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Abstract

We study dynamic rationing problems. In each period, a fixed group of agents

hold claims over an insufficient endowment. The solution to each of these periods’

problems might be influenced by the solutions at previous periods. We single out

a natural family of aggregator operators, which extend static rules (solving static

rationing problems) to construct rules to solve dynamic rationing problems.
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1 Introduction

How should we divide when there is not enough? This is, allegedly, one of the oldest

questions in the history of economic thought and its treatment can indeed be traced

back to ancient sources. O’Neill (1982) was the first to introduce a simple model to

answer this question. His basic (and extremely influential) model formalized a group of

individuals having conflicting claims over an insufficient amount of a perfectly divisible

good. Formally, a rationing problem is described by an endowment E ∈ R+, which has

to be allocated among a group of agents N , each of whom has a claim ci ∈ R+, so that

E ≤
∑

i∈N ci. The issue was to determine rules that would associate with each of

these problems a specific allocation of the endowment. The model generated a sizable

literature in the last decades analyzing various aspects of this simple, yet rich, model of

rationing. The reader is referred to Thomson (2003, 2015, 2019) for detailed surveys of

the literature.

The field of operations research has devoted considerable attention to O’Neill’s model

(Lahiri, 2001; van den Brink et al., 2013; Giménez-Gómez and Peris, 2014), some of its

applications (Casas-Méndez et al., 2011; Gutiérrez et al., 2018), or several of its general-

izations (Calleja et al., 2005; Bergantiños and Vidal-Puga, 2004, 2006; Bergantiños and

Lorenzo, 2008). Nevertheless, it is somewhat remarkable that no attention has been paid

to address the extension of the model to a dynamic setting, which would accommodate

an extremely natural aspect of real-life rationing processes. This paper aims to be a first

step in that direction.

In general, rationing does not occur in static terms. In refugee camps, for instance,

minimum food rations are provided immediately upon identification, to ensure the nutri-

tional status of refugees does not deteriorate. In subsequent months, refugees are provided

with food rations composed by a mix of food items (involving cereals, pulses, vegetable

oil, and nutrient-enriched flour) and cash, sent through mobile telephones, allowing them

to buy food products of their choice from local markets. The extent of these rations

depends on the available resources and the amount of refugees (and their needs), among

other things.1

How should rationing be addressed in a dynamic setting? One trivial answer is to do

so by ignoring the dynamic component and solving the problem at each period indepen-

dently. We believe that is unsatisfactory and aim to proceed differently. More precisely,

1For instance, in Dadaab (Kenya, bordering near Somalia), the world’s largest refugee camp, the UN

World Food Programme was forced to cut food rations by 50 per cent in 2016, due to a lack of funds.

See http://www.un.org/apps/news/story.asp?NewsID=56521, accessed on January 22, 2020.
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imagine we consider a sequence of rationing problems involving the same group of agents,

at different periods of time, whose period-wise allocations might not only be determined

by the data of the rationing problem at such period, but also by the allocations in pre-

vious periods. There is obviously a wide margin to do so and we need to take some

stances.

In this paper, we shall concentrate on a plausible way to start approaching this issue,

by assuming that, at each period, the corresponding rationing problem is enriched by an

index summarizing the amounts each agent obtained in the previous periods. The index

could have many forms, ranging from the (arithmetic or geometric) average to some lower

or upper bounds, as well as simply the choice of a specific period. In any case, it could

be interpreted as a baselines profile, as formalized by Hougaard et al. (2012, 2013a,b).2

Formally, let N be a fixed population of n claimants. At each period of time t =

1, 2, . . . , this population faces a realization of a static rationing problem (ct, Et). That

is, for each i ∈ N , cti ∈ R+ denotes the claim of i at period t, Et ∈ R+ denotes the

endowment to be distributed at that period and, to qualify as a rationing problem, they

jointly satisfy the condition
∑

i∈N c
t
i ≥ Et. Suppose we have a static rationing rule R.

That is, R is a mapping from the set of problems so defined into the set RN
+ , such that

it assigns to each problem (ct, Et) a given allocation xt ∈ RN
+ , with the proviso that

0 ≤ xti ≤ cti, for each i ∈ N , and
∑

i∈N x
t
i = Et.

Let x1 be the solution to the first-period problem (c1, E1) that R yields, i.e.,

x1 = R
(
c1, E1

)
.

