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Abstract

We describe a coalitional value from a non-cooperative point of
view, assuming coalitions are formed for the purpose of bargaining.
The idea is that all the players have the same chances to make propos-
als. This means that players maintain their own “right to talk” when
joining a coalition. The resulting value coincides with the weighted
Shapley value in the game between coalitions, with weights given by
the size of the coalitions. Moreover, the Harsanyi paradox (forming a
coalition may be disadvantageous) disappears for convex games.
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1 Introduction

Many economic situations can be modelled as a set of agents or players with
independent interests who may benefit from cooperation. Moreover, it is
not infrequent that these players have partitioned themselves into coalitions
(such as unions, cartels, or syndicates) for the purpose of bargaining.
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Assuming that cooperation is carried out, the question is how to share the
benefit between the coalitions and between the members inside each coalition,
i.e. which “coalitional value” best represents the expectation of each indi-
vidual. The economic theory has addressed this problem from two different
points of view. One of them is axiomatic. The other is non-cooperative.
The axiomatic point of view focuses on finding allocations which sat-

isfy “fair” (or at least “reasonable”) properties, such as efficiency (the final
outcome must be efficient), symmetry (players with the same characteris-
tics must receive the same), etc. There is an extensive literature on ax-
iomatic characterization of coalitional values: Aumann and Drèze (1974),
Owen (1977), Hart and Kurz (1983), Levy and McLean (1989), Alonso-
Meijide and Fiestras-Janeiro (2002), Amer et al. (2002), Młodak (2003),
Carreras and Puente (2006), Kamijo (2009, 2011), Gómez-Rúa and Vidal-
Puga (2010), Calvo and Gutiérrez (2010), among others.
The non-cooperative point of view leads to the study of the allocations

which arise in a given non-cooperative environment. Some coalitional values
have also been studied from the non-cooperative point of view: Vidal-Puga
and Bergantiños (2003), Vidal-Puga (2005) and Kamijo (2008). This paper
also follows the non-cooperative approach.
Frequently, it is interpreted that players form coalition structures in order

to improve their bargaining strength (Hart and Kurz (1983)). However, as
Harsanyi (1977, p. 203) points out, the bargaining strength does not improve
in general. An individual can be worse off bargaining as a member of a
coalition than bargaining alone. Formally stated, the Harsanyi paradox1 is
as follows: Consider a simple n-person unanimity game in which n players
can share a pie of size 1 as long as all of them agree on the division. Under the
symmetry assumption, each player will typically expect to get a share of the
pie of size 1/n. Assume now two players decide to join forces and act as one
single player. Harsanyi claims that this situation is equivalent to a symmetric
(n− 1)-person unanimity game and thus each player’s expectation should be
a pie of size 1/ (n− 1). Hence, by joining forces, the two players have moved
from a joint expectation of 2/n to an expectation of just 1/ (n− 1). Of
course the same result holds if more than two players decide to act as one
player (except in the trivial case in which all n players participate in this
agreement).
This paradox seems somehow problematic. It implies that cooperation

(in the sense of forming an a priori coalition) can be harmful in bargain-
ing environments. Chae and Heidhues (2004, p. 47) provide the following
explanation: By merging in a coalition structure, players reduce their mul-

1Harsanyi calls it the joint-bargaining paradox.
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tiple “rights to talk” to a single right in the game between coalitions, hence
improving the position of the outsiders.
The meaning of “rights to talk” is not clear from an axiomatic viewpoint

(see for example Chae and Moulin (2010)). However, it has a natural inter-
pretation in a non-cooperative environment. Many non-cooperative mech-
anisms2 (for example, Rubinstein (1982)) include a key stage in which one
of the players should make a proposal. Hence, the “right to talk” can be
interpreted as the “right to make a proposal”. The Harsanyi paradox may
arise when this right is dispelled as the size of the coalition increases. For ex-
ample in the n-person unanimity game where two players act as one unit, the
proposal should come from one of the members of the joined coalition with
a probability 1/ (n− 1), whereas when no coalition is formed the proposal
should come from one of them with probability 2/n.
In this paper, we study the effects of maintaining the “rights to talk”

of the players inside a coalition. Hence, the coalitions with more members
have more chances to make proposals. In the previous example, this means
that the proposal from a member of the joined coalition will come with a
probability 1/n, as if she were acting alone.
In particular, we generalize a non-cooperative mechanism by Hart and

Mas-Colell (1996). In Hart and Mas-Colell’s model, a player is randomly
chosen in order to propose a payoff. If this proposal is not accepted by all
the other players, the mechanism is played again under the same conditions
with probability ρ ∈ [0, 1). With probability 1 − ρ, the proposer leaves the
game and the mechanism is repeated with the rest of the players.
In our model, this procedure is played in two stages. First, agreements

are negotiated within coalitions and then through delegates among coalitions.
Each coalition acts as a single unit in the second stage. The entire proposing
coalition leaves the game when the proposal made by one of its members is
rejected by the other players. Moreover, the probability of a coalition being
chosen as proposer in the second stage is proportional to its size3.
As a result, the resulting equilibrium payoff coincides with the coali-

tional value described and axiomatized in Gómez-Rúa and Vidal-Puga (2010,
2011)4. In particular, we get the weighted Shapley value (Shapley, 1953a) in

2To avoid ambiguities with cooperative games, we use the term non-cooperative mech-
anism, or simply mechanism, rather than non-cooperative game.

3As opposed, if we give equal probability to each coalition, we obtain the mechanism
presented by Vidal-Puga (2005) which gives the Owen value as expected final outcome.
However, our results are not implied by the results in Vidal-Puga (2005) and the proofs
are also different.

4Hence, this paper can also be considered as part of the wide literature on the Nash
program (see Serrano (2005) for a thorough survey).
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the game between coalitions, with weights given by the size of the coalition.
Inside each coalition, the payoff allocation satisfies a weaker version of the
balanced contributions property first used by Myerson (1980) to character-
ize the Shapley value. Moreover, the final outcome in unanimity games is
not affected: The equilibrium payoffs would be the same irrespective of the
coalition structure (see Subsection 5.2). However, this is not true in general
games (see Example 3.1 and Example 4.1).
The new mechanism generalizes the mechanism of Hart and Mas-Colell

(1996), in the sense that they coincide when the coalition structure is trivial
(i.e. all the coalitions are singletons, or there exists a unique coalition).
In Section 2 we present the notation used throughout the paper and

some previous results. In Section 3 we describe the coalitional value. In
Section 4 we present the formal mechanism and the main results. Section
5 is devoted to some concluding remarks. In Subsection 5.1 we discuss a
generalization of the mechanism in order to extend the result to nonconvex
games. In Subsection 5.2 we discuss the generalization of the mechanism
to non-transferable utility (NTU) games. In Subsection 5.3 we present an
inductive formula to compute the coalitional value. In Subsection 5.4 we
present the property of balanced contributions. In Subsection 5.5 we analyze
the stationary subgame perfect equilibria. The detailed proofs are located in
Section 6 (Appendix).

2 Preliminaries

A transferable utility game, or TU game, is a pair (N, v) where N is a finite
set of players and v is a correspondence which assigns to each S ⊂ N , S �= ∅
a real number v (S) representing the aggregate payoff that the members of
S can obtain for themselves when playing cooperatively. For S ⊂ N , we
maintain the notation v when referring to the application v restricted to
S as player set. For simplicity, denote v (i) instead of v ({i}), S ∪ i instead of
S ∪ {i} and N\i instead of N\{i}. The set of TU games is denoted as TU .
A TU game is superadditive if it satisfies v (S) + v (T ) ≤ v (S ∪ T )

for all S, T ⊂ N with S ∩ T = ∅. A TU game is convex if it satisfies
v (T ∪ i) − v (T ) ≤ v (S ∪ i) − v (S) for all i ∈ N and T ⊂ S ⊂ N\i. If
the previous inequalities are strict, the TU game is strictly superadditive and
strictly convex, respectively. All (strictly) convex TU games are (strictly)
superadditive. A unanimity game is a TU game satisfying v (N) = 1 and
v (S) = 0 otherwise. All unanimity games are convex.
A coalition structure over N is a partition of the player set, i.e. C =

{C1, C2, ..., Cm} ⊂ 2N is a coalition structure if it satisfies
⋃
Cq∈C

Cq = N
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and Cq ∩ Cr = ∅ when q �= r. We also assume Cq �= ∅ for all q. A coalition
structure C over N is trivial if either C consists of singletons or C = {N}. For
any S ⊂ N , we denote the restriction of C to the players in S as CS (notice
that this implies that CS may have less or the same number of coalitions as
C). Given a TU game (N, v) and a coalition structure C = {C1, C2, ..., Cm}
over N , the game between coalitions is the TU game (M, v/C) where M =

{1, 2, ...,m} and v/C (Q) = v
(⋃

q∈QCq
)
for all Q ⊂M .

