωj

∑

T⊂S

(−1)|S|−|T | v (T )

for all i ∈ N and each ω ∈ RN+ .

3 Games with coalition structure

We now focus on games with coalition structure. Fix C = {C1, ..., Cm} and let
M = {1, ...,m}. For each pair (γ, φω), where γ is a value and φω is a weighted
value, we define two coalitional values γ [φω] and γ 〈φω〉. In both cases, the idea is
to divide the worth of the grand coalition in two steps: In the first step, φω is used
in the game among coalitions, with weights given by the size of each coalition. In
the second step, γ is used inside each coalition.
For each coalition structure C = {C1, C2, ..., Cm} over N , let σ (C) ∈ RM+ be

defined as σq (C) = |Cq| for all q ∈ M . Given Cq ∈ C, the reduced TU game

with fixed weights
(
Cq, v

[φω ]N
Cq

)
is defined as v

[φω ]N
Cq

(S) := φσ(C)q

(
M,v/CS

)
for all
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S ⊂ Cq. The reduced TU game with relaxed weights
(
Cq, v

〈φω〉N
Cq

)
is defined as

v
〈φω〉N
Cq

(S) := φ
σ(CS)
q

(
M, v/CS

)
for all S ⊂ Cq.

Thus, both v
[φω ]N
Cq

(S) and v
〈φω〉N
Cq

(S) are interpreted as the value that φω assigns
to coalition S in the game among coalitions assuming that the members of Cq\S
are out. In the first case, coalition S maintains the weight of the original coalition
Cq. In the second case, coalition S plays with a weight proportional to its own
(reduced) size.
In the particular case φx = φ for all x, both reduced TU games coincide and

we write
(
Cq, v

(φ)N
Cq

)
instead of

(
Cq, v

[φω]N
Cq

)
or
(
Cq, v

〈φω〉N
Cq

)
.

Definition 1 Given a value γ and a weighted value φω, we define respectively

the coalitional values γ [φω] and γ 〈φω〉 as γ [φω]i (N, v, C) := γi

(
Cq, v

[φω ]N
Cq

)
and

γ 〈φω〉i (N, v, C) := γi

(
Cq, v

〈φω〉N
Cq

)
for all i ∈ Cq ∈ C. In the particular case φx =

φ for all x, both expressions coincide and hence we write γ (φ) := γ [φω] = γ 〈φω〉 .

We concentrate on three particular members of this family, that have been
previously studied in the literature:

Example 2 Sh (Sh) is the Owen value (Owen, 1977).
Sh [Shω] is the weighted coalitional value with intracoalitional symmetry, and

weights given by the size of the coalitions (Levy and McLean, 1989).
Sh 〈Shω〉 has been studied by Vidal-Puga (2006).

We provide an example to compute these three values, in order to highlight
their differences: Let (N, v, C) given by N = {1, 2, 3}, v (N) = v ({1, 2}) = 1,
v ({1, 3}) = α with α ∈ [0, 1), and v (S) = 0 otherwise. This game arises when
a seller has an item that is valued diferenty by two potential buyers; or when an
employer should decide to hire an employee from two possible candidates with
different capabilities; or when two complementary items (produced by players
1 and 2, respectively) face the presence of a third item that may imperfectly
substitute the item produced3 by player 2.

3Hence, items {1, 2} are worth more than items {1, 3} but no other pair of items is valuable.
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When players 1 and 3 act together, we have the coalition structure C =
{C1, C2} with C1 = {1, 3} and C2 = {2}. The game among coalitions is then
({1, 2} , v/C) with (v/C) ({1}) = α, (v/C) ({2}) = 0, and (v/C) ({1, 2}) = 1.
The Shapley value is

(
1+α
2
, 1−α

2

)
, whilst the weighted Shapley value (with weights

ω1 = 2 and ω2 = 1) is
(
2+α
3
, 1−α

3

)
.

In order to compute Sh (Sh), Sh [Shω] and Sh 〈Shω〉, we need to know how
these values change when either player 1 or 3 leaves coalition C1. These values
are summarized in the following table.

Sh (Sh) Sh [Shω] Sh 〈Shω〉

None leaves
(
1+α
2
, 1−α

2

) (
2+α
3
, 1−α

3

) (
2+α
3
, 1−α

3

)

Player 1 leaves (0, 0) (0, 0) (0, 0)
Player 3 leaves

(
1
2
, 1
2

) (
2
3
, 1
3

) (
1
2
, 1
2

)

Gains of cooperation α
2

α
3

1+2α
6

In the first column (Sh (Sh)), the Shapley value is computed. In the second
column and third colum, the weighted Shapley value is computed. For Sh [Shω],
coalition C1 always has weight 2. For Sh 〈Shω〉, coalition C1 has weight 1 when
eiher player 1 or 3 leaves.
We now focus on the second step for coalition C1: For Sh (Sh), the reduced

game is given by v
(Sh)N
C1

({1}) = 1
2
, v

(Sh)N
C1

({3}) = 0, and v
(Sh)N
C1

({1, 3}) = 1+α
2
.

The Shapley value is
(
2+α
4
, α
4

)
. Hence, the final pyaoff allocation is Sh (Sh) (N, v, C) =(

2+α
4
, 1−α

2
, α
4

)
.

Analogously, we have Sh [Shω] (N, v, C) =
(
4+α
6
, 1−α

3
, α
6

)
and Sh 〈Shω〉 (N, v, C) =(

7+2α
12

, 1−α
3
, 1+2α

12

)
. Notice that Sh 〈Shω〉 always assings player 3 a positive payoff,

even when α = 0 (and therefore, player 3 is null).

There exist other relevant coalitional values that belong to this family. Let Ba
be the Banzhaf value (Banzhaf 1965, Owen 1975). Let In be the individual value
(Owen4, 1978) defined as Ini (N, v) = v ({i}) for all i ∈ N . Given p ∈ [0, 1], let
Bp be the p-binomial value (Puente, 2000). Let DP be the Deegan-Packel value
(Deegan and Packel, 1978). Let LSP be the least square prenucleolus (Ruiz,
Valenciano and Zarzuelo, 1996).

