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1 Introduction

In this paper, we study the implementation of the folk solution associated

with a minimum cost spanning tree problem. An optimistic point of view is

considered to devise a cooperative game. Following this optimistic approach,

a sequential game exerts this construction to define the action sets of the

agents. The main result states the existence of a unique cost allocation in

subgame perfect equilibria. This cost allocation matches the one suggested

by the folk rule.

The situation of constructing a tree with minimal cost known as minimal

cost spanning tree problems is quite familiar in the literature of operation

research, economics, management, among others. Assume a group of agents

requires a service that can be only provided by a source. A network, whose

arcs entail some cost to build or to use, provides access to this source. Agents

can connect to the source either directly through an existing network that

already provides the service to other users. No congestion nor depreciation

of the service is assumed, which implies that the optimal network is always a

tree. Stream video, voice-conference or software distribution applications, or

an irrigation system that supplies water to irrigated land from a water dam,

are some examples of such situations.

Assuming that agents agree to build a network and decide on how to

share its cost, there are two possible approaches to tackle this situation.

The first approach arises when the agents let the decision to a neutral

referee. This referee may be either a regulator whose decision is mandatory

for the agents, or an adviser whose proposal is not compulsory, but all the

agents have incentives to follow. In this sense, a fundamental property is core

selection, which assures that no coalition of agents can connect to the source

by themselves at a lower cost than the one suggested by the adviser.1 A rele-

1Non-emptiness of the core in minimum cost spanning tree problems has been first

noted by (Bird, 1976) and deeply studied by Granot and Huberman (1981, 1984). More

recently, Dutta and Mishra (2012), Sziklai et al. (2016) proved the non-emptiness of the

core in two more general classes of games, respectively, and Kobayashi and Okamoto (2014)
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vant core-selection rule is the folk solution (Feltkamp et al., 1994; Bergantiños

and Vidal-Puga, 2007a) which, moreover, also satisfies many other relevant

properties (Bergantiños and Vidal-Puga, 2008). The second approach arises

when the agents achieve agreements directly among themselves, following

the rules of a non-cooperative game. In this second case, the final network

in equilibrium is not guaranteed to be optimal nor the final payoff alloca-

tion to be efficient. Joint the two approaches, it could be suitable to find a

mechanism leading to an optimal network together to a fair allocation of its

cost.

In this paper, we focus on the second approach. We define a non-

cooperative game in which utility-maximizers players agree on how to share

the cost of an efficient graph. The non-cooperative game is as follows: first,

we fix a random order of choices of the agents. Then agents act sequentially

according to the above order: the first agent selects to whom she connects

looking for the cheapest connection; then, the second agent decides with

whom she wants to connect taking into account that, in case the first agent

had previously connected to her, then she can choose an arc adjacent to the

first agent, and so on.2 The only restriction is that no cycles are allowed. At

the end of the last round, an optimal tree arises. The cost allocation that

arises by charging each player with her chosen arc provides a stable share of

the total cost such that the final share is fair. Consequently, players accept

both the optimal tree and a cost-share given by the folk solution.

Bergantiños and Vidal-Puga (2010) propose a non-cooperative game in

which players always agree on an optimal tree and a cost-share given by

the folk solution. In the first stage, the agents offer prices to each other.

These prices represent the amount that the agents are willing to pay to other

agents if they connect. Then, the agent with a maximum net offer is asked

to connect to the source or to propose a different network.

Moulin and Velez (2013) and Hougaard and Tvede (2013) consider two

focus on concave problems, where the core has a well-known structure.
2Such a mechanism resembles the well-known Kruskal algorithm.
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mixed approaches, respectively. In Moulin and Velez (2013), nodes are sellers

who bid to supply individual arcs, so that a single buyer purchases a minimum

cost spanning tree. They show that an optimal tree arises in equilibrium.

In Hougaard and Tvede (2013), a planner asks for the costs of the arcs to

the adjacent agents, who have a priori private information about their actual

costs. With this information, the planner builds the optimal network (under

the assumption of truth-telling), so that costs become common knowledge

for the arcs that belong to this optimal network. They show that the folk

rule is, among all the known rules in the literature, the only consistent with

truthful announcements.