We denote a TU game (N, v)with coalition structure C overN as (N, v, C).
We denote the set of TU games with coalition structure as CTU .
Given a subsetG of TU or CTU , a value inG is a correspondence ψ which

assigns to each (N, v) ∈ G or (N, v, C) ∈ G a vector ψN (v) ∈ RN . With a
slight abuse of notation, we say that ψN (v) is the value of (N, v), and each
ψNi (v) is the value of i. A value ψ is efficient if

∑
i∈N ψNi (v) = v (N).

A well-known efficient value in TU games is the Shapley value (Shapley
(1953b)). We denote the Shapley value of the TU game (N, v) as ϕN (v) ∈
R
N . In unanimity games, ϕNi (v) =

1
|N |
for all i ∈ N .

A non symmetric generalization of ϕN (v) is the weighted Shapley value
(Shapley (1953a), Kalai and Samet (1987, 1988)). We denote the weighted
Shapley value of the TU game (N, v) as ϕωN (v) ∈ RN , where ω ∈ RN+ with∑

i∈N ωi = 1 is a vector of weights. When ωi =
1
|N |

for all i, the weighted
Shapley value coincides with the Shapley value.
The weight vector breaks the symmetric treatment of players in a TU

game, but they should not be interpreted as a measure of bargaining power.
In particular, Owen (1968) presented a simple example in which one of the
players was worse-off when her weight increased. See, for example, Haeringer
(2006, Example 1).
However, for convex games, a higher weight never implies a lower weighted

Shapley value (see Haeringer (2000, Section 4)).
Fix C = {C1, ..., Cm} and M = {1, ...,m}. Owen (1977) proposed an effi-

cient value based on Shapley’s which takes into account the coalition struc-
ture. We call this value the Owen coalitional value, or simply the Owen
value, and we denote it as φN (v). When the coalition structure is trivial, i.e.
C = {{i}}i∈N or C = {N}, the Owen value coincides with the Shapley value.
Levy and McLean (1989) studied the weighted coalitional value with in-

tracoalitional symmetry, that we denote as φωN (v). When C = {{i}}i∈N ,
this value coincides with the weighted Shapley value. When C = {N}, it
coincides with the Shapley value. When ωq = ωr for all q, r, it coincides with
the Owen value.
When there is no ambiguity, we write ϕN , φN , ϕωN , φωN instead of ϕN (v),

φN (v), ϕωN (v), φωN (v), respectively. With some abuse of notation, given
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S ⊂ N , we denote as ϕωS and φωS the weighted Shapley value and the
Levy-McLean coalitional value, respectively, of the game (S, v) with weights

ω′i =
|N |
|S|
ωi for all i ∈ S.

We now define formally the Harsanyi paradox. Given Cq, Cr ∈ C, we
define the coalition structure Cq+r as (C\ {Cq, Cr})∪ {Cq ∪ Cr}. This means
that the coalition structure Cq+r arises from C when coalitions Cq, Cr join
forces and act as a single coalition Cq ∪ Cr. Let ψ be a value defined on
G ⊂ CTU . Just in this case, we write ψN (C) and ψN (Cq+r) when the
coalition structure is given by C and Cq+r, respectively. We say that ψ is
joint-monotonic in G if

∑

i∈Cq∪Cr

ψNi (C) ≤
∑

i∈Cq∪Cr

ψNi
(
Cq+r

)

for all (N, v, C) ∈ G and all Cq, Cr ∈ C. A value yields the Harsanyi paradox
if it is not joint-monotonic in unanimity games. It is well-known that the
Owen value is not joint-monotonic in unanimity games. The Shapley value
is joint-monotonic in all TU games, but this is because ϕ does not take into
account the coalition structure.
When a value is not joint-monotonic, the members of a coalition can be

better off acting alone than acting as a single unit that tries to improve its
members’ aggregate payoff (cf. the explanation given by Harsanyi (1977, p.
204-205)).

3 The coalitional value

One feature of the Owen value is that the aggregate value received by each
coalition depends only on the game between coalitions v/C. In fact, this
is one of the properties that Owen (1977, Axiom A3) uses to characterize
φ. Hart and Kurz (1983, p.1051) consider that this property “is the most
difficult to accept”, and propose an alternative characterization without it.
An important consequence of this property, together with symmetry, is

that two coalitions that affect the game between coalitions in a symmetric
way will receive the same aggregate payoff. Levy and McLean (1989, p.235)
claim that this intercoalitional symmetry may not be a reasonable require-
ment for a value. A classical example (Kalai and Samet (1987)) is the case
where coalitions represent groups of different size. In these cases it seems
reasonable to assign a size-depending weight to each coalition. A natural
way to proceed is to give each coalition a weight proportional to its size (see
Kalai and Samet (1987, Section 7) for additional arguments supporting this
particular choice).
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An obvious candidate is the Levy-McLean value φωN with weights ω given
by ωq =

|Cq|

|N |
for each Cq ∈ C. However, we will use a different coalitional

value ζN , that follows a similar idea as φωN . This ζN is characterized in
Gómez-Rúa and Vidal-Puga (2010, 2011), and it is defined following a two-
step procedure. In the first step, we define a reduced TU game

(
Cq, v

∗N
q

)
for

each Cq ∈ C as follows: Given T ⊂ Cq, let λ ∈ RM++ be the weight system

given by λq =
|T |

|N |−|Cq\T |
and λr =

|Cr |
|N |−|Cq\T |

otherwise. We then define:

v∗Nq (T ) := ϕλMq
(
v/CN\(Cq\T )

)

for all T ⊂ Cq. Notice that ϕ
λM is the weighted Shapley value of the game

between coalitions.
We can interpreted v∗Nq (T ) as the worth of subcoalition T when players

in Cq\T are out.
In the second step, we use the Shapley value to determine the final allo-

cation. The formal definition is as follows:

Definition 3.1 Given a TU game with coalition structure (N, v, C), the value

ζ is defined as ζNi (v) := ϕ
Cq
i

(
v∗Nq

)
for all i ∈ Cq ∈ C.

As usual, we write ζN instead of ζN (v).
The following example will help to clarify the previous definition, com-

paring it to the Owen value and the Levy-McLean value:

Example 3.1 Let (N, v) be the TU game defined as N = {1, 2, 3}, v ({1, 2}) =
12, v (N) = 24, and v (S) = 0 otherwise. Let C = {C1, C2} with C1 = {1}
and C2 = {2, 3}.
In this case, the game between coalitions ({1, 2} , v/C) is defined as v/C ({1}) =

v/C ({2}) = 0 and v/C ({1, 2}) = 24. The (
(
1
2
, 1
2

)
-weighted) Shapley value is

(12, 12), i.e. 12 for coalition C1 and 12 for coalition C2. Similarly, the
(
1
3
, 2
3

)
-

weighted Shapley value is (8, 16). When player 2 leaves N , the game be-
tween coalitions becomes the null game

(
{1, 2} , v/C{1,3}

)
with v/C{1,3} ({1}) =

v/C{1,3} ({2}) = v/C{1,3} ({1, 2}) = 0. The (
(
1
2
, 1
2

)
-weighted) Shapley value

and the
(
1
3
, 2
3

)
-weighted Shapley value are both (0, 0). When player 3 leaves N ,

the game between coalitions becomes
(
{1, 2} , v/C{1,2}

)
with v/C{1,2} ({1}) =

v/C{1,2} ({2}) = 0 and v/C{1,2} ({1, 2}) = 12. The (
(
1
2
, 1
2

)
-weighted) Shapley

value is (6, 6) and the
(
1
3
, 2
3

)
-weighted Shapley value is (4, 8).

The reduced game
(
{1} , v∗N1

)
is defined as

v∗N1 ({1}) = ϕ
( 1
3
, 2
3
){1,2}

2

(
v/C{1,2}

)
= 8,
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where
(
1
3
, 2
3

)
is the vector of weights for coalitions {1} and {2, 3}.

Similarly, the reduced game
(
{2, 3} , v∗N2

)
is defined as

v∗N2 ({2}) = ϕ
(1
2
, 1
2
){1,2}

2

(
v/C{1,2}

)
= 6

v∗N2 ({3}) = ϕ
(1
2
, 1
2
){1,2}

2

(
v/C{1,3}

)
= 0

v∗N2 ({2, 3}) = ϕ
(1
3
, 2
3
){1,2}

2 (v/C) = 16.