Example 3 Sh (In) is the Aumann-Drèze value (Aumann and Drèze, 1974).

4Owen uses the term dictatorial instead of individual.
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Ba (Ba) is the Banzhaf-Owen value (Owen 1975).
Sh (Ba) is the symmetric coalitional Banzhaf value (Alonso-Meijide and Fiestras-

Janeiro, 2002).
Ba (Sh) is defined and studied by Amer, Carreras and Giménez (2002).
{Sh (Bp)}p∈[0,1] is the family of symmetric coalitional binomial values (Car-

reras and Puente, 2006).
DP (DP ) and LSP (LSP ) are defined and studied by M=lodak (2003).

4 Properties

In this section we present some properties of the values. Moreover, we provide
several results.

4.1 Classical properties

Efficiency (Eff) For any game (N, v),
∑

i∈N fi (N, v) = v (N) .

That is, the worth of the grand coalition is distributed.

Linearity (Lin) Given (N, v), (N,w) and real numbers α and β,

f (N,αv + βw) = αf (N, v) + βf (N,w) .

That is, if a game is a linear combination of two games, the value assigns the
linear combination of the values of the games.

Symmetry (Sym) Given two symmetric players i, j ∈ N in a game (N, v),
fi (N, v) = fj (N, v) .

That is, two symmetric players in (N, v) receive the same.

Null Player (NP) Given a null player i ∈ N in (N, v), fi (N, v) = 0.

That is, any null player receives zero.

Independence of Null Players (INP) Given a null player i ∈ N in a game
(N, v), for all j ∈ N\i, fj (N, v) = fj (N\i, v)
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That is, no player gets a different value if a null player is removed from the
game.
We say that a weighted value φω satisfies some property if φx satisfies this

property for each x.

Proposition 4 a) The Shapley value Sh is the only value that satisfies Eff ,
Lin, Sym and INP .

b) The weighted Shapley value Shω satisfies INP .

Proof. a) It is well-known that Sh satisfies Eff , Lin and Sym. It is also clear
that Sh satisfies INP . On the other hand, it is straightforward to check that
Eff and INP imply NP . Since Sh is the only value that satisfies Eff , Lin,
Sym and NP (Shapley, 1953b), we deduce the result.
b) From Kalai and Samet (1987, Theorem 1) and a classical induction hy-

pothesis on the number of players, it is straightforward to check that Shω satisfies
INP .
These properties can be adapted to games with coalition structure without

changes. For Sym and INP , we will also apply them inside the coalitions and to
null coalitions, respectively:

Intracoalitional Symmetry (IS) Given two symmetric players in the same
coalition i, j ∈ Cq ∈ C, fi (N, v, C) = fj (N, v, C) .

Independence of Null Coalitions (INC) Given a game (N, v, C) and a null
coalition Cq ∈ C, fi (N, v, C) = fi

(
N\Cq, v, CN\Cq

)
for all i ∈ N\Cq.

INC asserts that if a coalition is null, it does not influence the allocation
within the rest of the players. It is a weaker property than INP . Notice that
INC and Eff imply that the aggregated payment of the players in a null coalition
is zero.

Proposition 5 a) If both γ and φω satisfy Eff , then both γ [φω] and γ 〈φω〉
satisfy Eff .

b) If both γ and φω satisfy Lin, then both γ [φω] and γ 〈φω〉 satisfy Lin.
c) If γ satisfies Sym, then both γ [φω] and γ 〈φω〉 satisfy IS.
d) If φω satisfies INP , then both γ [φω] and γ 〈φω〉 satisfy INC.
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Proof. Parts a), b) and c) are straightforward from the definition.
d) We prove the result for γ [φω]. The result for γ 〈φω〉 is analogous. Let

C = {C1, ..., Cm} and let Cq ∈ C be a null coalition. Denote M = {1, 2, ...,m}. To
prove that γ [φω]i (N, v, C) = γ [φω]i (N\Cq, v, CN\Cq) for all i ∈ N\Cq it is enough

to prove that v
[φω]N
Cr

(S) = v
[φω ]N\Cq
Cr

(S) for all S ⊂ Cr ∈ C\ {Cq} .

Take S ⊂ Cr ∈ C\ {Cq}. By definition, v
[φω]N
Cr

(S) = φσ(C)r (M,v/CS).

Since φσ(C) satisfies INP , we have φσ(C)r

(
M,v/CS

)
= φσ(C)r

(
M\q, v/CSN\Cq

)
.

Notice that there is no ambiguity in the notation v/CS
N\Cq

because
(
CS
)
N\Cq

=
(
CN\Cq

)S
. By definition, φσ(C)r

(
M\q, v/CSN\Cq

)
= v

[φω]N\Cq
Cr

(S).

Combining the three last expressions we obtain the result.

Corollary 6 Sh (Sh), Sh [Shω] and Sh 〈Shω〉 satisfy Eff , Lin, IS and INC.

4.2 Properties of Balanced Contributions

The principle of Balanced Contributions is used in different contexts. Myerson
(1977) was the first to use it for games with graphs. He called it Fairness. Later,
Myerson (1980) characterized the Shapley value with balanced contributions and
efficiency. The principle of balanced contributions has also been used in other
contexts: Amer and Carreras (1995) and Calvo, Lasaga and Winter (1996) char-
acterized the Owen value; Calvo and Santos (2000) characterized a value for multi-
choice games; Bergantiños and Vidal-Puga (2005) characterized an extension of
the Owen value for non-transferable utility games; Calvo and Santos (2006) char-
acterized the subsidy-free serial cost sharing method (Moulin, 1995) in discrete
cost allocation problems; Alonso-Meijide, Carreras and Puente (2007) character-
ized a parametric family of coalitional values; and Lorenzo-Freire et al. (2007)
defined a property of balanced contributions in the context of cooperative games
with transferable utility and awards.

Balanced Contributions (BC) Given a game (N, v), for all i, j ∈ N ,

fi (N, v)− fi (N\j, v) = fj (N, v)− fj (N\i, v) .

This property states that for any two players, the amount that each player
would gain or lose by the other’s withdrawal from the game should be equal.
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A remarkable property of this principle is that it completely characterizes the
Shapley value with the only help of efficiency.