In the second period, we then consider x1 as a baseline to solve the problem (c2, E2) also

via R. More precisely,(
x1, c2, E2

)
=
(
b2, c2, E2

)
and x2 = Rb2

(
c2, E2

)
= b3,

where Rb (c, E) denotes the solution that the b-baseline extended rule associated to R

yields. That is, Rb is the rule that extends R to solve rationing problems in the presence

of baselines b: first allocating b tentatively, and then allocating the resulting deficit of

surplus via R and the adjusted claims. In general,

xt = Rbt
(
ct, Et

)
= bt+1.

Thus, the above protocol allows one to extend a static rule R to solve a sequence of

rationing problems. Now, the protocol is using as baselines for a given period the solution

2See also Pulido et al. (2002, 2008); Timoner and Izquierdo (2016).
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to the problem in the previous period. Alternatively, one could take the average of the

solutions in all previous periods. That is,

bt =
1

n

t−1∑
l=1

xl.

Or, more generally,

bt = ρ
(
x1, . . . , xt−1

)
,

where ρ is an aggregator operator, to be formally defined next.

The rest of the paper is organized as follows. In Section 2, we present the model.

In Section 3, we introduce (and characterize) the aggregator operators to solve dynamic

problems. In Section 4, we concentrate on a focal family of these operators. We conclude

in Section 5.

2 The model

2.1 The benchmark model

We start considering the benchmark (static) model, as initially formalized by O’Neill

(1982). There is a finite number of claimants, or agents, which are indexed by the set

N = {1, . . . , n}. For each i ∈ N , let ci ∈ R+ be i’s claim and c := (ci)i∈N the claims

profile. Let 0N ∈ RN
+ be defined as 0Ni = 0 for each i ∈ N . Let ‖c‖1 :=

∑
i∈N ci denote

the 1-norm (taxicab norm) of c. An endowment E ∈ R+ is to be allocated among N .

Formally, a (rationing) problem is a pair (c, E) consisting of a claims profile c ∈ RN
+ ,

and an endowment E ∈ R+ such that ‖c‖1 ≥ E. Let C := ‖c‖1. Let P be set of rationing

problems.

Given a problem (c, E) ∈ P, an allocation is a vector x ∈ RN satisfying the following

two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci, and (ii) ‖x‖1 = E. We refer to (i) as

boundedness, and (ii) as budget-balancedness.

A static rule R on P, R : P → RN , associates with each problem (c, E) ∈ P an

allocation R (c, E) ∈ RN . Let R denote set of those static rules. Each static rule R ∈ R
has a dual static rule R∗ ∈ R defined as R∗ (c, E) = c−R (c, C − E), for each (c, E) ∈ P.3

We now consider some classical static rules. The constrained equal losses rule imposes

that losses are as equal as possible subject to no one receiving a negative amount. The

proportional rule allocates awards proportionally to claims. The constrained equal awards

3Note that (c, C − E) is a well-defined problem because ‖c‖1 = C ≥ C − E.
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rule distributes the endowment equally among all agents, subject to no agent receiving

more than she claims.

Finally, the Talmud rule behaves like the first or the third rule, depending on whether

the endowment exceeds or falls short one half of the aggregate claim, using half-claims

instead of claims. Formally,

• The constrained equal-losses rule, L, selects for each (c, E) ∈ P, L(c, E) =

(max{0, ci − λ})i∈N , where λ ≥ 0 is chosen so that
∑

i∈N max{0, ci − λ} = E.

• The proportional rule, P , selects for each (c, E) ∈ P with C > 0, P (c, E) =(
E
C
· ci
)
i∈N .4

• The constrained equal-awards rule, A, selects for each (c, E) ∈ P, A(c, E) =

(min{ci, λ})i∈N , where λ ≥ 0 is chosen so that
∑

i∈N min{ci, λ} = E.