Hence, ζN1 (v) = ϕ
{1}
1

(
v∗N1

)
= 8, ζN2 (v) = ϕ

{2,3}
2

(
v∗N2

)
= 11, and ζN3 (v) =

ϕ
{2,3}
2

(
v∗N2

)
= 5, i.e. ζN (v) = (8, 11, 5).

As opposed, φN defines the reduced game using the Shapley value, so that
φN (v) = (12, 9, 3) (see Owen (1977) for details) and φωN defines the reduced
game using the

(
1
3
, 2
3

)
-weighted Shapley value, so that φωN (v) = (8, 12, 4)

(see Levy and McLean (1989, Proposition C(2)) for details).

The critical difference between the definitions of ζ and the Levy-McLean
value φω is that the weights λ that appear in the definition of v∗Nq (T ) depend
on T , whereas in the definition of φω (see Levy and McLean (1989, Proposi-
tion C(2))) the weights are the same for each possible T . On the other hand,
in the definition of the Owen value, the Shapley value is used in both steps.

Remark 3.1 It follows from the definition of ζ that each coalition gets its
weighted Shapley value of the game between coalitions, with weights given by
their size. Namely, for any Cq ∈ C,

∑
i∈Cq

ζNi = ϕλMq (v/C).

One practical problem with the above definition is that ζN is extremely la-
borious to compute, being necessary to calculate

∑m

q=1 2
|Cq | distinct weighted

Shapley value vectors (to identify v∗Nq ), and then calculatem distinct Shapley
value vectors (to identify ϕCq). In Section 5.3 (Proposition 5.1), we provide
an easily implementable recursive formula to compute ζ that allows to over-
come this difficulty5.
A different issue would be to study the complexity in the computation of

ζ. By Proposition 5.1, ζN is independent of the worth of coalitions S ⊂ N
that have proper intersection with more than one Cq. This property is called
Coordination in Gómez-Rúa and Vidal-Puga (2010) and it is also satisfied
by the Owen value and Levy-McLean value. Hence, computing complexity
in the more general case (i.e. without restricting to any particular class of
TU games) is not higher than for the Shapley value.

5There exists a similar formula for the (weighted) Shapley value (see Pérez-Castrillo
and Wettstein (2001, Lemma 1)).
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We now prove that with this coalitional value the Harsanyi paradox dis-
appears.

Proposition 3.1 The coalitional value ζ is joint-monotonic in convex games.

Proof. See the Appendix.
As opposed, Proposition 3.1 does not hold for the Owen value φ. Take

the TU game (N, v) given in Example 3.1. This is a convex game with
ϕN (v) = (10, 10, 4). Since φN (v) = (12, 9, 3), forming coalition {2, 3} is
disadvantageous for both players 2 and 3.
Proposition 3.1 does not hold in general for nonconvex games, as the next

example shows:

Example 3.2 Let N = {1, 2, 3, 4, 5} and v be defined as v ({1}) = v ({2}) =
v (T ) = 0, v ({1, 2}) = v ({1, 2} ∪ T ) = 360 and v ({1} ∪ T ) = v ({2} ∪ T ) =
180 for all T ⊂ {3, 4, 5}, T �= ∅. This TU game is superadditive but not
convex. Consider the coalition structure C = {{1} , {2} , {3, 4} , {5}}, i.e.
players 3 and 4 form coalition. Then, ζN = (147, 147, 12, 12, 42).
Consider now the coalition structure C∗ = {{1} , {2} , {3, 4, 5}}, i.e. player 5
joins forces with coalition {3, 4}. Then, ζN = (153, 153, 18, 18, 18).

4 The non-cooperative mechanism

In this section we describe the non-cooperative mechanism. Fix (N, v, C) ∈
CTU . For each S ⊂ N , we denote as ΓS the set of applications γ : CS → S
satisfying γ

(
C ′q
)
∈ C ′q for each C ′q ∈ CS. For simplicity, we denote γq :=

γ
(
C ′q
)
. Moreover, we denote as λS the weight vector in the subgame (S, v),

i.e., λSq =
|C′q|
|S|
for all S ⊂ N and all C ′q ∈ CS.

The coalitional non-cooperative mechanism associated with (N, v, C) and
ρ ∈ [0, 1) is defined as follows:

In each round there is a set S ⊂ N of active players. In the first
round, S = N . Each round has one or two stages. In the first
stage, a proposer is randomly chosen from each coalition. Namely,
a function γ ∈ ΓS is randomly chosen, being each γ equally likely
to be chosen. The coalitions play sequentially (say, for example,
in the order (C ′1, C

′
2, ..., C

′
m′)) in the following way: γ1 proposes a

feasible payoff, i.e. a vector x ∈ RS with
∑

i∈S xi ≤ v (S). The
members of C ′1\γ1 are then asked in some prespecified order to
accept or reject the proposal. If one of them rejects the proposal,
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then we move to the next round where the set of active players
is S with probability ρ and S\γ1 with probability 1 − ρ. In the
latter case, player γ1 gets v (γ1). If all the players accept the
proposal, we move on to the next coalition, C ′2. Then, players
of C ′2 proceed to repeat the process under the same conditions,
and so on. If all the proposals are accepted in each coalition, the
proposers are called representatives. We denote the proposal of
γq as a

(
S, γq

)
.

In the second stage, a proposal is randomly chosen. The probabil-
ity of a (S, γr) being chosen is λ

S
r =

|C′r|
|S|
, i.e. proportional to the

size of the coalition that supports it. Assume a
(
S, γq

)
is chosen.

We call player γq the representative-proposer, or simply RP. If all

the members of S\C ′q accept a
(
S, γq

)
— they are asked in some

prespecified order — then the game ends with these payoffs. If it
is rejected by at least one member of S\C ′q, then we move to the
next round where, with probability ρ, the set of active players is
again S and, with probability 1− ρ, the entire coalition C ′q drops
out and the set of active players becomes S\C ′q. In the latter case
each i ∈ C ′q gets v (i).

Clearly, given any set of strategies, this mechanism finishes in a finite
number of rounds with probability 1.
A key feature is that, when there is no rejection, each player has the same

probability to be chosen RP. Hence, players do not lose their “right to talk”
when joining a coalition.
The mechanism generalizes Hart and Mas-Colell’s (1996) for trivial coali-

tion structures. For C = {N}, the second stage is trivial, since there is a
single representative and a single proposal. Moreover, the first stage coin-
cides with Hart and Mas-Colell’s mechanism. For C = {{i}}i∈N , the first
stage is trivial. Each player states a proposal, and in the second stage a
proposal is randomly selected with equal probability and voted by the rest
of the players/coalitions.
As usual, we consider stationary subgame perfect equilibria. In this con-

text, an equilibrium is stationary if the players’ strategies depend only on the
set of active players. They do not depend, however, on the previous history
or the number of played rounds.
The main result of the paper, that provides a non-cooperative justification

for ζN , is the following:

Theorem 4.1 There exists a unique expected stationary subgame perfect
equilibrium payoff in strictly convex games, which equals ζN .
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This result is an immediate consequence of Propositions 5.5, 5.6 and 5.7,
presented in Section 5.5.
It is worthy to analyze a particular example.

Example 4.1 Let N = {1, 2, 3} and v be defined as v ({1, 2}) = 12, v (N) =
24 and v (S) = 0 otherwise. Consider the coalition structure C = {{1} , {2, 3}},
i.e. players 2 and 3 form coalition.
When there are two active players, the mechanism coincides with the

mechanism given by Hart and Mas-Colell, and thus the expected final payoffs
are ζ{1,2} = (6, 6) and ζ{1,3} = ζ{2,3} = (0, 0).
Assume now the set of active players is N . For simplicity, assume ρ = 0.

Then, player 1 would propose a (N, 1) = (24, 0, 0), i.e. she offers the other
players their respective continuation payoff after rejection in the second stage.
The proposals given by player 2 and player 3 are subtler, because they would
not propose to each other their continuation payoff after rejection in the first
stage. Instead, they propose to each other a value that, averaging with player
1’s proposal, results in their respective continuation payoffs after rejection. In
particular, player 3 would propose a (N, 3) = (0, 9, 15), because (taking into
account that player 1 would be the RP in the second stage with probability 1

3
)

player 2’s expected final payoff after rejection is 1
3
0 + 2

3
9 = 6. Analogously,

player 2 would propose a (N, 2) = (0, 24, 0).
Once these proposals are accepted in the first stage, in the second stage

the proposal of coalition {2, 3} is either (0, 24, 0) (probability 1
2
), or (0, 9, 15)

(probability 1
2
). In the second stage, the final proposal will be (24, 0, 0) with

probability 1
3
, and either (0, 24, 0) or (0, 9, 15) with probability 2

3
. On average,

the expected final payoff is

1

3
(24, 0, 0) +

2

3

(
1

2
(0, 24, 0) +

1

2
(0, 9, 15)

)
= (8, 11, 5) = ζN .