Proposition 7 (Myerson, 1980) Sh is the only value that satisfies Eff and BC.

A similar, yet different version of BC arises when we make the players become
null, instead of leaving the game: Given (N, v) and i ∈ N , we define (N, v−i) as
v−i (S) = v (S ∩ (N\i)) for all S ⊂ N . Hence, in (N, v−i) player i becomes a null
player.

Null Balanced Contributions (NBC) Given a game (N, v), for all i, j ∈ N ,
fi (N, v)− fi (N, v−j) = fj (N, v)− fj (N, v−i) .

This property sates that for any two players, the amount that each player
would gain or lose by the other’s becaming null should be equal. In this context,
the fact that an agent becomes null can be interpreted as this player losing his
resources.
Under Eff and Sym, NBC and BC are equivalent:

Proposition 8 Sh is the only value that satisfies Eff , NBC and Sym.

Proof. It is well-known that Sh satisfies Eff , Sym and INP . For any null player
j ∈ N, (N\j, v−j) = (N\j, v) . Since Sh satisfies INP , we have Shi (N, v−j) =
Shi (N\j, v−j) = Shi (N\j, v) for any i ∈ N\j. Hence, BC and NBC are equiv-
alent for Sh. Since Sh satisfies BC (Proposition 7), Sh also satisfies NBC.
To see the uniqueness, let f be a value satisfying these properties. Fix (N, v).

We proceed by induction on |Carr (N, v)|. If |Carr (N, v)| = 0, the result holds
from Eff and Sym. Assume the result holds for less than |Carr (N, v)| non-null
players, with |Carr (N, v)| > 0. Let i ∈ N .
Assume first that player i is a null player. Obviously, (N, v) = (N, v−i). For

any j ∈ Carr (N, v), under NBC, fi (N, v)−fi (N, v−j) = fj (N, v)−fj (N, v−i) =
0
and hence fi (N, v) = fi (N, v−j). By induction hypothesis, fi (N, v) = Shi (N, v−j) =
0 because i is also a null player in (N, v−j) .
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Assume now i ∈ Carr (N, v). Under NBC, fi (N, v)−fi (N, v−j) = fj (N, v)−
fj (N, v−i) for all j ∈ N\i, and hence

(n− 1) fi (N, v)−
∑

j∈N\Carr(N,v)
fi
(
N, v−j

)
−
∑

j∈Carr(N,v)\i
fi
(
N, v−j

)

=
∑

j∈N\i
fj (N, v)−

∑
j∈N\i

fj
(
N, v−i

)
.

Obviously, fi (N, v) = fi (N, v−j) for all j ∈ N\Carr (N, v). Hence,

(|Carr (N, v)| − 1) fi (N, v)−
∑

j∈Carr(N,v)\i fi (N, v−j)

=
∑

j∈N\i fj (N, v)−
∑

j∈N\i fj (N, v−i) .

Under Eff ,
∑

j∈N\i fj (N, v) = v (N)− fi (N, v) and hence,

fi (N, v) =
1

|Carr (N, v)|

[
v (N) +

∑
j∈Carr(N,v)\i

fi
(
N, v−j

)
−
∑

j∈N\i
fj
(
N, v−i

)]
.

Under the induction hypothesis, f (N, v−j) = Sh (N, v−j) for all j ∈ Carr (N, v)
and hence

fi (N, v) =
1

|Carr (N, v)|

[
v (N) +

∑
j∈Carr(N,v)\i

Shi
(
N, v−j

)
−
∑

j∈N\i
Shj

(
N, v−i

)]

from where we deduce that fi (N, v) is unique for all i ∈ Carr (N, v).

Remark 9 Sym is needed in the previous characterization. Let f {1,2} be defined
as follows: If {1, 2} ⊆ N , then f

{1,2}
1 (N, v) = Sh1 (N, v) + 1, f

{1,2}
2 (N, v) =

Sh2 (N, v) − 1, and f{1,2}i (N, v) = Shi (N, v) otherwise. If {1, 2} � N , then
f{1,2} (N, v) = Sh (N, v). This value satisfies Eff and NBC, but f{1,2} �= Sh.

Remark 10 Young (1985) characterized Sh as the only value that satisfies Eff ,
Sym and Strong Monotonicity (SM). This last property says that fi (N, v) ≥
fi (N, v′) whereas v (S ∪ i) − v (S) ≥ v′ (S ∪ i) − v′ (S) for all S ⊂ N\i. Hence,
Proposition 8 implies that NBC and SM are equivalent under Eff and Sym.
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In order to keep the essence of the Shapley value at the intracoalitional level,
we force (null) balanced contributions inside a coalition:

Balanced Intracoalitional Contributions (BIC) Given a game (N, v, C), for
all i, j ∈ Cq ∈ C, fi (N, v, C)−fi

(
N\j, v, CN\j

)
= fj (N, v, C)−fj

(
N\i, v, CN\i

)
.

This property states that for any two players that belong to the same coalition
in C, the amount that each player would gain or lose by the other’s withdrawal
from the game should be equal.

Null Balanced Intracoalitional Contributions (NBIC) Given a game (N, v, C),
for all i, j ∈ Cq ∈ C, fi (N, v, C)−fi (N, v−j , C) = fj (N, v, C)−fj (N, v−i, C) .

This property states that for any two players that belong to the same coalition
in C, the amount that each player would gain or lose if the other becomes null
should be equal.

Proposition 11 a) If γ satisfies NBC, then γ [φω] satisfies NBIC.
b) If γ satisfies BC, then γ 〈φω〉 satisfies BIC.

Proof. Fix Cq ∈ C and i, j ∈ Cq.

a) By definition of γ [φω], v
[φω ]N
Cq

and (N, v−j), it is straightforward to check that

γ [φω]i (N, v, C)−γ [φω]i (N, v−j , C) = γi

(
Cq, v

[φω ]N
Cq

)
−γi

(
Cq,

(
v
[φω]N
Cq

)−j)
. Since

γ satisfies NBC, we have γ [φω]i (N, v, C)− γ [φω]i (N, v−j , C) = γj

(
Cq, v

[φω]N
Cq

)
−

γj

(
Cq,

(
v
[φω]N
Cq

)−i)
.