In Hernández et al. (2016), a different strategic game is defined associated

to a minimum cost spanning tree problem in which the set of actions of

some agent i is the set of nodes (including the source) with whom agent

i may connect in a spanning tree. Under this approach, subgame perfect

equilibria may appear such that the provided spanning tree is not efficient.

This inefficiency cannot occur under our approach.

The paper organizes as follows. In Section 2, we present the model. In

Section 3, we introduce the non-cooperative game. In Section 4, we discuss

the results.

2 The model

Let N0 = N ∪ {0} be a set of nodes where N = {1, 2, . . . , n} is a finite set of

agents and 0 is the source they need to connect.

Let C = (cij)i,j∈N0 be the cost matrix , where cij ∈ R+ represents the

connection cost between nodes i and j. We assume, as usual, that cii = 0

and cij = cji for all i, j ∈ N0. We denote the set of all cost matrices on N as

CN . A minimum cost spanning tree problem, briefly mcstp, is a pair (N0, C).

A network g over N0 is a subset of {(i, j) : i, j ∈ N0}. The elements of g

are called arcs. We assume that the arcs are undirected, i.e. (i, j) and (j, i)

represent the same arc.
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Given a network g and a pair of nodes i and j, a path from i to j in

g is a sequence of distinct nodes {i0, . . . , il} satisfying i = i0, j = il and

(ih−1, ih) ∈ g for all h ∈ {1, 2, . . . , l}.
A spanning tree overN0 is a network t such that for all i, j ∈ N there exists

a unique path from i to j. In that case, we denote as τ tij = {(ih−1, ih)}lh=1

the network formed by the nodes in the unique path between i and j. Let

T N0 denote the set of all spanning trees over N0.

Given t ∈ T N0 , we define the cost associated with t in (N0, C) as

c (N0, C, t) =
∑

(i,j)∈t

cij.

When there is no ambiguity, we write c(t) or c(C, t) instead of c(N0, C, t).

A minimum cost spanning tree for (N0, C), briefly an mt, is a spanning

tree t∗ ∈ T N0 such that c(t∗) = mint∈T N0 {c(t)}. Given a mcstp (N0, C), an mt

always exists, but it may not be unique. We denote the cost associated with

any mt on (N0, C) as m(N0, C).

There are several algorithms in the literature to construct an mt. Prim

(1957) provides one. Sequentially, the agents connect, either directly or indi-

rectly to the source. At each stage, we add one of the cheapest arcs between

the connected and the unconnected nodes.

Example 2.1 Consider the mcstp (N0, C) with N = {1, 2, 3} and a cost

matrix C ∈ CN satisfying c12 < c13 < c23 < c01 < c02 < c03. The Prim

algorithm proceeds as follows: At stage 1, the arc formed is (0, 1), because

it is the cheapest one between a connected node (the source), and a non-

connected one (players in N). At stage 2, the arc formed is (1, 2) because

it is the cheapest one between a connected node (the source and agent 1)

and a non-connected one (agents 2 and 3). At stage 3, the arc formed is

(1, 3) because it is the cheapest one between a connected node (the source and

agents 1 and 2) and a non-connected one (agent 3). The mt formed is then

{(0, 1), (1, 2), (1, 3)}, which in this example is unique.

5



3

2

1 0

c13

c01

c02

c03

c12

c23

3

2

1 0

c12

c13

c01

Given S ⊂ N , we denote the restriction to S of the mcstp (N0, C) as

(S0, C), and the cost associated with any mt on (S0, C) as m(S0, C); that is,

m (S0, C) is the cost of connection of the agents in S to the source.

For each minimum cost spanning tree problem (N0, C), we construct an

associated cooperative cost game (N, vC) given by vC(S) = m (S0, C) where

the worth of a coalition S depends on nodes only in S, i.e., those nodes

outside S are unavailable. This approach is pessimistic because each coalition

S should build their network without counting with agents in N \ S.

Example 2.2 With the data in Example 2.1, the cost game (N, vC) is given

by vC ({i}) = c0i for all i ∈ N , vC ({1, 2}) = c01 + c12, vC ({1, 3}) = c01 + c13,

vC ({2, 3}) = c02 + c23, and vC(N) = c01 + c12 + c13.