• The Talmud rule, T , selects for each (c, E) ∈ P, T (c, E) =
(
min{1

2
ci, λ}

)
i∈N if

E ≤ 1
2
C and T (c, E) =

(
max{1

2
ci, ci − λ}

)
i∈N if E ≥ 1

2
C, where λ is chosen so that∑

i∈N Ti(c, E) = E.
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Figure 1: Rules in the two-claimant case. This figure illustrates the “path of awards” of

some rules for N = {1, 2} and c ∈ RN
+ with c1 < c2. The path of awards for c (the locus of the

awards vector chosen by a rule as the endowment E varies from 0 to c1 + c2) of L follows the

vertical axis until the average loss coincides with the lowest claim, i.e., until E = c2− c1. After

that, it follows the line of slope 1 until it reaches the vector of claims. The path of awards of P

follows the segment from the origin to the claims vector. The path of awards of A follows the

4The case C = 0 implies (c, E) = (0N , 0). By boundedness and budget-balancedness, P
(
0N , 0

)
= 0N .
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45o line until it gives the whole claim to the lowest claimant, i.e. until E = 2c1, from where

it is vertical until it reaches the vector of claims. Finally, the path of awards of T follows the

45o line until claimant 1 obtains half of her claim. Then, it is a vertical line until E = c2, from

where it follows the line of slope 1 until it reaches the vector of claims.

2.2 The extended model with baselines

A problem with baselines, as introduced by Hougaard et al. (2013a), is a triple (b, c, E)

consisting of a baselines profile b ∈ RN
+ , a claims profile c ∈ RN

+ , and an endowment

E ∈ R+ such that C ≥ E. Note that baselines can have multiple interpretations: as

minimal rights of the agents, as meaningful upper bounds (such as truncated claims),

a mixture of both, or just as exogenous references for the agents. We denote by B the

class of rationing problems with baselines. For each problem with baselines (b, c, E) ∈ B,

let mini(b, c) = min{bi, ci}, for each i ∈ N , and min(b, c) = {mini(b, c)}i∈N denote the

corresponding (baseline-claim) truncated vector. A baseline rule S on B, S : B → RN ,

associates with each problem with baselines (b, c, E) ∈ B an allocation x = S (b, c, E) for

the problem, which satisfies the budget-balance and boundedness conditions. Let B be

the set of baseline rules.

An extension operator O : R → B associates with each static rule a baseline rule.5 A

focal example is the so-called composition extension operator (Hougaard et al., 2013b),

which is formally defined as follows:

Oc(R) (b, c, E) =

{
R(min(b, c), E) if E ≤ ‖min(b, c)‖1
min(b, c) +R(c−min(b, c), E − ‖min(b, c)‖1) if E ≥ ‖min(b, c)‖1.

(1)

Note that if one considers endogenous baselines, as in Hougaard et al. (2013b), then

the previous family can lead to specific (and well-known) operators within the space of

static rules. For instance, if bi(c, E) = max{0, E −
∑

j 6=i ci}, for each i ∈ N , then the

corresponding composition extension operator is the so-called minimal rights operator

(Thomson and Yeh, 2008). Similarly, if bi(c, E) = min{ci, E}, for each i ∈ N , then the

corresponding composition extension operator is the so-called claims truncation operator

(Thomson and Yeh, 2008).

5The concept of operators on the space of static rules (i.e., associating each static rule to a static

rule) was originally introduced by Thomson and Yeh (2008).
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2.3 The dynamic model

We consider a fixed-population setting for this dynamic environment. Thus, let N be

our population of claimants. At each period of time t = 1, 2, . . . , this population faces a

realization of a (static) rationing problem (ct, Et) ∈ P.

For convention, we also consider (c0, E0) = (c1, C1). For simplicity, we write (c•, E•)

instead of
(
((ct, Et))t∈N

)
.

Rather than solving each problem independently, we aim to consider more general

rules that might take into account the outcome of previous periods, while solving the

problem at a given one.

More precisely, a dynamic rule is a function D that assigns to each (c•, E•) ∈ PN with

(c0, E0) = (c1, C1) a history allocation configuration D (c•, E•) ∈ N× RN
+ such that

0 ≤ Dt
i (c•, E•) ≤ cti

for each i ∈ N and each t ∈ N, and∑
i∈N

Dt
i (c•, E•) = Et

for each t ∈ N. Notice that this implies D0(c•, E•) = c1. Let D denote the set of dynamic

rules.

3 Aggregator operators

In this section, we concentrate on the rules emerging after converting a history of alloca-

tions into a single allocation, by means of an aggregator function.6

Given a natural number m, let M = {1, . . . ,m}. An m-aggregator is a mapping

ρ : RN×M
+ → RN

+ .