Reasoning as before, γ [φω]j (N, v, C) − γ [φω]j (N, v−i, C) = γj

(
Cq, v

[φω ]N
Cq

)
−

γj

(
Cq,

(
v
[φω]N
Cq

)−i)
and hence the result.

b) By definition of γ 〈φω〉 and v〈φ
ω〉N

Cq
, it is straightforward to check that γ 〈φω〉i (N, v, C)−

γ 〈φω〉i (N\j, v, CN\j) = γi

(
Cq, v

〈φω〉N
Cq

)
− γi

(
Cq\j, v

〈φω〉N
Cq

)
. Since γ satisfies BC,

we have γ 〈φω〉i (N, v, C)−γ 〈φω〉i (N\j, v, CN\j) = γj

(
Cq, v

〈φω〉N
Cq

)
−γj

(
Cq\i, v

〈φω〉N
Cq

)
.

Reasoning as before, γ 〈φω〉j (N, v, C)−γ 〈φω〉j (N\i, v, CN\j) = γj

(
Cq, v

〈φω〉N
Cq

)
−

γj

(
Cq\i, v

〈φω〉N
Cq

)
and hence the result.
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Corollary 12 The Owen value Sh (Sh) satisfies both BIC and NBIC; Sh [Shω]
satisfies NBIC; Sh 〈Shω〉 satisfies BIC.

Even though Proposition 7 and Proposition 8 show that BC and NBC are
equivalent under Eff and Sym, this is not the case for their intracoalitional
versions:

Remark 13 a) Sh [Shω] does not satisfy BIC. Let N = {1, 2, 3} and v defined
as v (S) = 1 if {1, 2} ⊂ S or {1, 3} ⊂ S, and v (S) = 0 otherwise. Let C =
{{1, 2} , {3}}. Then,

Sh [Shω]1 (N, v, C)− Sh [Shω]1
(
N\2, v, CN\2

)
=

5

6
−
1

2
=
1

3

Sh [Shω]2 (N, v, C)− Sh [Shω]2
(
N\1, v, CN\1

)
=

1

6
− 0 =

1

6
.

b) Sh 〈Shω〉 does not satisfy NBIC. Let (N, v, C) be defined as in a). Then,

Sh 〈Shω〉1 (N, v, C)− Sh 〈Shω〉1
(
N, v−2, C

)
=

3

4
−
7

12
=
1

6

Sh 〈Shω〉2 (N, v, C)− Sh 〈Shω〉2
(
N, v−1, C

)
=

1

4
− 0 =

1

4
.

Notice that these values apply Sh in the game inside the coalitions, and, more-
over, the Shapley value satisfies BC. However, BIC does not hold for Sh [Shω]
because the weight of coalition Cq is affected by the withdrawn of one of its players.
On the other hand, NBIC does not hold in Sh 〈Shω〉 because of a subtler different
reason. The player that becomes null does so in v, but not in the intracoalitional
game, where it still maintains the weight of the coalition.

4.3 Other properties

Coordination (Co) Fix C. For all v, v′ and Cq ∈ C, if v
(
T ∪

⋃
Cr∈R

Cr
)
=

v′
(
T ∪

⋃
Cr∈R

Cr
)
for all T ⊂ Cq and all R ⊂ C\{Cq}, then, fi (N, v, C) =

fi (N, v′, C) for all i ∈ Cq.

This property says that, given a coalition Cq, if there are changes inside other
coalitions, but these changes do not affect the worth of any subset of Cq with the
rest of coalitions, then these internal changes in the other coalitions do not affect
the final payment of each player in Cq.
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Proposition 14 γ (φ), γ [φω] and γ 〈φω〉 satisfy Co for every φ, φω and γ.
Proof. Let C, v and v′ be such that v

(
T ∪

⋃
Cr∈R

Cr
)
= v′

(
T ∪

⋃
Cr∈R

Cr
)
for

all T ⊂ Cq and all R ⊂ C\ {Cq}. It is enough to prove that v[φ
ω ]N

Cq
(S) = v′[φ

ω ]N
Cq

(S)

and v
〈φω〉N
Cq

(S) = v
′〈φω〉N
Cq

(S) for all S ⊂ Cq. By the condition satisfied by v and v′

we have that
(
M,v/CS

)
=
(
M,v′/CS

)
for all S ⊂ Cq. Hence, φ

σ(C)
q

(
M, v/CS

)
=

φσ(C)q

(
M, v′/CS

)
and φ

σ(CS)
q

(
M,v/CS

)
= φ

σ(CS)
q

(
M,v′/CS

)
for all S ⊂ Cq. By

the definition of the reduced games, we have the result.

Frequently, it is interpreted that players form coalitions in order to improve
their bargaining strength (Hart and Kurz, 1983). However, as Harsanyi (1977)
points out, the bargaining strength does not improve in general. An individual
can be worse off bargaining as a member of a coalition than bargaining alone.
This is what is known as the “Harsanyi paradox”.
The following property prevents the “Harsanyi paradox” in the case where all

the players are symmetric. In the unanimity game (with minimal carrier N) all
the players are necessary to obtain a positive payment. Hence it seems reasonable
that their assignment should be independent of the coalitional structure:

Equal Sharing in Unanimity Games (ESUG) For any C, and for all i, j ∈
N , fi

(
N, uNN , C

)
= fj

(
N,uNN , C

)

This property asserts that in the unanimity game, each player should receive
the same payment, regardless of C.
The Owen value does not satisfy ESUG but a weighted version:

Inverse Proportional Sharing in Unanimity Games (IPSUG) For any game(
N, uNN , C

)
, any coalitions Cq, Cr ∈ C and for all i ∈ Cq and j ∈ Cr,

|Cq| fi
(
N, uNN , C

)
= |Cr| fj

(
N, uNN , C

)
.

This property asserts that under the unanimity game, each player should re-
ceive a payment inversely proportional to the size of the coalition he belongs to.
A similar property is the following:
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Coalitional Symmetry in Unanimity Games (CSUG) For any game
(
N, uNN , C

)
,

and any coalitions Cq, Cr ∈ C,
∑

i∈Cq
fi
(
N, uNN , C

)
=
∑

i∈Cr
fi
(
N,uNN , C

)
.