5 Concluding remarks

5.1 Nonconvex games

In general, the mechanism does not implement ζ for nonconvex games. Take
ρ = 0. Take the TU game given in Example 3.2 with coalition structure
{{1} , {2} , {3, 4, 5}}. Assume the only equilibrium payoff is ζS for all S �= N .

11



Some of these values are given in the following table:

S ζS

{1, 2} (180, 180)
{1, 2, 4, 5} (150, 150, 30, 30)
{1, 3, 4, 5} (45, 45, 45, 45)
{2, 3, 4, 5} (45, 45, 45, 45)

We compute the equilibrium payoff when S = N . In the second stage
of the mechanism, coalitions {1} and {2} would offer 45 to each player in
{3, 4, 5} (this is their continuation payoff after either coalition {1} or coalition
{2} leaves the game). Assume that player 3 is the proposer of coalition
{3, 4, 5} in the first stage. Then, any acceptable proposal should satisfy
ai (N, 3)

γ = 180 for all i ∈ {1, 2} and aj (N, 3)
γ = 20 for all j ∈ {4, 5} (so that

1
5
aj (N, 1)

γ + 1
5
aj (N, 2)

γ + 3
5
aj (N, 3)

γ = 30, that is, player j’s continuation
payoff after rejection). Hence a3 (N, 3)

γ ≤ −40. This leaves player 3 with a
negative final expected payoff 6. Hence, it is optimal for player 3 to make an
unacceptable proposal and receive zero. The final equilibrium payoff would be
(150, 150, 20, 20, 20) in expected terms, whereas ζN = (153, 153, 18, 18, 18).
In equilibrium, making acceptable proposals is profitable if the conditions

given in Proposition 5.3 in Section 5.5 hold. These conditions state that the
aggregate payoff of the members of a coalition is higher than their aggregate
payoff when one of its members (the proposer) leaves the game and receives
v (i). This generates sufficient surplus to be profitable for the proposer to
make an acceptable offer.
It is still possible to implement ζ for general TU games by imposing an

additional feature to the mechanism: Assume that each excluded player i
is charged with a penalty pi > 0. Hence, the final payoff after exclusion is
v (i)−pi. Under these circumstances, all the offers are accepted in equilibrium
as long as

∑
j∈C′q

ζS >
∑

j∈C′q\i
ζS\i+v (i)−pi for all S ⊂ N and i ∈ C ′q ∈ CS.

Hence, for p high enough7 the result in Theorem 4.1 holds for any TU game.
This penalty may have a justification in the model. As Hart and Mas-

Colell (1996, Section 7) point out, v (i) may represent the total worth of
player i assuming that she is the only member of the society and control a
common resource, whereas v (i)− pi (a lower amount) is what she would get
if she leaves the society.

6This payoff is at most −6, not −40, since with probabitity 2

5
the offer in the second

stage comes from coalition {1} or coalition {2}.
7In the previous example, any pi > 6 would suffice.
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5.2 Non-transferable utility games

The non-cooperative mechanism can be easily translated into general non-
transferable (NTU) games, as in the original Hart and Mas-Colell’s model.
In particular, if we are in a pure bargaining problem, then there exists one
stationary subgame perfect equilibrium. Moreover, as ρ approaches 1, any
stationary subgame perfect equilibrium payoff converge to the Nash solution
(Nash, 1950).
More particularly, for unanimity games (which is a particular case of

a bargaining problem), the unique stationary subgame perfect equilibrium
payoff is xi = 1/ |N | for all i ∈ N and any coalition structure.

5.3 An inductive formula to compute ζ

Fix (N, v, C). In the next proposition we describe an inductive formula to
compute ζ:

Proposition 5.1 The coalitional value ζ can be defined inductively as fol-
lows: ζ

{i}
i = v (i) for all i ∈ N . Assume we know ζT ∈ RT for all T ⊂ S, T �=

S. Then, ζSi =

1∣∣C ′q
∣∣


λSq v (S) +

∑

j∈C′q\i

(
ζ
S\j
i − ζ

S\i
j

)
+

∑

C′r∈CS\C
′
q


λSr

∑

j∈C′q

ζ
S\C′r
j − λSq

∑

j∈C′r

ζ
S\C′q
j






for all i ∈ C ′q ∈ CS.

Proof. See the Appendix.
As a corollary, the next result allows to compute the aggregate payoff for

each coalition in C:

Corollary 5.1 For any S ⊂ N and C ′q ∈ CS,

∑

i∈C′q

ζSi = λSq v (S) +
∑

C′r∈CS\C
′
q


λSr

∑

j∈C′q

ζ
S\C′r
j − λSq

∑

j∈C′r

ζ
S\C′q
j


 .

Proof. It follows from Proposition 5.1.
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5.4 Balanced contributions

The property of balanced contributions has been first used by Myerson (1980)
to characterize the Shapley value. A generalization of it has also been used to
characterize the Owen value (Calvo, Lasaga and Winter (1996), Bergantiños
and Vidal-Puga (2005)).
A weaker version of the property of balanced contributions is satisfied by

ζ inside each coalition, as next Proposition (used in the proof of Proposition
5.6) shows:

Proposition 5.2 For all S ⊂ N and i ∈ C ′q ∈ CS,
∑

j∈C′q\i

(
ζSi − ζ

S\j
i

)
=

∑
j∈C′q\i

(
ζSj − ζ

S\i
j

)
.

Proof. It follows from Proposition 5.1 and Corollary 5.1.

5.5 Stationary subgame perfect equilibria

A fundamental property for the result in Theorem 4.1 to hold is the following:
the aggregate payoff in a coalition is higher than when one of its members
leaves and gets her autarchy payoff.
The next proposition states that this is true in strictly convex TU games:

Proposition 5.3 For strictly convex TU games,
∑

j∈C′q\i
ζ
S\i
j +v (i) <

∑
j∈C′q

ζSj
for all i ∈ C ′q ∈ CS, S �= {i}.

Proof. See the Appendix.
We now analyze the general stationary subgame perfect equilibria. Let S

denote the set of active players. Given a set of stationary strategies, denote
as a(S, i)γ ∈ V (S) the payoff proposed by i ∈ C ′q ∈ CS when the set of
proposers is determined by some γ ∈ ΓS,i. Thus, for a given γ ∈ ΓS,

a(S)γ :=
∑

C′q∈CS

λSq a
(
S, γq

)γ
∈ V (S) (1)

is the expected final payoff when all the proposals are accepted and γ deter-
mines the set of proposers (or representatives).
Denote

a(S) :=
∑

γ∈ΓS

1

|ΓS|
a (S)γ ∈ V (S) (2)

as the expected final payoff when all the proposals are accepted.

14



Given i ∈ C ′q ∈ CS, let ΓS,i be the subset of functions γ ∈ ΓS such that

γq = i. Notice that |ΓS| = |ΓS,i|
∣∣C ′q
∣∣ for all i ∈ C ′q ∈ CS.

Let

a (S, i) :=
∑

γ∈ΓS,i

1

|ΓS,i|
a (S, i)γ (3)

be the expected payoff proposed by i ∈ C ′q ∈ CS when she is a proposer.
The next proposition states that the probability that the final proposal

comes from a particular player (when all the proposals are accepted) is equal
for all the players, i.e. they maintain their respective “rights to talk”.

Proposition 5.4 For all S ⊂ N , a (S) =
∑

i∈S
1
|S|
a (S, i) .

Proof. See the Appendix.
The next proposition gives three conditions that are sufficient for a set of

proposals to yield ζ:

Proposition 5.5 Assume a set of proposals
(
a (S, i)γi∈S,γ∈ΓS,i

)
S⊂N

satisfies

the following three conditions for all S ⊂ N :

P-1 aj (S, i)
γ = ρaj (S)+ (1− ρ) aj

(
S\C ′q

)
for all i ∈ C ′q ∈ CS, γ ∈ ΓS,i and

j ∈ S\C ′q ;

P-2 aj (S)
γ = ρaj (S) + (1− ρ) aj (S\i) for all i ∈ C ′q ∈ CS, γ ∈ ΓS,i and

j ∈ C ′q\i ;

P-3
∑

j∈S aj (S, i)
γ = v (S) for all i ∈ S and γ ∈ ΓS,i.

Then, a (S) = ζS for all S ⊂ N .