Familiar examples of aggregators are the arithmetic and geometric means in each

coordinate, which we denote as µ and γ, respectively, the previous aggregator, which we

denote as π, and the rank-order aggregators, which we denote as ρ≺k. Formally, for each

i ∈ N ,

µi(a
1, . . . , am) =

1

m

m∑
k=1

aki ,

γi(a
1, . . . , am) = m

√√√√ m∏
k=1

aki ,

6This function generalizes to n agents the aggregator function defined by de Clippel et al. (2008).
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πi(a
1, . . . , am) = ami ,

and, for each k ∈M ,

ρ≺ki (a1, . . . , am) = a≺ki ,

where a≺ki is the k-th largest value within the set {a1i , . . . , ami }. In other words, for each

i ∈ N and each ai = (a1i , . . . , a
m
i ) ∈ Rm

+ , we construct a≺i ∈ Rm
+ , the vector obtained from

ai by rearranging its coordinates increasingly: a≺1i ≤ a≺mi ≤ · · · ≤ a≺mi .

We shall sometimes refer to ρ≺1 and ρ≺m as the min and max aggregators, respectively.

Combining the aggregator concept with the baselines operators introduced above, we

can define a family of operators from the domain of static rules to the domain of dynamic

rules. Formally, for each t ∈ N, let ρt be a t-aggregator, i.e., ρt : RN×T
+ → RN

+ , where

T = {1, . . . , t}. Let ρ = (ρt)t∈N. A ρ-extension operator Oρ : R → D is an operator

assigning to each static rule R ∈ R a dynamic rule Oρ(R) ∈ D arising from inductively

applying an extension operator O : R → B to R as follows:

Oρ(R)1 (c•, E•) = R(c1, E1)

and

Oρ(R)t (c•, E•) = O(R)
(
ρt−1

(
Oρ(R)1 (c•, E•) , . . . , Oρ(R)t−1 (c•, E•)

)
, ct, Et

)
.

We shall refer to the operators so defined as aggregator operators.

The family of aggregator operators is derived from two basic axioms of dynamic rules

reflecting the principle of impartiality, a principle with a long tradition in the theory

of justice (Moreno-Ternero and Roemer, 2006). The two axioms formalize alternative

versions of Equal Treatment of Equals. The first one states that sequences that are

identical up to a given period yield the same solutions (up to that period). The second

one states that sequences with identical solutions up to a given period yield the same

solution for the next period.

Equal Treatment of Equal Problem Histories: For each pair (c•, E•) , (c•, E
•
) ∈

PN, and each t̂ ∈ N such that (ct, Et) = (ct, E
t
) for each t ≤ t̂, then

Dt (c•, E•) = Dt(c•, E
•
)

for each t ≤ t̂.

Equal Treatment of Equal Solution Histories: For each (c•, E•) , (c•, E
•
) ∈ PN with

Dt(c•, E•) = Dt(c•, E
•
) for each t ≤ t̂ and (ct̂, E t̂) = (ct̂, E

t̂
) for some t̂ ∈ N,

Dt̂ (c•, E•) = Dt̂(c•, E
•
).
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Theorem 3.1 A dynamic rule satisfies Equal Treatment of Equal Problem Histories and

Equal Treatment of Equal Solution Histories if and only if it is the image of a static rule

via a ρ-extension operator for some aggregator ρ.

Proof. It is straightforward to see that, for any (static) rule R and any aggregator

ρ, Oρ(R) satisfies both axioms. Thus, we focus on the converse implication. Let D

be a dynamic rule satisfying both axioms. Under Equal Treatment of Equal Problem

Histories, given t ∈ N, Dt(c•, E•) does not depend on (ck, Ek) for each k > t and, under

Equal Treatment of Equal Solution Histories, Dt(c•, E•) only depends on Dk(c•, E•) = ak

for k < t and (ct, Et). Hence, Dt(c•, E•) can be rewritten as Dt((a1, . . . , at−1) , ct, Et).

Analogously, Oρ(R)t(c•, E•) can be rewritten as Oρ(R)t((a1, . . . , at−1) , ct, Et). Thus, we

need to prove that

Dt
((
a1, . . . , at−1

)
, ct, Et

)
= Oρ(R)t

(
(a1, . . . , at−1), ct, Et

)
for each t ∈ N and some appropriate ρ, O, and R. For each t ∈ N, t > 0, let ψt : RN

+ \{
0N
}
→
(
RN

+

)t−1
be a bijective function, and ψ−t :

(
RN

+

)t−1 → RN
+ \

{
0N
}

its inverse.