The latter three properties are defined following the philosophy of other axioms
in the literature, which determine how the payoff allocation should be in unanimity
games. See, for instance, Aumann (1985, Axiom 3) and Winter (1991, Axiom A6-
Unanimity Games).
It is straightforward to check that, under IS, CSUG is equivalent to IPSUG.

We use IPSUG because it follows the same formulation as ESUG.
In addition to Eff , either ESUG or IPSUG would determine the coalitional

value for
(
N,uNN , C

)
:

Proposition 15 a) If a coalitional value f satisfies Eff and ESUG, then
fi
(
N, uNN , C

)
= 1

|N |
for all i ∈ N .

b) If a coalitional value f satisfies Eff and IPSUG, then fi
(
N, uNN , C

)
=

1
|Cq||C|

for all i ∈ Cq ∈ C.

Proof. Part a) is trivial. As for part b), notice that IPSUG implies that all
the coalitions should receive the same aggregate value, and hence, under Eff ,
this value is 1

|C|
. Moreover, IPSUG also implies that all the players in the same

coalition should receive the same value. Hence the result.
However, these properties are still very weak, since they only apply to a very

specific unanimity game uNN . The following result gives us sufficient conditions to
have these properties for the family of coalitional values defined before:

Proposition 16 a) If both γ and φω satisfy Eff and Sym, then
γ [φω] and γ 〈φω〉 satisfy IPSUG.

b) If γ satisfies Eff and Sym, φω satisfies Eff , and φxi
(
N,uNN

)
/xi = φxj

(
N, uNN

)
/xj

for all i, j ∈ N and all x ∈ RN+ , then γ [φω] and γ 〈φω〉 satisfy ESUG.
Proof. Clearly,

(
M,uNN/C

)
=
(
M,uMM

)
and

(
M,uNN/C

S
)
= (M,null) for all

S � Cq ∈ C, where null (Q) = 0 for all Q ⊂M .

a) Under Eff and Sym of φω, we have
(
uNN
)[φω]N
Cq

=
(
uNN
)〈φω〉N
Cq

= 1
|C|
u
Cq
Cq

for all Cq ∈ C. Under Eff and Sym of γ, we conclude that γ [φω]i (N, v, C) =
γ 〈φω〉i (N, v, C) = 1

|Cq ||C|
for all i ∈ Cq ∈ C and hence the result.
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b) Under our hypothesis over φω, we have
(
uNN
)[φω ]N
Cq

=
(
uNN
)〈φω〉N
Cq

= |Cq|

|N |
u
Cq
Cq

for all Cq ∈ C. Under Eff and Sym of γ, we conclude that γ [φω]i (N, v, C) =

γ 〈φω〉i (N, v, C) = 1
|Cq |

|Cq|

|N |
= 1

|N |
for all i ∈ Cq ∈ C and hence the result.

Corollary 17 a) The Owen value Sh (Sh) satisfies IPSUG.
b) Sh [Shω] and Sh 〈Shω〉 satisfy ESUG.

5 Characterization

In this section, we present our main result:

Theorem 18 Among all the coalitional values that satisfy Eff , Lin, INC and
Co,

a) the Owen value Sh (Sh) is the only one that satisfies NBIC, IPSUG and
IS;

b) the Owen value Sh (Sh) is the only one that satisfies BIC and IPSUG;
c) Sh [Shω] is the only one that satisfies NBIC, ESUG and IS; and
d) Sh 〈Shω〉 is the only one that satisfies BIC and ESUG.

Proof. We know by Corollary 6, Corollary 12, Proposition 14 and Corollary 17
that these rules satisfy the corresponding properties. Let C = {C1, ..., Cm} be a
coalition structure. Let M = {1, ...,m}.
Let f 1 and f2 be two coalitional values satisfying Eff , Lin, INC, Co, and

the properties stated in one of the four sections. We prove f 1 = f2 by induction
over the number of players n. If n = 1, under Eff , f 1(N, v, C) = f 2(N, v, C) and
hence the result holds.
Assume the result holds for less than n players. Now we prove that the result

holds for n players.
It is well-know that every TU game can be expressed as a linear combination

of unanimity games. Since f 1 and f 2 satisfy Lin, we can restrict our proof to
unanimity games.
Let S ⊂ N , S �= ∅. Consider the game uSN . First, we will show that it is enough

to restrict the proof to the case where all the coalitions intersect the carrier S. To
prove that, suppose that there exists some coalition, say Cm ∈ C, that does not
intersect the carrier; that is, S ∩ Cm = ∅.

18



Clearly, Cm is a null coalition. Under INC, fxi (N,uSN , C) = fxi (N\Cm, u
S
N\Cm

, CN\Cm)

for all i ∈ N\Cm and x = 1, 2. By induction hypothesis, f1i

(
N\Cm, uSN\Cm, CN\Cm

)
=

f2i

(
N\Cm, uSN\Cm, CN\Cm

)
for all i ∈ N\Cm. Moreover, as an implication of INC

and Eff ,
∑

i∈Cm
fxi (N, uSN , C) = 0 for x = 1, 2. We still need to prove that every

player in Cm receives the same under both coalitional values. In particular, we
will prove that each of them receives zero. We have two possibilities:

Cases a and c (the coalitional values satisfy IS): Under IS, it is clear that
fxi (N, uSN , C) = 0 for all i ∈ Cm, x = 1, 2, because all the players in Cm are
symmetric and their values sum up zero.

Cases b and d (the coalitional values satisfy BIC): If |Cm| = 1, it is clear
that fxi

(
N,uSN , C

)
= 0, i ∈ Cm, x = 1, 2. Assume fxi

(
N,uSN , C

)
= 0 for all null

coalitions with less than l players. If |Cm| = l, l > 1, from BIC, fxi (N, uSN , C) −
fxi (N\j, u

S
N\j, CN\j) = fxj (N, uSN , C)−f

x
j (N\i, u

S
N\i, CN\i) for all i, j ∈ Cm, x = 1, 2.