Proof. See the Appendix.
The next proposition states the equivalence between the above three con-

ditions and the equilibria in strictly convex games. Hence, these conditions
characterize the proposals in equilibrium.

Proposition 5.6 For any ρ, a set of proposals
(
a (S, i)γi∈S,γ∈ΓS,i

)
S⊂N

can

be supported as a stationary subgame perfect equilibrium for strictly convex
games if and only if they satisfy P-1, P-2 and P-3.

Proof. See the Appendix.
The last result states that there always exists an equilibrium:

Proposition 5.7 There always exists a stationary subgame perfect equilib-
rium for convex games.

Proof. See the Appendix.
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6 Appendix

Proposition 3.1

Proof. We proceed by induction on m, the size of C. For m = 2, the
result is trivial. Assume the result is true for coalition structures of size
m − 1. Let Cq, Cr ∈ C. Assume w.l.o.g. q = m − 1 and r = m. Let
C∗ =

{
C∗1 , C

∗
2 , ...., C

∗
m−1

}
where C∗p = Cp for all p < m − 1 and C∗m−1 =

Cm−1 ∪ Cm. Let M
∗ = {1, 2, ...,m− 1}, and let ω ∈ R

M , ω∗ ∈ R
M∗

be

defined as ωp = ω∗p =
|Cp|
|N |

for all p < m − 1, ωm−1 =
|Cm−1|
|N |

, ωm =
|Cm|
|N |

and
ω∗m−1 = ωm−1 + ωm. Under Remark 3.1, it is enough to prove that

ϕωMm−1 (v/C) + ϕωMm (v/C) ≤ ϕω
∗M∗

m−1 (v/C
∗) .

For simplicity, denote u = v/C and u∗ = v/C∗.
Pérez-Castrillo and Wettstein (2001, Lemma 1) proved that ϕωMq can be

inductively computed as ϕωMq (v) = ωqv (M)−ωqv (M\q)+
∑

p∈M\q ωpϕ
ωM\p
q (v).

Hence,

ϕωMm−1 (u) + ϕωMm (u) = ωm−1u (M)− ωm−1u (M\ (m− 1))

+
∑

p∈M\(m−1)

ωpϕ
ωM\p
m−1 (u)

+ωmu (M)− ωmu (M\m) +
∑

p∈M\m

ωpϕ
ωM\p
m (u)

= ωm−1u (M)− ωm−1u (M\ (m− 1))

+ωmu (M)− ωmu (M\m)

+ωmϕ
ωM\m
m−1 (u) + ωm−1ϕ

ωM\(m−1)
m (u)

+
∑

p<m−1

ωp
(
ϕ
ωM\p
m−1 (u) + ϕωM\pm (u)

)

and

ϕω
∗M∗

m−1 (u
∗) = ω∗m−1u

∗ (M∗)− ω∗m−1u
∗ (M∗\ (m− 1)) +

∑

p<m−1

ω∗pϕ
ω∗M∗\p
m−1 (u∗)

= (ωm−1 + ωm)u (M)− (ωm−1 + ωm) u (M\ {m− 1,m})

+
∑

p<m−1

ω∗pϕ
ω∗M∗\p
m−1 (u∗) .

Under the induction hypothesis, ϕ
ωM\p
m−1 (u) +ϕ

ωM\p
m (u) ≤ ϕ

ωM∗\p
m−1 (u∗) for
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all p < m− 1. Hence, it is enough to prove,

ωm−1u (M)− ωm−1u (M\ (m− 1)) + ωmu (M)

−ωmu (M\m) + ωmϕ
ωM\m
m−1 (u) + ωm−1ϕ

ωM\(m−1)
m (u)

≤ (ωm−1 + ωm) u (M)− (ωm−1 + ωm)u (M\ {m− 1,m}) .

Simplifying and rearranging terms,

ωm−1
[
u (M\ (m− 1))− u (M\ {m− 1,m})− ϕωM\(m−1)m (u)

]

+ωm

[
u (M\m)− u (M\ {m− 1,m})− ϕ

ωM\m
m−1 (u)

]

must be nonnegative. In fact, both terms are. We check it for the second
one (the first is analogous):

ϕ
ωM\m
m−1 (u) ≤ u (M\m)− u (M\ {m− 1,m}) .

It is well-known (Kalai and Samet (1987, Theorem 1)) that the weighted
Shapley value is a weighted average of marginal contributions. Since (N, v) is
convex, the TU game (M\m, u) is convex too. This implies that the maximal
marginal contribution ofm−1 in (M\m, u) is u (M\m)−u (M\ {m− 1,m}).
Hence we conclude the result.

Proposition 5.1

Proof. The result is clear for ζ{i}. We prove the result for (S, v, CS). Let
M ′ =

{
q : C ′q ∈ CS

}
and m′ = |M ′|.

Claim 6.1 Given i, j ∈ C ′q ∈ CS, ϕ
C′q\j

i

(
v∗Sq
)
= ϕ

C′q\j

i

(
v
∗S\j
q

)
.

The proof is straightforward and we omit it.

Claim 6.2 Given q, r ∈M ′, ϕ
λSM ′\r
q (v/CS) = v

∗S\C′r
q

(
C ′q
)
.

The weights λSq are proportional to the weights λ
S\C′r
q for all q ∈ M ′\r.

Hence,

ϕλ
SM ′\r
q (v/CS) = ϕλ

S\C′rM ′\r
q (v/CS) .

Moreover, v/CS (Q) = v/CS\C′r (Q) for all Q ⊂M ′\r. Hence,

ϕλ
S\C′rM ′\r
q (v/CS) = ϕλ

S\C′rM ′\r
q

(
v/CS\C′r

)
= v∗S\C

′
r

q

(
C ′q
)
.

Claim 6.3 Given q, r ∈M ′, v
∗S\C′r
q

(
C ′q
)
=
∑

j∈C′q
ζ
S\C′r
j .
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By definition,
∑

j∈C′q
ζ
S\C′r
j =

∑
j∈C′q

ϕ
C′q
j

(
v
∗S\C′r
q

)
= v

∗S\C′r
q

(
C ′q
)
.

We now use the claims to prove the result. It follows from Pérez-Castrillo
and Wettstein (2001, Lemma 1) that the weighted Shapley value can be
computed as

ϕωNi (v) = ωiv (N) +
∑

j∈N\i

(
ωjϕ

ωN\j
i (v)− ωiϕ

ωN\i
j (v)

)
(4)

for all i ∈ N , ω ∈ RN++. Remark that the Shapley value ϕ
N coincides with

ϕωN for ωi =
1
|N |
for all i ∈ N .

Given i ∈ C ′q ∈ CS,

ζSi = ϕ
C′q
i

(
v∗Sq
) (4)
=

1∣∣C ′q
∣∣


v∗Sq

(
C ′q
)
+
∑

j∈C′q\i

(
ϕ
C′q\j

i

(
v∗Sq
)
− ϕ

C′q\i

j

(
v∗Sq
))



(Claim 6.1)
=

1∣∣C ′q
∣∣


v∗Sq

(
C ′q
)
+
∑

j∈C′q\i

(
ζ
S\j
i − ζ

S\i
j

)

 . (5)

Taking into account that
∑

r∈M ′ λ
S
r = 1, v

∗S
q

(
C ′q
)
=

ϕλ
SM ′

q (v/CS)
(4)
= λSq v/CS (M

′) +
∑

r∈M ′\q

(
λSrϕ

λSM ′\r
q (v/CS)− λSq ϕ

λSM ′\q
r (v/CS)

)

(Claim 6.2)
= λSq v (S) +

∑

r∈M ′\q

(
λSr v

∗S\C′r
q

(
C ′q
)
− λSq v

∗S\C′q
r (C ′r)

)

(Claim 6.3)
= λSq v (S) +

∑

C′r∈CS\C
′
q


λSr

∑

j∈C′q

ζ
S\C′r
j − λSq

∑

j∈C′r

ζ
S\C′q
j


 . (6)

The result comes from combining (5) and (6).
Proposition 5.3

Proof. LetM ′ = {r : C ′r ∈ CS}. Since the game is strictly convex, (M
′, v/CS)

is also strictly convex and thus strictly superadditive. Assume first C ′q =

{i} (hence
∑

j∈C′q\i
ζS\ij = 0). Under Remark 3.1, it is enough to prove

v (i) < ϕλ
SM ′

q (v/CS), which is straightforward given the strict superadditiv-

ity of (M ′, v/CS) and the fact that ϕλ
S

q is a weighted average of marginal
contributions.
Assume now C ′q �= {i}. Under Remark 3.1, it is enough to prove

ϕλ
S\iM ′

q

(
v/CS\i

)
+ v (i) < ϕλ

SM ′

q (v/CS) .
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It is straightforward to check that λS\ir = |S|
|S|−1

λSr for all r ∈M ′\q, whereas

λS\iq =
|C′q|−1
|C′q|

|S|
|S|−1

λSq . Hence, when weights change from λS to λS\i, coalition q

reduces its relative weight in the game between coalitions. Since
(
M ′, v/CS\i

)

is strictly convex, ϕλ
S\iM ′

q

(
v/CS\i

)
≤ ϕλ

SM ′

q

(
v/CS\i

)
.