• Given a = (a1, . . . , at−1) ∈
(
RN

+

)t−1
, we define

ρt−1(a) =

(
t

‖ψ−t(a)‖1
− 1

‖ψ−t(a)‖1 + 1

)
· ψ−t(a)

and let ρ = (ρt)t∈N.

• We define O as

O(R′)(b, c, E) = Dd‖b‖1e
(
ψd‖b‖1e

(
d‖b‖1e − ‖b‖1

(1− d‖b‖1e+ ‖b‖1) · ‖b‖1
· b
)
, c, E

)
for eachR′ ∈ R and (b, c, E) problem with baselines with b 6= 0N , andO(R′)(0N , c, E) =

R′ (c, E) .

• We take R ∈ R given by R(c, E) = D1(c, E) for each (c, E) ∈ P.

We proceed by induction. For t = 1, Oρ(R)1(c1, E1) = O(R)(c1, E1) = R(c1, E1) =

D(c1, E1). Assume now the result holds for m with m < t and let am = Dm(c•, E•) for

each m < t. By induction hypothesis, am = Oρ(R)(ρ(a1, . . . , am−1), cm, Em) for each

m < t. Hence, am = D(a1, . . . , am−1, cm, Em) for each m < t. Let a = (a1, . . . , at−1) .

Then,

Oρ(R)t
(
ρ (a) , ct, Et

)
= O(R)

(
ρt−1 (a) , ct, Et

)
= O(R)

((
t

‖ψ−t(a)‖1
− 1

‖ψ−t(a)‖1 + 1

)
· ψ−t(a), ct, Et

)
. (2)
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Let χ = ‖ψ−t(a)‖1, so that (2) can be rewritten as

O(R)

((
t

χ
− 1

χ+ 1

)
· ψ−t(a), ct, Et

)
= O(R)

(
(χ+ 1) · t− χ

(χ+ 1) · χ
· ψ−t(a), ct, Et

)
. (3)

Let

b =
(χ+ 1) · t− χ

(χ+ 1) · χ
· ψ−t(a).

It is not difficult to check that ‖b‖1 = t− χ
χ+1

and hence d‖b‖1e = t. By definition of O,

(3) equals

Dt

(
ψt
(

t− ‖b‖1
(1− t+ ‖b‖1) · ‖b‖1

· b
)
, ct, Et

)
= Dt

ψt
 χ

χ+1(
1− χ

χ+1

)
·
(
t− χ

χ+1

) · b
 , ct, Et


= Dt

(
ψt
(

(χ+ 1) · χ
(χ+ 1) · t− χ

· b
)
, ct, Et

)
= Dt

(
ψt
(
ψ−t(a)

)
, ct, Et

)
= Dt

(
a, ct, Et

)
.

Notice that the aggregator, the operator, and the rule defined in the “only if” part in

the proof of Theorem 3.1 are not unique. In fact, the aggregator is technical and not what

one would expect for a reasonable element to define any dynamic rule. In particular, in

the proof, the operator uses the aggregator as a codex to deduce the complete family

of awards in the history, including the number of previous rounds. Yet, this aggregator

conveys the idea of a baseline which summarizes previous awards, and the static rule is

a way to deal with a problem in the absence of baselines.

4 Composition aggregator operators

A natural family of aggregator operators arises from combining an aggregator with the

composition extension operator defined at (1). Formally, for each aggregator ρ, the ρ-

composition operator Oρc : R → D, assigns to each rule R ∈ R the dynamic rule arising

from applying Oc(R) to each problem with baselines (bρc,t−1, ct, Et) ∈ B, where bρc,0 = c1

and

bρc,t−1 = ρt−1
(
Oc(R)

(
bρc,0, c1, E1

)
, . . . , Oc(R)

(
bρc,t−2, ct−1, Et−1))

for each t > 1.
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4.1 A numerical example

In order to illustrate the family just singled out, we consider two claimants N = {1, 2}
who face four rationing problems (at four consecutive points in time) with the following

data:

•

(c1, E1) = ((10, 20), 10)

•

(c2, E2) = ((20, 20), 20)

•

(c3, E3) = ((20, 30), 10)

•

(c4, E4) = ((15, 15), 5)

We consider four possible aggregators; namely, the arithmetic mean aggregator µ, the

previous allocation aggregator π, the min aggregator ρ≺1 and the max aggregator ρ≺m.