Nevertheless, we may consider an optimistic approach if for each S,

let CS ∈ CS be the cost matrix given by cSij = cij for all i, j ∈ S and

cSi0 = min {cij : j ∈ N0 \ S} for all i ∈ S. This formulation means that each

6



coalition S can build a network assuming that agents in N \ S are already

connected. The cost problem
(
N, v+

C

)
is then defined as v+

C (S) = m
(
S0, C

S
)

for all S ⊆ N . Bergantiños and Vidal-Puga (2007b) are the first to propose

this alternative associated cooperative cost game (N, v+
C ).

Example 2.3 With the data in Example 2.1, the optimistic cost game (N, v+
C )

is given by v+
C ({1}) = v+

C ({2}) = c12, v+
C ({3}) = c13, v+

C ({1, 2}) = c12 + c13,

v+
C ({1, 3}) = c13 + c12, v+

C ({2, 3}) = c12 + c13, v+
C (N) = c01 + c12 + c13.

Let ΠN be the set of orders π : {1, . . . , n} → N . Then, given some

π ∈ ΠN , the marginal contributions payoff vector of the optimistic game

(N, v+
C ) with order π is m1

π = v+
C ({π(1)}) and, for k = 2, . . . , n

mk
π = v+

C ({π(1), π(2), . . . , π(k)})− v+
C ({π(1), π(2), . . . , π(k − 1)})

The folk rule, as defined by Bergantiños and Vidal-Puga (2007a), provides

a criterion for sharing the cost of an mt between the agents. The definition

of the folk rule is made by applying the Prim algorithm to an irreducible cost

matrix C∗. Remarkably, the folk rule can also be defined as the Shapley value

of the optimistic game (N, v+
C ) or as the Shapley value of the pessimistic cost

game (N, v∗C) obtained from the irreducible cost matrix.3

Example 2.4 Since the Shapley value is the average of marginal contribu-

tions payoff vectors, we can obtain the folk rule by computing these payoff

vectors in the optimistic game (N, v+
C ) for each possible order. The following

table represents these vectors with the data in Example 2.1 and the average

of these contributions that corresponds with the folk rule:

3See Bergantiños and Vidal-Puga (2007a,b) for details and additional properties.
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order agent 1 agent 2 agent 3

[123] v+
C ({1}) = c12

v+
C ({1, 2})− v+

C ({1})
= c13

v+
C (N)− v+

C ({1, 2})
= c01

[132] v+
C ({1}) = c12

v+
C (N)− v+

C ({1, 3})
= c01

v+
C ({1, 3})− v+

C ({1})
= c13

[213]
v+
C ({1, 2})− v+

C ({2})
= c13

v+
C ({2}) = c12

v+
C (N)− v+

C ({1, 2})
= c01

[231]
v+
C (N)− v+

C ({2, 3})
= c01

v+
C ({2}) = c12

v+
C ({2, 3})− v+

C ({2})
= c13

[312]
v+
C ({1, 3})− v+

C ({3})
= c12

v+
C (N)− v+

C ({1, 3})
= c01

v+
C ({3}) = c13

[321]
v+
C (N)− v+

C ({2, 3})
= c01

v+
C ({2, 3})− v+

C ({3})
= c12

v+
C ({3}) = c13

Average
2c01 + 3c12 + c13

6

2c01 + 3c12 + c13

6

2c01 + 4c13

6

3 The non-cooperative extensive game

We define the non-cooperative game inductively as follows:

• At the first stage (k = 0), nature chooses some π ∈ ΠN , being each π

chosen with the same probability 1
n!

. We define Σ0
i = {i} for all i ∈ N0.

• At stage k = 1, player π(1) chooses an action from the following set:

Sπ(1) =
{

(i, j) : i ∈ Σ0
π(1), j ∈ N0 \ Σ0

π(1)

}
.