By induction hypothesis on |Cm|, fxi (N\j, u
S
N\j , CN\j) = fxj (N\i, u

S
N\i, CN\i) = 0,

for all i, j ∈ Cm, x = 1, 2. Hence, we have that fxi (N, uSN , C) = fxj (N, uSN , C) for
all i, j ∈ Cm and x = 1, 2. Moreover, since

∑

i∈Cm

fxi (N, uSN , C) = 0, we obtain that

fxi (N, uSN , C) = 0 for all i ∈ Cm and x = 1, 2.

From now on, we assume that S ∩ Cq �= ∅ for all Cq ∈ C.
Fix i ∈ Cq ∈ C. We should prove that f 1i (N, uSN , C) = f2i (N, uSN , C).
Let Sq := Cq ∩ S and T := Sq ∪ (N\Cq). It is straightforward to check that

uSN
(
T ′ ∪

⋃
Cr∈R

Cr
)
= uTN

(
T ′ ∪

⋃
Cr∈R

Cr
)
for all T ′ ⊂ Cq and all R ⊂ C\ {Cq}.

Since we are under the assumptions of Co (Claim ??), we have fxi (N,uSN , C) =
fxi (N, uTN , C) for x = 1, 2. Hence, it is enough to prove that f1i (N,uTN , C) =
f2i (N, uTN , C). As a previous step, consider the unanimity game

(
N, uNN , C

)
.

By an analogous argument as before, we have uTN
(
T ′ ∪

⋃
Cl∈Q

Cl
)
= uNN

(
T ′ ∪

⋃
Cl∈Q

Cl
)

for all T ′ ⊂ Cr ∈ C\ {Cq} and all Q ⊂ C\{Cr}. Under Co, for all j ∈ N\Cq,

fxj (N,uNN , C) = fxj (N, uTN , C) (1)

We have two possibilities:
Cases a and c (the coalitional values satisfy NBIC and IS): Under Eff

and ESUG/IPSUG, by Proposition 15, we have
∑

i∈Cq
fxi (N, uTN , C) = βq where

βq =
1
|C|
(when fx satisfies IPSUG) or βq =

|Cq |
|N |

(when fx satisfies ESUG).
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Under IS, we have fxi (N,uTN , C) = fxj (N, uTN , C) for all i, j ∈ Sq (respectively,
i, j ∈ Cq\Sq) and x = 1, 2. Hence it is enough to prove that fxi (N, uTN , C) = 0 for
all i ∈ Cq\Sq, x = 1, 2. This is clear for Sq = Cq. Let i ∈ Sq and j ∈ Cq\Sq. Player

j is a null player in (N, uTN) and hence (N,uTN) = (N,
(
uTN
)−j
). Under NBIC,

0 = fxi (N, uTN , C)− fxi

(
N,
(
uTN
)−j

, C
)
= fxj (N, uTN , C)− fxj

(
N,
(
uTN
)−i

, C
)
.

Obviously, (N,
(
uTN
)−i

, C) is the null game
(
uTN
)−i
(S) = 0 for all S ⊂ N

and thus Eff and IS imply fxj (N,
(
uTN
)−i

, C) = 0. Thus, fxj (N, uTN , C) = 0 for
x = 1, 2.

Cases b and d (the coalitional values satisfy BIC): Fix x ∈ {1, 2}. Un-
der BIC, fxi (N, uTN , C)−fxi (N\j, u

T
N\j , CN\j) = fxj (N,uTN , C)−fxj (N\i, u

T
N\i, CN\i)

for all j ∈ Cq\i. Hence,
∑

j∈Cq\i

(
fxi (N,uTN , C)− fxi (N\j, u

T
N\j, CN\j)

)
equals

∑
j∈Cq\i

(
fxj (N, uTN , C)− fxj (N\i, u

T
N\i, CN\i)

)
. Rearranging terms,

(|Cq| − 1) fxi
(
N,uTN , C

)
=

=
∑

j∈Cq\i

(
fxj (N, uTN , C)− fxj (N\i, u

T
N\i, CN\i) + fxi (N\j, u

T
N\j , CN\j)

)
.

(2)

On the other hand, by Proposition 15,

fxj (N, uNN , C) = αq for all j ∈ Cq ∈ C (3)

where αq =
1
|N |
(if fx satisfies ESUG) and αq =

1
|Cq ||C|

(if fx satisfies IPSUG).

Hence,
∑

j∈N\Cq
fxj (N, uTN , C)

(1)
=

∑
j∈N\Cq

fxj (N, uNN , C)
(3)
=

∑
Cr∈C\{Cq}

|Cr|αr.

Moreover, byEff ,
∑

j∈Cq\i
fxj (N,uTN , C) = uTN(N)−f

x
i (N, uTN , C)−

∑
Cr∈C\{Cq}

|Cr|αr.

Since uTN (N) = 1,
∑

j∈Cq\i
fxj (N, uTN , C) = 1−f

x
i (N, uTN , C)−

∑
Cr∈C\{Cq}

|Cr|αr.

It is not difficult to check that 1 −
∑

Cr∈C\{Cq}
|Cr|αr = βq (defined in the

previous case). Hence
∑

j∈Cq\i

fxj (N,uTN , C) = βq − fxi (N, uTN , C).

Replacing this expression in (2) and rearranging terms, |Cq| fxi (N, uTN , C) =
βq−

∑
j∈Cq\i

fxj (N\i, u
T
N\i, CN\i)+

∑
j∈Cq\i

fxi (N\j, u
T
N\j, CN\j).And so, f

x
i (N, uTN , C) =

1
|Cq|

[
βq −

∑
j∈Cq\i

fxj (N\i, u
T
N\i, CN\i) +

∑
j∈Cq\i

fxi (N\j, u
T
N\j, CN\j)

]

But by induction hypothesis: f1j (N\i, u
T
N\i, CN\i) = f2j (N\i, u

T
N\i, CN\i) and

f1i (N\j, u
T
N\j , CN\j) = f2i (N\j, u

T
N\j , CN\j) for all j �= i. Hence we conclude that

f1i (N, uTN , C) = f2i (N,uTN , C).
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Remark 19 In parts a and c we need to add IS. The reason is that, when NBIC
is involved, some transfers can be forced inside a coalition depending on the inner
structure of other coalitions. These transfers are ruled out in parts b and d because
BIC only applies when the inner structure of the coalition structure is affected.