4.1.1 The arithmetic mean aggregator

We start with the arithmetic mean aggregator µ. If the static rule is the proportional

rule, then the allocation for the first period will be

Oc(P )(bµc,0, c1, E1) = P (c1, E1) =

(
10

3
,
20

3

)
= bµc,1.

As E2 = 20 ≥ min{10
3
, 20}+ min{20

3
, 20} = min{bµc,11 , c21}+ min{bµc,12 , c22}, it follows that

Oc(P )(bµc,1, c2, E2) =

(
10

3
,
20

3

)
+ P

((
50

3
,
40

3

)
, 10

)
=

(
80

9
,
100

9

)
.

As bµc,2 = µ
((

10
3
, 20

3

)
,
(
80
9
, 100

9

))
=
(
55
9
, 80

9

)
, and E3 = 10 ≤ min{20, 55

9
} + min{30, 80

9
} =

min{bµc,21 , c31}+ min{bµc,22 , c32}, it follows that

Oc(P )
(
bµc,2, c3, E3

)
= Oc(P )

((
55

9
,
80

9

)
, c3, E3

)
= P

((
55

9
,
80

9

)
, 10

)
=

(
110

27
,
160

27

)
.

Thus, bµc,3 = µ
((

10
3
, 20

3

)
,
(
80
9
, 100

9

)
,
(
110
27
, 160

27

))
=
(
440
81
, 640

81

)
. As E4 = 5 ≤ min{15, 440

81
} +

min{15, 640
81
} = min{bµc,31 , c41}+ min{bµc,32 , c42}, it follows that

Oc(P )
(
bµc,3, c4, E4

)
= Oc(P )

((
440

81
,
640

81

)
, c4, E4

)
= P

((
440

81
,
640

81

)
, 5

)
=

(
55

27
,
80

27

)
.

If we now replicate the exercise for the constrained equal-awards rule A, the allocation

for the first period will be

Oc(A)(bµc,0, c1, E1) = A(c1, E1) = (5, 5) .

11



As E2 = 20 ≥ min{5, 20}+ min{5, 20} = min{bµc,11 , c21}+ min{bµc,12 , c22}, it follows that

Oc(A)(bµc,1, c2, E2) = (5, 5) + A ((15, 15) , 10) = (10, 10) .

As bµc,2 = µ ((5, 5) , (10, 10)) =
(
15
2
, 15

2

)
, and E3 = 10 ≤ min{20, 55

9
} + min{30, 80

9
} =

min{bµc,21 , c31}+ min{bµc,22 , c32}, it follows that

Oc(A)
(
bµc,2, c3, E3

)
= Oc(A)

((
15

2
,
15

2

)
, c3, E3

)
= A

((
15

2
,
15

2

)
, 10

)
= (5, 5) .

Thus, bµc,3 = µ ((5, 5) , (10, 10) , (5, 5)) =
(
20
3
, 20

3

)
. As E4 = 5 ≤ min{15, 20

3
}+min{15, 20

3
} =

min{bµc,31 , c41}+ min{bµc,32 , c42}, it follows that

Oc(A)
(
bµc,3, c4, E4

)
= Oc(A)

((
20

3
,
20

3

)
, c4, E4

)
= A

((
20

3
,
20

3

)
, 5

)
=

(
5

2
,
5

2

)
.

We conclude replicating the exercise for the constrained equal-losses rule, L. The

allocation for the first period will be

Oc(L)(bµc,0, c1, E1) = L(c1, E1) = (0, 10) .

As E2 = 20 ≥ min{0, 20}+ min{10, 20} = min{bµc,11 , c21}+ min{bµc,12 , c22}, it follows that

Oc(L)(bµc,1, c2, E2) = (0, 10) + L ((20, 10) , 10) = (10, 10) .

As bµc,2 = µ ((0, 10) , (10, 10)) = (5, 10), and E3 = 10 ≤ min{20, 5} + min{30, 10} =

min{bµc,21 , c31}+ min{bµc,22 , c32}, it follows that

Oc(L)
(
bµc,2, c3, E3

)
= Oc(L)

(
(5, 10) , c3, E3

)
= L ((5, 10) , 10) =

(
5

2
,
15

2

)
.