That is, player π(1) selects arc sπ(1) = (i1 = π(1), j1) ∈ Sπ(1) to be

built. Once done, nodes i1 and j1 become connected, and we set Σ1
i1 =

Σ1
j1 = {i1, j1}. We also define Σ1

i = Σ0
i for any other i ∈ N0 \ {i1, j1}.
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• In general, at stage k ≥ 1, player π(k) chooses an action from the set:

Sπ(k) =
{

(i, j) : i ∈ Σk−1
π(k), j ∈ N0 \ Σk−1

π(k)

}
.

That is, player π(k) selects some arc sπ(k) = (ik, jk) ∈ Sπ(k) to be

built. Once this action is done, nodes ik and jk become connected and

we set Σk
ik

= Σk
jk

= Σk−1
ik
∪ Σk−1

jk
. We also define Σk

l = Σk
ik

for all

l ∈ Σk−1
ik
∪ Σk−1

jk
, and Σk

l = Σk−1
l in another case.

• At stage k = n + 1, the game finishes and the payoff for each player

i ∈ N is given by

ui(si) = csi .

That is, player i pays the cost of the arc she selected.

Following Maschler et al. (2013), we define the non-cooperative game in

extensive form with perfect information and chance moves as:

Γ = (N, V,E, x0, (Vi)i∈N0 , (px)x∈V0 , u)

where

• N = {1, 2, . . . , n} is the set of players.

• V is the set of vertices in the game tree.4 Each v ∈ V is determined

by some stage k ∈ {0, 1, . . . , n+ 1}, some π ∈ ΠN that determines the

order (only for k > 0), and some function fπk : {1, . . . , k − 1} → N ×N0

such that fπk (l) ∈ Sπ(l) for all l = 1, . . . , k − 1. Pair (π, fπk ) determines

the history, i.e. the (feasible) choice of each predecessor of π(k) in

π. Hence, for k = 1, . . . , n, the set of arcs already paid, before π(k)

chooses, is

{fπk (π(1)) , fπk (π(2)) , . . . , fπk (π(k − 1))} .

Notice that this set is empty for k = 1. For k = n + 1, the node is a

terminal vertex. If k = 0, the agent at such a vertex is the nature, and

π(k) otherwise.

4To avoid ambiguities, we use the terms vertices and edges in the game tree, as opposed

to nodes and arcs defined for the spanning tree.
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• E ⊂ V ×V is the set of edges. For a vertex v determined by (k, π, fπk ),

the edge (v, v′) belongs to E when v′ is determined by
(
k + 1, π, fπk+1

)
such that fπk+1(l) = fπk (l) for all l < k.

• x0 is the vertex determined by k = 0.

• (Vi)i∈N0 is a partition of the set of non-terminal vertices, and it deter-

mines the decision-maker at that vertex (or nature, when i = 0). In

particular, V0 = {x0} and, given i ∈ N , we have v ∈ Vi when v is

determined by (k, π, fπk ) with k ∈ {1, . . . , n} and π(k) = i.

• p0 is a probability distribution over the edges emanating from x0. In

particular, p0(e) = 1
n!

for each such an edge e.

• u is the function that associates each terminal node with a game out-

come. In particular, if the terminal node is given by
(
n+ 1, π, fπn+1

)
,

the game outcome is the payoff vector
(
cfπn+1(k)

)
k∈{1,...,n}

provided by

the spanning tree t =
{
fπn+1 (k)

}
k∈{1,...,n}.

Given π ∈ Π, we denote as Γπ the subgame that begins after nature chooses

π.

Example 3.1 With the data in Example 2.1, let us now construct Γπ with

π(i) = i for all i:

• At the first stage, agent 1 decides the arc she wants to pay, s1 ∈
{(1, 0), (1, 2), (1, 3)}. Say, for example s1 = (1, 2).

1 2
c12

• Now, agent 2 decides which arc s2 to pay by taking into account s1.

Assuming that s1 = (1, 2), we have s2 ∈ {(2, 0), (1, 3), (2, 3)}, i.e. agent

2 cannot choose (1, 2) (already taken) but she can choose (1, 3) (because

she is already connected to agent 1). Say, for example, s2 = (1, 3).
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• Finally, agent 3 decides which arc s3 to pay by taking into account

s1 and s2. Assuming s1 = (1, 2) and s2 = (1, 3), we have s3 ∈
{(0, 1), (0, 2), (0, 3)}. In either case, the three agents get connected to

the source simultaneously through a spanning tree.