Take for example the coalitional value F given by F (N, v, C) = Sh [Shω] (N, v, C)
if {1, 2} /∈ C or {3} /∈ C. When {1, 2} , {3} ∈ C, take Fi (N, v, C) = Sh [Shω]i (N, v, C)
for all i ∈ N\ {1, 2} and moreover F1 (N, v, C) = Sh [Shω]1 (N, v, C)+ v ({3}) and
F2 (N, v, C) = Sh [Shω]2 (N, v, C)− v ({3}).

This coalitional value satisfies Eff , Lin, INC, BIC, Co and ESUG, but
fails IS. For example, in the game (N, v) given by N = {1, 2, 3} and v (S) = 1
for all S �= ∅, we have F (N, v, {{1, 2} , {3}}) =

(
4
3
, −2
3
, 1
3

)
.

Analogously, define the coalitional value F ′ as before, but taking Sh (Sh) in-
stead of Sh [Shω]. Then, F ′ satisfies Eff , Lin, INC, NBIC, Co and IPSUG,
but fails IS. For example, in the previous game, we have F (N, v, {{1, 2} , {3}}) =(
5
4
, −3
4
, 1
2

)
.

6 Independence of the axioms

In this section we show that the axioms used in Theorem 18 are independent.
The Aumann-Drèze value Sh (In) satisfies Lin, INC, Co, BIC, NBIC,

IPSUG, ESUG, IS and fails Eff .
Define the bounded egalitarian value BE as BEi (N, v) = v (N) / |Carr (N, v)|

if i ∈ Carr (N, v) and BEi (N, v) = 0 otherwise.
Sh (BE) satisfies Eff , INC, Co, BIC, NBIC, IPSUG, IS and fails Lin.
Define the egalitarian value E as Ei (N, v) = v (N) / |N | for all i ∈ N .
Sh (E) satisfies Eff , Lin, Co, BIC, NBIC, IPSUG, IS and fails INC.
Take the coalitional value G given by G (N, v, C) = Sh (Sh) (N, v, C) if {3, 4} /∈

C, 1, 2 /∈ N or 1, 2 ∈ N and they belong to the same coalition in C. When
{3, 4} ∈ C, 1, 2 ∈ N and 1, 2 do not belong to the same coalition in C, take
Gi (N, v, C) = Sh (Sh)i (N, v, C) for all i ∈ N\ {1, 2} and moreover G1 (N, v, C) =
Sh (Sh)1 (N, v, C) + δv{1,2,3} and G2 (N, v, C) = Sh (Sh)2 (N, v, C) − δv{1,2,3}, where
δv{1,2,3} := v ({1, 2, 3}) − v ({1, 2}) − v ({1, 3}) − v ({2, 3}) + v (1) + v (2) + v (3)

is the Harsanyi dividend for u
{1,2,3}
N . This coalitional value G satisfies Eff , Lin,

INC, BIC, IPSUG, IS and fails Co.
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E (Sh) satisfies Eff , Lin, INC, Co, IPSUG, IS and fails both BIC and
NBIC.

Sh 〈Shω〉 satisfies Eff , Lin, INC, Co, BIC, IS and fails IPSUG.
Sh [Shω] satisfies Eff , Lin, INC, Co, NBIC, IS and fails IPSUG.
The second coalitional value presented in Remark 19 satisfies Eff , Lin, INC,

Co, NBIC, IPSUG and fails IS.
Define the weighted bounded egalitarian value BEω as

BEx
i (N, v) = xiv (N) /

∑

j∈Carr(N,v)

xj if i ∈ Carr (N, v) and BEx
i (N, v) = 0 other-

wise, for all x ∈ RN++.
Sh [BEω] satisfies Eff , INC, Co, NBIC, ESUG, IS and fails Lin.
Sh 〈BEω〉 satisfies Eff , INC, Co, BIC, ESUG and fails Lin.
Sh [Eω] satisfies Eff , Lin, Co, NBIC, ESUG, IS and fails INC.
Sh 〈Eω〉 satisfies Eff , Lin, Co, BIC, ESUG and fails INC.
The coalitional Shapley value Sh satisfies Eff , Lin, INC, NBIC, BIC,

ESUG, IS and fails Co.
E [Shω] satisfies Eff , Lin, INC, Co, ESUG, IS and fails both NBIC and

BIC.
The Owen value Sh (Sh) satisfies Eff , Lin, INC, Co, NBIC, BIC, IS and

fails ESUG.
The coalitional value F presented in Remark 19 satisfies Eff , Lin, INC, Co,

NBIC, ESUG and fails IS.
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In the following table we summarize the results presented in this Section:

Eff Lin INC BIC NBIC Co ESUG/IPSUG IS

Sh (Sh) OK∗+ OK∗+ OK∗+ OK∗ OK+ OK∗+ IPSUG∗+ OK+

Sh [Shω] OK∗ OK∗ OK∗ no OK∗ OK∗ ESUG∗ OK∗

Sh 〈Shω〉 OK∗ OK∗ OK∗ OK∗ no OK∗ ESUG∗ OK
Sh (In) no OK OK OK OK OK BOTH OK
Sh (BE) OK no OK OK OK OK IPSUG OK
Sh (E) OK OK no OK OK OK IPSUG OK
G OK OK OK OK OK no IPSUG OK
E (Sh) OK OK OK no no OK IPSUG OK
F ′ OK OK OK no OK OK IPSUG no
Sh [BEω] OK no OK no OK OK ESUG OK
Sh 〈BEω〉 OK no OK OK no OK ESUG OK
Sh [Eω] OK OK no no OK OK ESUG OK
Sh 〈Eω〉 OK OK no OK no OK ESUG OK
Sh OK OK OK OK OK no ESUG OK
E [Shω] OK OK OK no no OK ESUG OK
F OK OK OK no OK OK ESUG no

Table 1: Properties satisfied by the coalitional values. “*” (resp. “+”) means
that this property together with the others with “*” (resp. “+”) in the line,
characterizes the coalitional value.