Thus, bµc,3 = µ
(
(0, 10) , (10, 10) ,

(
5
2
, 15

2

))
=
(
25
6
, 55

6

)
. As E4 = 5 ≤ min{15, 25

6
} +

min{15, 55
6
} = min{bµc,31 , c41}+ min{bµc,32 , c42}, it follows that

Oc(L)
(
bµc,3, c4, E4

)
= Oc(L)

((
25

6
,
55

6

)
, c4, E4

)
= L

((
25

6
,
55

6

)
, 5

)
= (0, 5) .

In summary,

µ (c1, E1) (c2, E2) (c3, E3) (c4, E4)

P
(
10
3
, 20

3

) (
80
9
, 100

9

) (
110
27
, 160

27

) (
55
27
, 80
27

)
A (5, 5) (10, 10) (5, 5) (5

2
, 5
2
)

L (0, 10) (10, 10) (5
2
, 15

2
) (0, 5)

12



4.1.2 The previous aggregator

We now consider the previous aggregator π. If the static rule is the proportional rule, P ,

then the allocation for the first period will be

Oc(P )(bπc,0, c1, E1) = P (c1, E1) =

(
10

3
,
20

3

)
= bπc,1.

As E2 = 20 ≥ min{10
3
, 20}+ min{20

3
, 20} = min{bπc,11 , c21}+ min{bπc,12 , c22}, it follows that

Oc(P )(bπc,1, c2, E2) =

(
10

3
,
20

3

)
+ P

((
50

3
,
40

3

)
, 10

)
=

(
80

9
,
100

9

)
= bπc,2.

As bπc,2 =
(
80
9
, 100

9

)
, and E3 = 10 ≤ min{20, 80

9
} + min{30, 100

9
} = min{bπc,21 , c31} +

min{bπc,22 , c32}, it follows that

Oc(P )
(
bπc,2, c3, E3

)
= Oc(P )

((
80

9
,
100

9

)
, c3, E3

)
= P

((
80

9
,
100

9

)
, 10

)
=

(
40

9
,
50

9

)
.

Thus, bπc,3 =
(
40
9
, 50

9

)
. As E4 = 5 ≤ min{15, 40

9
} + min{15, 50

9
} = min{bπc,31 , c41} +

min{bπc,32 , c42}, it follows that

Oc(P )
(
bπc,3, c4, E4

)
= Oc(P )

((
40

9
,
50

9

)
, c4, E4

)
= P

((
40

9
,
50

9

)
, 5

)
=

(
20

9
,
25

9

)
.

If we now replicate the exercise for the constrained equal-awards rule A, the allocation

for the first period will be

Oc(A)(bπc0, c1, E1) = A(c1, E1) = (5, 5) .

As E2 = 20 ≥ min{5, 20}+ min{5, 20} = min{bπc,11 , c21}+ min{bπc,12 , c22}, it follows that

Oc(A)(bπc,1, c2, E2) = (5, 5) + A ((15, 15) , 10) = (10, 10) = bπc,2.

As E3 = 10 ≤ min{20, 10}+ min{30, 10} = min{bπc,21 , c31}+ min{bπc,22 , c32}, it follows that

Oc(A)
(
bπc,2, c3, E3

)
= Oc(A)

(
(10, 10) , c3, E3

)
= A ((10, 10) , 10) = (5, 5) = bπc,3.

As E4 = 5 ≤ min{15, 5}+ min{15, 5} = min{bπc,31 , c41}+ min{bπc,32 , c42}, it follows that

Oc(A)
(
bπc,3, c4, E4

)
= Oc(A)

(
(5, 5) , c4, E4

)
= A ((5, 5) , 5) =

(
5

2
,
5

2

)
.

We conclude replicating the exercise for the constrained equal-losses rule, L. The

allocation for the first period will be

Oc(L)(bπc0, c1, E1) = L(c1, E1) = (0, 10) .

13



As E2 = 20 ≥ min{0, 20}+ min{10, 20} = min{bπc,11 , c21}+ min{bπc,12 , c22}, it follows that

Oc(L)(bπc,1, c2, E2) = (0, 10) + L ((20, 10) , 10) = (10, 10) = bπc,2.