3

2

1 0

c12

c13

c01

The formed spanning tree determines the payoffs. For instance, if the players

select their cheapest available options, the spanning tree is {(1, 2), (1, 3), (0, 1)}
and the cost of each node is distributed in the following way: Player 1 pays

cs1 = c12; player 2 pays cs2 = c13; and player 3 pays cs3 = c01.

The following table represents the payoff allocation for each π, assuming

each player selects her cheapest available option:

order mt in C agent 1 agent 2 agent 3

[123] {(1, 2) , (1, 3) , (0, 1)} c12 c13 c01

[132] {(1, 2) , (1, 3) , (0, 1)} c12 c01 c13

[213] {(1, 2) , (1, 3) , (0, 1)} c13 c12 c01

[231] {(1, 2) , (1, 3) , (0, 1)} c01 c12 c13

[312] {(1, 3) , (1, 2) , (0, 1)} c12 c01 c13

[321] {(1, 3) , (1, 2) , (0, 1)} c01 c12 c13

Average
2c01 + 3c12 + c13

6

2c01 + 3c12 + c13

6

2c01 + 4c13

6
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Given the sequential structure of Γπ, we will study the subgame perfect

equilibria. The equilibrium strategies should specify optimal behavior from

any information node up to the end of the game. That is, any agent’s strategy

should prescribe what is optimal from that node onwards given the other

agents’ strategies.

As Example 3.1 shows, the only equilibrium payoff in Γπ is fπ
−1

, where

π−1 ∈ ΠN is the order defined as π−1(k) = π(n − k + 1), that corresponds

with the marginal contributions payoff vector of the optimistic game (N, v+
C )

with order π. Hence, the expected equilibrium payoff in Γ is the one provided

by the folk rule.

Our main result establishes that this happens in general:

Theorem 3.1 Given π ∈ ΠN , there exists a unique subgame perfect equi-

librium payoff allocation for Γπ, given by the marginal contributions payoff

vector of the optimistic game
(
N, v+

C

)
with order π. Moreover, this equilib-

rium is strong and uses undominated strategies.

Proof. We will prove that for all Γπ, each player π(k) has a strategy that

assigns her a cost so that she pays at most

m
π(k)
π = v+

C ({π(1), . . . , π(k)})− v+
C ({π(1), . . . , π(k − 1)}),

independently of the strategies of the other players. Thus, this strategy

profile constitutes a strong subgame perfect equilibrium and the strategies

are undominated.

By a standard backwards argument, it is clear that there exists a subgame

perfect equilibrium for each Γπ and, moreover, each player will select one

of her cheapest available arcs. Hence, even though the subgame perfect

equilibrium may not be unique, the subgame perfect equilibrium payoff is.

Assume w.l.o.g. π(i) = i for all i ∈ N . Hence, at the first stage, player

1 would choose one of her cheapest adjacent arcs fπ1 (1) = (1, i) for some

i ∈ N0 \ {1}, whose cost is precisely v+
C ({1}) = c

{1}
01 .

For clarification purposes, we analyse stage 2. At this stage, player 1 has

selected some arc (1, j1) and player 2 would choose her cheapest adjacent
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arc (2, j2), whose cost is c
{2}
02 , unless 2 = fπ1 (1) and j2 = 1. In this latter

case, player 2 cannot choose arc (2, 1), but other arcs (those adjacent to

player 1) would be available, and in particular the chosen arc would cost

min
{
c
{1,2}
01 , c

{1,2}
02

}
. We show that, in either case, player 2 pays at most

v+
C ({1, 2})− v+

C ({1}). We distinguish two cases:

a) If fπ1 (1) 6= 2, or fπ1 (1) = 2 and j2 6= 1, then player 2 chooses her

cheapest adjacent arc (2, j2) and pays c2j2 = c
{2}
02 . In this case,

v+
C ({1, 2}) = min

{
c12 + c

{1}
01 , c12 + c

{2}
02 , c

{1}
01 + c

{2}
02

}
v+
C ({1}) = c

{1}
01

and

v+
C ({1, 2})− v+

C ({1}) = min
{
c12, c12 + c

{2}
02 − c

{1}
01 , c

{2}
02

}
= c

{2}
02

so player 2 pays c2j2 = v+
C ({1, 2})− v+

C ({1}).