Hence, it is enough to prove

ϕλ
SM ′

q

(
v/CS\i

)
+ v (i) < ϕλ

SM ′

q (v/CS) .

Consider the following TU games on M ′:

uq (Q) =

{
0 if q /∈ Q
v (i) if q ∈ Q

and v′ (Q) = v/CS\i (Q) + uq (Q) for all Q ⊂M ′.
Under strict superadditivity, v′ (Q) = v/CS (Q) if q /∈ Q and v′ (Q) <

v/CS (Q) if q ∈ Q. It is well-known from Kalai and Samet (1985) that the

weighted Shapley value is monotonic. Thus ϕλ
SM ′

q (v′) < ϕλ
SM ′

q (v/CS).

Since the weighted Shapley value satisfies additivity ϕλ
SM ′

q

(
v/CS\i

)
+

ϕλ
SM ′

q (uq) = ϕλ
SM ′

q (v′). Moreover, ϕλ
SM ′

q (uq) = v (i). Hence,

ϕλ
SM ′

q

(
v/CS\i

)
+ v (i) = ϕλ

SM ′

q (v′) < ϕλ
SM ′

q (v/CS) .

Proposition 5.4

Proof. Given S ⊂ N ,

a (S)
(2)
=
∑

γ∈ΓS

1

|ΓS|
a (S)γ

(1)
=
∑

γ∈ΓS

1

|ΓS|

∑

C′q∈CS

λSq a
(
S, γq

)γ

=
∑

C′q∈CS

λSq
∑

γ∈ΓS

1

|ΓS|
a
(
S, γq

)γ
=
∑

C′q∈CS

λSq
∑

i∈C′q

1∣∣C ′q
∣∣
∑

γ∈ΓS,i

1

|ΓS,i|
a
(
S, γq

)γ
.

Since a
(
S, γq

)γ
= a (S, i)γ for all i ∈ C ′q, γ ∈ ΓS,i,

a (S) =
∑

C′q∈CS

λSq
∑

i∈C′q

1∣∣C ′q
∣∣
∑

γ∈ΓS,i

1

|ΓS,i|
a (S, i)γ .

Under (3),

a (S) =
∑

C′q∈CS

λSq
∑

i∈C′q

1∣∣C ′q
∣∣a (S, i) =

∑

C′q∈CS

1

|S|

∑

i∈C′q

a (S, i) =
∑

i∈S

1

|S|
a (S, i) .
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Proposition 5.5

Proof. By P-3, ∑

i∈S

ai (S) = v (S) . (7)

Fix i ∈ C ′q ∈ CS. From (1) it is readily checked that, for any j ∈ C ′q\i,
γ ∈ ΓS,i:

aj (S, i)
γ =

1

λSq
aj (S)

γ −
∑

C′r∈CS\C
′
q

λSr
λSq

aj (S, γr)
γ .

Under P-1 and P-2, aj (S, i)
γ =

1

λSq
[ρaj(S) + (1− ρ)aj(S\i)]−

∑

C′r∈CS\C
′
q

λSr
λSq
[ρaj(S) + (1− ρ)aj(S\C

′
r)]

= ρaj(S) + (1− ρ)


 1
λSq

aj(S\i)−
∑

C′r∈CS\C
′
q

λSr
λSq

aj(S\C
′
r)


 . (8)

Under Proposition 5.4 and (3),

|S| ai (S)
(Proposition 5.4)

=
∑

j∈S

ai (S, j)
(3)
=
∑

j∈S

∑

γ∈ΓS,j

1

|ΓS,j|
ai (S, j)

γ

=
∑

γ∈ΓS,i

1

|ΓS,i|
ai (S, i)

γ +
∑

j∈C′q\i

∑

γ∈ΓS,j

1

|ΓS,j|
ai (S, j)

γ +
∑

j∈S\C′q

∑

γ∈ΓS,j

1

|ΓS,j|
ai (S, j)

γ .

We study the three terms one by one. For the first term:

∑

γ∈ΓS,i

1

|ΓS,i|
ai (S, i)

γ (P-3)= v (S)−
∑

γ∈ΓS,i

1

|ΓS,i|

∑

j∈S\i

aj (S, i)
γ

= v (S)−
∑

γ∈ΓS,i

1

|ΓS,i|

∑

C′r∈CS\C
′
q

∑

j∈C′r

aj (S, i)
γ −

∑

γ∈ΓS,i

1

|ΓS,i|

∑

j∈C′q\i

aj (S, i)
γ

(P-1)-(8)
= v (S)−

∑

C′r∈CS\C
′
q

∑

j∈C′r

[
ρaj (S) + (1− ρ) aj

(
S\C ′q

)]

−
∑

j∈C′q\i


ρaj (S) + (1− ρ)


 1
λSq

aj (S\i)−
∑

C′r∈CS\C
′
q

λSr
λSq

aj (S\C
′
r)





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under (7),
∑

j∈S\i ρaj (S) = ρ (v (S)− ai (S)) and thus

= v (S)− ρ (v (S)− ai (S))− (1− ρ)
∑

C′r∈CS\C
′
q

∑

j∈C′r

aj
(
S\C ′q

)

− (1− ρ)
∑

j∈C′q\i


 1
λSq

aj (S\i)−
∑

C′r∈CS\C
′
q

λSr
λSq

aj (S\C
′
r)


 .

For the second term:

∑

j∈C′q\i

∑

γ∈ΓS,j

1

|ΓS,j|
ai (S, j)

γ (8)=

∑

j∈C′q\i


ρai (S) + (1− ρ)


 1
λSq

ai (S\j)−
∑

C′r∈CS\C
′
q

λSr
λSq

ai (S\C
′
r)






= ρ
(∣∣C ′q

∣∣− 1
)
ai (S)

+ (1− ρ)



∑

j∈C′q\i

1

λSq
ai (S\j)−

(∣∣C ′q
∣∣− 1

) ∑

C′r∈CS\C
′
q

λSr
λSq

ai (S\C
′
r)


 .

For the third term:

∑

j∈S\C′q

∑

γ∈ΓS,j

1

|ΓS,j|
ai (S, j)

γ (P-1)=
∑

C′r∈CS\C
′
q

∑

j∈C′r

[ρai (S) + (1− ρ) ai (S\C
′
r)]

= ρ
(
|S| −

∣∣C ′q
∣∣) ai (S) + (1− ρ)

∑

C′r∈CS\C
′
q

|C ′r| ai (S\C
′
r) .

Hence, adding terms, |S| ai (S) =

v (S)− ρv (S)− (1− ρ)
∑

C′r∈CS\C
′
q

∑

j∈C′r

aj
(
S\C ′q

)

−
∑

j∈C′q\i

(1− ρ)


 1
λSq

aj (S\i)−
∑

C′r∈CS\C
′
q

λSr
λSq

aj (S\C
′
r)




+(1− ρ)



∑

j∈C′q\i

1

λSq
ai (S\j) +

∑

C′r∈CS\C
′
q

λSr
λSq

ai (S\C
′
r)




+ρ |S| ai (S) .
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Rearranging terms and dividing by 1− ρ, |S| ai (S) =

= v (S) +
∑

j∈C′q\i

1

λSq
(ai (S\j)− aj (S\i))

+
∑

C′r∈CS\C
′
q


λSr
λSq

∑

j∈C′q

aj (S\C
′
r)−

∑

j∈C′r

aj
(
S\C ′q

)

 .

Hence,

ai (S) =
λSq∣∣C ′q
∣∣v (S) +

∑

j∈C′q\i

1∣∣C ′q
∣∣ (ai (S\j)− aj (S\i))

+
∑

C′r∈CS\C
′
q



∑

j∈C′q

λSr∣∣C ′q
∣∣aj (S\C

′
r)−

∑

j∈C′r

λSq∣∣C ′q
∣∣aj
(
S\C ′q

)

 .

Under Proposition 5.1, a (S) = ζS is easily deduced following a standard
induction argument.

Proposition 5.6

Proof. Besides the result, we will also prove that all the proposals are
accepted and ai (S)

γ ≥ ρai (S) + (1− ρ) v (i) for all i ∈ S ⊂ N and γ ∈ ΓS,i.
The argument is by induction. The result holds trivially when |N | = 1.