7 Concluding remarks

In this paper we characterize three generalizations of the Shapley value. As for
the Owen value, one of its most controversial properties is that of symmetry in the
game among coalitions. In our characterization, this symmetry is in fact implied
by IPSUG. Other characterizations of the Owen value also include some property
that leads to this symmetry. This is the case of property A3 in the original char-
acterization by Owen (1977); the coalitional symmetry in Winter (1989) and Al-
bizuri (2008); the intermediate game property in Peleg (1989), called game between
coalitions property in Winter (1992) and quotient game property in Vázquez-Brage
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et al. (1997); the property of symmetry among coalitions in Zhang (1995); the
property of block strong symmetry in Amer and Carreras (1995), called balanced
contributions in the coalitions in Calvo et al. (1996); the property of symmetry
in Chae and Heidhues (2004); and the properties of unanimity coalitional game,
symmetry between exchangeable coalitions and coalitional symmetry in the various
characterizations presented in Bergantiños et al. (2007).
As opposed to the Owen value, the other two coalitional values do not satisfy

IPSUG, but the more intuitive ESUG. In both cases, however, the proposed
property does not suffice to characterize the payoff allocation in a unanimity
game with minimal carrier S �= N . The reason is that, as opposed to other
characterizations presented in the literature, we do not have the property of null
player. Instead, we have to apply the properties of balanced contributions and
the independence of null coalitions.
Hart and Kurz (1983) presented an alternative characterization of the Owen

value without the property of symmetry in the game among coalitions. Instead,
they used a property of Carrier, which implies that the value should not be
affected by the presence of null players. Various axiomatic characterizations of
the Owen value also use this property: Hamiache (1999 and 2001), Albizuri and
Zarzuelo (2004), and Albizuri (2008).
One may wonder whether the Carrier axiom is a reasonable requirement in

games with coalition structure. Since null players affect the size of the coalition,
their role could be relevant (as far as we accept that size is important). Take for
example the unanimity game

(
N, uSN

)
with N = {1, 2, 3} and S = {1, 2}. Take

C = {{1} , {2, 3}}. This game models the following situation, as described in Hart
and Kurz (1983):

As an everyday example of such a situation, “I will have to check
this with my wife/husband” may (but not necessarily) lead to a bet-
ter bargaining position, due to the fact that the other party has to
convince both the player and the spouse.

The Owen value would simply ignore the presence of player 3: Sh (Sh)
(
N,uSN , C

)
=(

1
2
, 1
2
, 0
)
.

In this example, the role of the symmetry in the game among coalitions is
clear: since both {1} and {2, 3} are equally necessary to get a positive payoff, this
payoff should be shared equally among them, irrespectively of their respective
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size. This idea is appropriate to describe situations where the negotiations take
place among representatives with the same power of negotiation.
As opposed, Sh [Shω] would assign twice as much to coalition {2, 3} than to

coalition {1}, but still maintaining the null player property: Sh [Shω]
(
N,uSN , C

)
=(

1
3
, 2
3
, 0
)
.

This idea is appropriate to describe situations where the power of negotiation
among coalitions depend on their size. One may think for example on political
parties that join forces in a Parliament, maintaining however their respective
proposal prerogatives. In fact, Kalandrakis (2006) shows that proposal making
has a very significant impact on outcomes.
Notice that player 2 would only expect to get 1

2
in case player 3 be not

present. Hence, the benefit of cooperation between players 2 and 3 is 2
3
− 1

2
=

1
6
. Sh 〈Shω〉 proposes to share this benefit equally between players 2 and 3:

Sh 〈Shω〉
(
N,uSN , C

)
=
(
1
3
, 7
12
, 1
12

)
.

In this case, the null player property is not satisfied. However, one may find
examples of real situations where this null player property also fails. Consider the
Basque Country5 Parliament that arose in 2001 election. Five parties got repre-
sentation: Coalition EAJ-PNV / EA, Partido Popular (PP), Partido Socialista de
Euskadi - Euskadiko Ezquerra (PSE-EE / PSOE), Euskal Herritarrok (EH) and
Ezker Batua-Izquierda Unida (EB-IU). The number of representatives is given in
Table 2. The number of seats needed to win a vote is 38.

Party Number of Seats

EAJ-PNV / EA 33
PP 19
PSE-EE / PSOE 13
EH 7
EB-IU 3

Table 2: Number of seats in the Basque Country Parliament.

Even though EB-IU is a null player in the associated voting game6, a minority

5Autonomous community of Spain.
6This game is defined as v (S) = 1 if the members of S sum up at least 38 seats, and v (S) = 0

otherwise.

25



government was formed with the coalition of EAJ-PNV / EA and EB-IU. What-
ever the reason for this decision could be, it suggests that null players can also
play a significant role.
The three values characterized in this paper can be applied to many other

contexts. Apart from computing the power of differents parties in the Parliament,
we can also use them in other situations such as a the problem of the airport or
a bankrupty problem.
In a bankruptcy problem there exist a person, firm, or institution that does not

have sufficient funds to meet the claims of all its creditors. In such a situation,
the goal is how to divide the available funds among the creditors. Formally, a
bankruptcy problem consists on a pair (E, d), where E ∈ R is the available funds
of the debtor, “the estate”, and d = (d1, ..., dn) ∈ RN+ is the vector of claims
(or demands) of the n creditors, satistying that 0 ≤ E ≤

∑
i∈N di. Given a

bankrupty problem, a corresponding game (N, vE;d) is defined, where vE;d(S) =

max
{
E −

∑
i∈N\S di, 0

}
for all S ⊂ N . Let consider an example that appears in

Casas-Mendez et al. (2003). In this case, we have N = {1, 2, 3}, C = {{1, 2}, 3},
E = 400 and d = (100, 200, 300). In this case, we obtain that

Sh(Sh)(N, vE;d, C) = (75, 125, 200)

Sh[Shω](N, vE;d, C) ≃ (83, 150, 167)

Sh 〈Shω〉 (N, vE;d, C) ≃ (92, 142, 167) .
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