b) If fπ1 (1) = 2, and j2 = 1, then player 2 selects the arc that minimizes

cij, i ∈ {1, 2}, j ∈ N0 \ {1, 2}. We have two subcases:

• c{1}01 = c12, then player 2 pays min
{
c
{1,2}
01 , c

{1,2}
02

}
= v+

C ({1, 2}) −
v+
C ({1}).

• c{1}01 < c12, then player 2 pays c
{1}
01 < v+

C ({1, 2})− v+
C ({1}).

We now prove the result in general. Assume we are in stage k, so that

player π(k) = k chooses an arc to be built. Notice that we do not assume

that the previous players, denoted as S = {1, . . . , k − 1}, have followed

any particular strategy profile. Player k would choose one of her cheapest

adjacent arcs, that may connect her to a previous player (some j ∈ S) or not

(some j /∈ S ∪ {k}). The cost of this arc is ckjk = min
i∈N0,i 6=k

{cki}. However,

as in stage 2 case, this arc might be available or not. We distinguish the

following possibilities:

a) If k /∈
⋃
i∈S Σk−1

i , then we have three subcases:

• If jk ∈ S and (k, jk) is not one of the cheapest arcs that connect a

node in S with a node in N0 \S, then v+
C (S ∪{k}) = v+

C (S) + ckjk ,

so player k would pay ckjk = v+
C (S ∪ {k})− v+

C (S).
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• If jk ∈ S and (k, jk) is one of the cheapest arcs that connect a

node in N0 \ S with a node in S; that is, then there is some mt

tS in S0 such that k is connected with players Sk ⊆ S throughout

tS. In this case,

v+
C (S ∪ {k}) = v+

C (S) + min
i∈Sk∪{k},l /∈Sk∪{k}

{cil}

and min
i∈Sk∪{k},l /∈Sk∪{k}

{cil} ≥ ckj. So player k would pay

ckjk ≤ min
i∈Sk∪{k},l /∈Sk∪{k}

{cil} = v+
C (S ∪ {k})− v+

C (S).

• If jk /∈ S, then v+
C (S ∪ {k}) = v+

C (S) + ckjk , so player k would pay

ckjk = v+
C (S ∪ {k})− v+

C (S).

b) If k ∈
⋃
i∈S Σk−1

i , this means that arc (r, k) has been built for some r ∈
S, so k ∈ Σk−1

r . If there is jk ∈ N0 \Σk−1
r such that ckjk = min

i∈N0,i 6=k
{cki},

arc (k, jk) is available for player k, and the same reasoning as in the

previous case applies.

c) Finally, it remains the case in which k ∈
⋃
i∈S Σk−1

i and for each jk

such that ckjk = min
i∈N0,i 6=k

{cki}, the arc (k, jk) is not available for player

k; that is, k, jk ∈ Σk−1
r , for some r ∈ S. Then, player k would choose

one of the cheapest available arcs (j, l) with j ∈ Σk−1
r and l /∈ Σk−1

r , so

that

cjl = min
i∈Σk−1

r ,i∗ /∈Σk−1
r

{cii∗}. (1)

The cost of this arc and the final payoff for player k is cjl.

Let t∗ be an mt, and let t∗S = {(i, i∗) ∈ t∗ : i, i∗ ∈ S} be the restriction

of t∗ to nodes in S. Clearly, t∗S induces a partition {S1, . . . , Sλ} of S into

λ ≥ 1 connected components. For each α = 1, . . . , λ, let (iα, i
∗
α) ∈ t∗

such that iα ∈ Sα, i∗α /∈ Sα, and

ciαi∗α = min
i∈Sα,i∗ /∈Sα

{cii∗} .
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Clearly, i∗α /∈ S for all α (however, i∗α = i∗α′ is possible for some α 6= α′).