Assume that it is true when there are at most |N | − 1 players.
Assume we are in a stationary subgame perfect equilibrium in a strictly

convex game. Under the induction hypothesis, the expected payoff for the
players in S �= N in any stationary subgame perfect equilibrium with S as
set of active players is a (S). Let b ∈ RN denote the expected final payoff
allocation when N is the set of active players.
We proceed by a series of Claims:

Claim 6.4 Given Cq ∈ C in the second stage, assume the proposers are
determined by γ ∈ ΓN and the RP is γq. Then, all the players in N\Cq
accept γq’s proposal if ai

(
N, γq

)
> ρbi + (1− ρ) ai (N\Cq) for all i ∈ N\Cq.

If ai
(
N, γq

)
< ρbi + (1− ρ) ai (N\Cq) for some i ∈ N\Cq, then the proposal

is rejected.

In the case of rejection in the second stage, the expected payoff of a player
i ∈ N\Cq is, under the induction hypothesis, ρbi + (1− ρ) ai (N\Cq). Thus,
the result follows from a standard argument in this kind of bargaining.
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Claim 6.5 Let γ ∈ ΓN determine the set of proposers in the first stage.
Given Cq ∈ C, assume we are in the subgame that begins after player γq
makes her proposal. Assume also that all the coalitions with choose rep-
resentative after Cq are bound to choose their proposer as representative
should γq’s proposal be accepted. Let bγq be the expected final payoff al-
location if γq’s proposal is accepted. Then, all the players in Cq\γq ac-

cept γq’s proposal if b
γq
i > ρbi + (1− ρ) ai

(
N\γq

)
for every i ∈ Cq\γq. If

b
γq
i < ρbi + (1− ρ) ai

(
N\γq

)
for some i ∈ Cq\γq, the proposal is rejected.

The result follows the same arguments as in the proof of Claim 6.4. Under
these hypothesis, in the case of rejection of γq’s proposal in the first stage,

the expected payoff to a player i ∈ Cq\γ is ρbi + (1− ρ) ai
(
N\γq

)
.

Claim 6.6 All the offers in the first stage are accepted.

Assume coalitions play the first stage in the order (C1, C2, ..., Cm) and
that the mechanism reaches coalition Cm, i.e. there has been no previous
rejection. Assume γm’s proposal is rejected. This means the final payoff for
player γm is ρbγm + (1− ρ) v (γm).
Define a new proposal a (N, γm) for player γm. First, given ε > 0, let

cε (N, γm) be defined as follows:

cεi (N, γm) :=





−
∑

Cq∈C\Cm

λNq

λNm
ai (N\Cq) +

1
λNm
v (i) + ε if i = γm

1
λNm
ai (N\γm)−

∑
Cq∈C\Cm

λNq

λNm
ai (N\Cq) + ε if i ∈ Cm\γm

ai (N\Cm) + ε if i ∈ N\Cm.
(9)

For ε > 0 small enough, we prove that
∑

i∈N cεi (N, γm) ≤ v (N): Under
the induction hypothesis, a (S, i)γi∈S,γ∈ΓS,i satisfies P-1, P-2 and P-3 for all

S �= N . Under Proposition 5.5, a (S) = ζS for all S �= N . Hence, cε (N, γm)
can be re-written as

cεi (N, γm) =





−
∑

Cq∈C\Cm

λNq

λNm
ζ
N\Cq
i + 1

λNm
v (i) + ε if i = γm

1
λNm
ζ
N\γm
i −

∑
Cq∈C\Cm

λNq

λNm
ζ
N\Cq
i + ε if i ∈ Cm\γm

ζ
N\Cm
i + ε if i ∈ N\Cm.

Adding terms,

λNm
∑

i∈N

cεi (N, γm) = |N |λNmε+ v (γm) +
∑

i∈Cm\γm

ζ
N\γm
i

+
∑

Cq∈C\Cm

∑

i∈Cq

λNmζ
N\Cm
i −

∑

Cq∈C\Cm

∑

i∈Cm

λNq ζ
N\Cq
i
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(Proposition 5.1)
= |N |λNmε+ v (γm) + λNmv (N) +

∑

i∈Cm\γm

ζN\iγm
− |Cm| ζ

N
γm

= |N |λNmε+ v (γm) + λNmv (N) +
∑

i∈Cm\γm

(
ζN\iγm

− ζNγm

)
− ζNγm

(Proposition 5.2)
= |N |λNmε+ v (γm) + λNmv (N) +

∑

i∈Cm\γm

(
ζ
N\γm
i − ζNi

)
− ζNγm

= |N | λNmε+ v (γm) + λNmv (N) +
∑

i∈Cm\γm

ζ
N\γm
i −

∑

i∈Cm

ζNi

(Proposition 5.3)
< |N |λNmε+ λNmv (N) .

Hence, ∑

i∈N

cεi (N, γm) < |N | ε+ v (N)

and hence
∑

i∈N cεi (N, γm) ≤ v (N) for ε small enough.
Define a (N, γm) = ρb+ (1− ρ) cε (N, γm) as the new proposal for player

γm.
In case of rejection, the expected final payoff for any player i ∈ Cm\γm is

ρbi + (1− ρ) ai (N\γm).
If all the players in Cm\γm accept a (N, γm) and the proposal chosen in

the second stage is from Cq �= Cm (probability λNq ), then any player i ∈
Cm\γm can obtain ρbi + (1− ρ) ai (N\Cq) by rejecting it. If the proposal
chosen in the second stage is from Cm (probability λ

N
m), then it is accepted

(by Claim 6.4).
Thus, if all the players in Cm\γm accept a (N, γm), their expected final

payoff is at least

∑

Cq∈C\Cm

λNq [ρbi + (1− ρ) ai (N\Cq)] + λNmai (N, γm)

=
∑

Cq∈C\Cm

λNq [ρbi + (1− ρ) ai (N\Cq)] + λNmρbi

+(1− ρ)


ai (N\γm)−

∑

Cq∈C\Cm

λNq ai (N\Cq) + λNmε




= ρbi + (1− ρ) ai (N\γm) + (1− ρ)λNmε
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for each i ∈ Cm\γm. Thus, it is optimal for players in Cm\γm to accept
a (N, γm). Analogously, the expected final payoff for player γm after accep-
tance is at least

∑

Cq∈C\Cm

λNq
[
ρbγm + (1− ρ) aγm (N\Cq)

]
+ λNmaγm (N, γm)

=
∑

Cq∈C\Cm

λNq
[
ρbγm + (1− ρ) aγm (N\Cq)

]
+ λNmρbγm

+(1− ρ)


−

∑

Cq∈C\Cm

λNq aγm (N\Cq) + v (γm) + λNmε




= ρbγ
m
+ (1− ρ) v (γm) + (1− ρ)λNmε.

So, it is optimal for γm to change her proposal. This contradiction proves
that no proposals are rejected in the first stage in Cm. By going backwards,
the same reasoning shows that no proposal is rejected in the first stage in
Cm−1, ..., C1.

Claim 6.7 All the offers in the second stage are accepted.

Suppose the proposal of γq is bound to be rejected in the second stage.
Then, the final payoff for the members of Cq (including γq) is (v (i))i∈Cq
with probability λNm. Under Claim 6.5 and Claim 6.6, we know that b

γq
i ≥

ρbi+(1− ρ) ai
(
N\γq

)
for all i ∈ Cq\γq. Assume that γq changes her strategy

and proposes

ai
(
N, γq

)
=

{
v (i) + ε if i ∈ Cq
ρbi + (1− ρ) ai (N\Cq) + ε otherwise.

(10)

We proof that this proposal is feasible for ε > 0 small enough: When S is
the set of active players, each i ∈ S can assure herself at least v (i). Since b is
a subgame equilibrium payoff allocation when N is the set of active players,
bi ≥ v (i) for all i ∈ N . Moreover, the induction hypothesis implies that a (S)
is the only subgame equilibrium payoff allocation when S �= N is the set of
active players. Hence, ai (S) ≥ v (i) for all i ∈ S �= N .
On the other hand, under P-3,

∑
i∈N\Cq

ai (N\Cq) = v (N\Cq).
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Hence,

∑

i∈N

ai
(
N, γq

)
= |N | ε+

∑

i∈Cq

v (i) +
∑

i∈N\Cq

ρbi +
∑

i∈N\Cq

(1− ρ) ai (N\Cq)

= |N | ε+ ρ



∑

i∈Cq

v (i) +
∑

i∈N\Cq

bi


+ (1− ρ)



∑

i∈Cq

ri + v (N\Cq)




≤ |N | ε+ ρ
∑

i∈N

bi + (1− ρ)



∑

i∈Cq

v (i) + v (N\Cq)




≤ |N | ε+ ρv (N) + (1− ρ)



∑

i∈Cq

v (i) + v (N\Cq)




since (N, v) is strictly convex,

< |N | ε+ ρv (N) + (1− ρ) v (N) = |N | ε+ v (N) .