Let t = t∗S ∪ {(iα, i∗α)}λα=1. It is not difficult to check that

v+(S) =
∑

(i,i∗)∈t

cii∗ . (2)

We have two subcases:

• If k = i∗α for some α, let Ŝ =
⋃
α:k=i∗α

Sα. Then,

v+(S ∪ {k}) = v+(S) + chh∗

where (h, h∗) ∈ t∗, h ∈ Ŝ ∪ {k}, h∗ /∈ Ŝ ∪ {k}, and

chh∗ = min
i∈Ŝ∪{k},i∗ /∈Ŝ∪{k}

{cii∗} .

So, mk
π = chh∗ .

Let (i, i∗) be the first arc in the (unique) path in t from k to l

such that i ∈ Σk−1
r and i∗ /∈ Σk−1

r . Under (1), cjl ≤ cii∗ . Under

(2), cii∗ ≤ chh∗ . Hence, cjl ≤ chh∗ = v+
C (S ∪ {k})− v+

C (S).

• If k 6= i∗α for all α,

v+ (S ∪ {k}) = v+(S) + ckk∗

where (k, k∗) ∈ t∗ and

ckk∗ = min
i 6=k
{cki} = v+({k}).

So, mk
π = ckk∗ . In case k∗ /∈ Σk−1

r , under (1) we deduce cjl ≤
ckk∗ = v+

C (S ∪ {k}) − v+
C (S). In case k∗ ∈ Σk−1

r , let (i, i∗) be the

first arc in the (unique) path in t∗ from k to l such that i ∈ Σk−1
r

and i∗ /∈ Σk−1
r . Under (1), cjl ≤ cii∗ . Under (2), cii∗ ≤ ckk∗ .

Hence, cjl ≤ ckk∗ = v+
C (S ∪ {k})− v+

C (S).

Finally, observe that given an mt t∗ in N0, with cost c(t∗), the following

relationships are fulfilled in equilibrium, where f(k) = fπk+1(k) denotes the

arc selected by player k
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c(t∗) ≤
n∑
k=1

cf(k) ≤
n∑
k=1

v+
C ({1, . . . , k})− v+

C ({1, . . . , k − 1}) = c(t∗)

and the equality in the above relationships is obtained, cf(k) = v+
C ({1, . . . , k})−

v+
C ({1, . . . , k − 1}), for all k ∈ N .

Corollary 3.1 The folk rule arises as a unique expected subgame perfect

equilibrium payoff allocation for Γ.

4 Concluding remarks

The operations research literature has explored the design the efficient al-

gorithms to build optimal trees, as well as their computational complexity.

More recently, the cost-sharing aspect has received increasing attention, from

both the operational research and the economics literature. The idea is that

the agents involved are responsible for paying the total cost of the implemen-

tation of an optimal tree. This idea leads to taking into account the agents’

incentives to guarantee the construction of such an optimal network. Within

this context, the problem of finding an optimal network structure does not

rely only on its total cost but also on the amount that should be charged to

each agent.

Our non-cooperative game gets the folk rule in expected terms. Following

Bag and Winter (1999) and Mutuswami and Winter (2002), we can achieve

a complete implementation by adding a previous stage in which one of the

agents, chosen at random, proposes a spanning tree and a cost-sharing allo-

cation. If all the other agents accept this proposal (they vote sequentially in

any order), both the tree and the cost-sharing allocation are imposed, and

the game finishes. In case any of them rejects the proposal, they play game

Γ in the known terms. Assuming either that: a) agents are risk-averse, or b)

they are risk-neutral but prefer to finish as soon as possible, then the only

final cost allocation is the one given by the folk rule.
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Another relevant characteristic of our approach is that the equilibrium

strategy profiles do not need to anticipate the moves of the following players

in the order. Hence, we can define the non-cooperative game by choosing

only the first agent at random; after this agent chooses her available arc, an-

other agent is chosen at random, and so on. Moreover, the optimal strategy

is to choose the cheapest available arc. Hence, the subgame perfect equilib-

rium is also a strong perfect equilibrium and an equilibrium with dominant

strategies.
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