Hence, a
(
N, γq

)
is feasible for ε small enough.

Under Claim 6.4, the new proposal is bound to be accepted should γq
be the RP in the second stage. However,

(
b
γq
i

)
i∈Cq\γq

increases in all coor-

dinates. So, under Claim 6.5, a
(
N, γq

)
is also accepted in the first stage.

Moreover, the expected final payoff for γq also increases. Hence, we are not in
a subgame perfect equilibrium. This contradiction proves that the proposals
in the second stage are always accepted.

Since all the proposals are accepted, we can assure that b = a (N) and

bγq = a (N)γ for all γ ∈ ΓN .
We show now that P-1, P-2 and P-3 hold.
Suppose P-3 does not hold, i.e. there exists a player i ∈ Cq such that∑
j∈N aj(N, i) < v (N). Thus, there exists ε > 0 such that d ∈ RN defined

as dj = aj(N, i) + ε for all j ∈ N satisfies
∑

j∈N dj < v (N).
Notice that, since the proposal a(N, i) of player i is accepted, under Claim

6.5, together with Claim 6.6 and Claim 6.7, we know that, given γ ∈ ΓN,i,
aj(N)

γ ≥ ρbj + (1 − ρ)aj(N\i) for every j ∈ Cq\i and, under Claim 6.4,
aj(N, i) ≥ ρbj + (1− ρ)aj(N\Cq) for every j ∈ N\Cq. So, if player i changes
her proposal to d, it is bound to be accepted and her expected final payoff
improves by λNq ε > 0. This contradiction proves P-3.
Suppose P-2 does not hold. Let γ ∈ ΓN,i and let j0 ∈ Cq\i such that

aj0(N)
γ = ρaj0 (N) + (1 − ρ)aj0(N\i) + α with α �= 0. Under Claim 6.5,

α > 0.
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Assume player i changes her proposal so that aj0 (N, i) decreases β and
aj (N, i) increases

β

|N |−1
for all j ∈ N\i, with β strictly between 0 and α. The

new proposal a(N, i) satisfies the conditions of Claim 6.4 and Claim 6.5, and
thus it is due to be accepted. Also, player i improves her expected payoff by
λNq β

|N | − 1
> 0. This contradiction proves P-2.

The reasoning for P-1 is similar to that for P-2 so it is omitted.
It remains to show that ai (N)

γ ≥ ρai (N) + (1− ρ) v (i) for all i ∈ N
and γ ∈ ΓN,i. Notice that player i ∈ N can guarantee herself a payoff of
at least ρai (N) + (1− ρ) v (i) by proposing r and accepting only proposals
which give her at least ρai (N) + (1− ρ) v (i) as expected final payoff. Thus,
ai (N)

γ ≥ ρai (N) + (1− ρ) v (i).

The next step is to show that proposals (a(S, i)i∈S)S⊂N satisfying P-1, P-2
and P-3 can be supported as a subgame perfect equilibrium, and ai (S)

γ ≥
ρai (S) + (1− ρ) v (i) for all i ∈ S ⊂ N and γ ∈ ΓS,i.
Under the induction hypothesis, these results are true for any S �= N . We

prove first that ai (N)
γ ≥ ρai (N) + (1− ρ) v (i) for all i ∈ N and γ ∈ ΓN,i.

Given i ∈ Cq ∈ C, the vector c (N, i), defined as

cj (N, i) =





−
∑

Cr∈C\Cq

λNr
λNq
ai (N\Cr) +

1
λNq
v (i) if j = i

1
λNq
aj (N\i)−

∑
Cr∈C\Cq

λNq

λNm
aj (N\Cr) if j ∈ Cq\i

aj (N\Cq) if j ∈ N\Cq.

is a feasible payoff allocation (analogous to (9)). Hence c̃ (N, i) := ρa (N) +
(1− ρ) c (N, i) is feasible, too.
Let i ∈ Cq ∈ C and γ ∈ ΓN,i. Let j ∈ Cq\i. Since a (N, i) satisfies P-1

and P-2,

λNq aj (N, i)
γ = aj (N)

γ −
∑

Cr∈C\Cq

λNr aj (N, γr)
γ

= ρaj (N) + (1− ρ) aj (N\i)

−
∑

Cr∈C\Cq

λNr [ρaj (N) + (1− ρ) aj (N\Cr)]

= λNq ρaj (N) + (1− ρ)


aj (N\i)−

∑

Cr∈C\Cq

λNr aj (N\Cr)




27



and hence

aj (N, i)
γ = ρaj (N) + (1− ρ)


 1

λNq
aj (N\i)−

∑

Cr∈C\Cq

λNr
λNq

aj (N\Cr)




for all j ∈ Cq\i. But this expression does not depend on γ. Hence, aj (N, i) =
aj (N, i)

γ for all γ ∈ ΓN,i. Under P-1 and P-3, a (N, i) = a (N, i)γ for all
γ ∈ ΓN,i.
Furthermore, aj (N, i) = c̃j (N, i) for all j ∈ N\i. Hence, a (N, i) ≥

c̃ (N, i) because
∑

j∈N aj (N, i) = v (N) and
∑

j∈N c̃j (N, i) ≤ v (N). Thus,

ai (N, i) ≥ c̃i (N, i) = ρai (N) + (1− ρ)


−

∑

Cr∈C\Cq

λNr
λNq

ai (N\Cr) +
1

λNq
v (i)


 .

(11)
Under P-1 and (11),

ai (N)
γ =

∑

Cr∈C

λNr ai (N, γr)
γ =

∑

Cr∈C\Cq

λNr ai (N, γr)
γ + λNq ai (N, i)

≥
∑

Cr∈C\Cq

λNr [ρai (N) + (1− ρ) ai (N\Cr)]

+λNq ρai (N) + (1− ρ)


−

∑

Cr∈C\Cq

λNr ai (N\Cr) + v (i)




= ρai (N) + (1− ρ) v (i) .

The last step is to prove that the strategies corresponding to these pro-
posals form a subgame perfect equilibrium. The reasoning is analogous to
those used by Hart and Mas-Colell (1996, Proposition 1). Under the induc-
tion hypothesis, the result hold in any subgame after a player (or coalition)
has dropped out. Fix a player i ∈ Cq ∈ C. If she rejects the offer from a
proposer j ∈ Cq\i, her expected final payoff is ρai (N) + (1− ρ) ai (N\j).
If she rejects the offer from a RP j ∈ N\Cq, her expected final payoff is
ρai (N)+(1− ρ) ai (N\Cq). In any case, her expected final payoff is the same
as that the other player is offering, and she does not improve by rejecting it. If
the proposer is player i herself (i.e. γ ∈ ΓN,i), the strategies of the other play-
ers do not allow her to decrease her proposal to any of them (since it would be
rejected under Claim 6.4 and Claim 6.5). Moreover, increasing one or more
of her offers to the other players keeping the rest unaltered implies her own
payoff decreases (under P-3). Finally, if she proposes an unacceptable offer,
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her expected final payoff will be at most ρai (N) + (1− ρ) v (i), whereas the
proposed strategy gives her ai (N)

γ . Since ai (N)
γ ≥ ρai (N) + (1− ρ) v (i),

she does not improve.
Proposition 5.7

Proof. Under Proposition 5.6, it is enough to prove that there exits a set
of proposals satisfying P-1, P-2 and P-3. We define ai ({i} , i) = v (i) for all
i ∈ S. Assume we have defined a (T, i) for all i ∈ T ⊂, T �= S. We define:

aj (S, i)
γ = ρaj (S) + (1− ρ) aj

(
S\C ′q

)

for all i ∈ C ′q ∈ CS, γ ∈ ΓS,i and j ∈ S\C ′q ;

aj (S, i)
γ = ρaj(S) + (1− ρ)


 1
λSq

aj(S\i)−
∑

C′r∈CS\C
′
q

λSr
λSq

aj(S\C
′
r)




for all i ∈ C ′q ∈ CS, γ ∈ ΓS,i and j ∈ C ′q\i ; and

ai (S, i)
γ = v (S)−

∑

j∈S\i

aj (S, i)

for all i ∈ S and γ ∈ ΓS,i.
It is straightforward to check that these proposals satisfy P-1, P-2 and

P-3.
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