As E3 = 10 ≤ min{20, 10}+ min{30, 10} = min{bπc,21 , c31}+ min{bπc,22 , c32}, it follows that

Oc(L)
(
bπc,2, c3, E3

)
= Oc(L)

(
(10, 10) , c3, E3

)
= L ((10, 10) , 10) = (5, 5) = bπc,3.

As E4 = 5 ≤ min{15, 5}+ min{15, 5} = min{bπc,31 , c41}+ min{bπc,32 , c42}, it follows that

Oc(L)
(
bπc,3, c4, E4

)
= Oc(L)

(
(5, 5) , c4, E4

)
= L ((5, 5) , 5) =

(
5

2
,
5

2

)
.

In summary,

π (c1, E1) (c2, E2) (c3, E3) (c4, E4)

P
(
10
3
, 20

3

) (
80
9
, 100

9

) (
40
9
, 50

9

) (
20
9
, 25

9

)
A (5, 5) (10, 10) (5, 5) (5

2
, 5
2
)

L (0, 10) (10, 10) (5, 5) (5
2
, 5
2
)

4.1.3 The min aggregator

We now consider the min aggregator ρ≺1. If the static rule is the proportional rule, then

the allocation for the first period will be

Oc(P )(bρ
≺1c,0, c1, E1) = P (c1, E1) =

(
10

3
,
20

3

)
= bρ

≺1c,1.

As E2 = 20 ≥ min{10
3
, 20} + min{20

3
, 20} = min{bρ

≺1c,1
1 , c21} + min{bρ

≺1c,1
2 , c22}, it follows

that

Oc(P )(bρ
≺1c,1, c2, E2) =

(
10

3
,
20

3

)
+ P

((
50

3
,
40

3

)
, 10

)
=

(
80

9
,
100

9

)
.

As bρ
≺1c,2 = ρ≺1

((
10
3
, 20

3

)
,
(
80
9
, 100

9

))
=
(
10
3
, 20

3

)
, and E3 = 10 = min{20, 10

3
}+min{30, 20

3
} =

min{bρ
≺1c,2

1 , c31}+ min{bρ
≺1c,2

2 , c32}, it follows that

Oc(P )
(
bρ

≺1c,2, c3, E3
)

= Oc(P )

((
10

3
,
20

3

)
, c3, E3

)
= P

((
10

3
,
20

3

)
, 10

)
=

(
10

3
,
20

3

)
.

Thus, bρ
≺1c,3 = ρ≺1

((
10
3
, 20

3

)
,
(
80
9
, 100

9

)
,
(
10
3
, 20

3

))
=
(
10
3
, 20

3

)
. As E4 = 5 ≤ min{15, 10

3
} +

min{15, 20
3
} = min{bρ

≺1c,3
1 , c41}+ min{bρ

≺1c,3
2 , c42}, it follows that

Oc(P )
(
bρ

≺1c,3, c4, E4
)

= Oc(P )

((
10

3
,
20

3

)
, c4, E4

)
= P

((
10

3
,
20

3

)
, 5

)
=

(
5

3
,
10

3

)
.
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If we now replicate the exercise for the constrained equal-awards rule A, the allocation

for the first period will be

Oc(A)(bρ
≺1c,0, c1, E1) = A(c1, E1) = (5, 5) .

As E2 = 20 ≥ min{5, 20}+min{5, 20} = min{bρ
≺1c,1

1 , c21}+min{bρ
≺1c,1

2 , c22}, it follows that

Oc(A)(bρ
≺1c,1, c2, E2) = (5, 5) + A ((15, 15) , 10) = (10, 10) .

As bρ
≺1c,2 = ρ≺1 ((5, 5) , (10, 10)) = (5, 5), and E3 = 10 = min{20, 5} + min{30, 5} =

min{bρ
≺1c,2

1 , c31}+ min{bρ
≺1c,2

2 , c32}, it follows that

Oc(A)
(
bρ

≺1c,2, c3, E3
)

= Oc(A)
(
(5, 5) , c3, E3

)
= A ((5, 5) , 10) = (5, 5) .

Thus, bρ
≺1c,3 = ρ≺1 ((5, 5) , (10, 10) , (5, 5)) = (5, 5). As E4 = 5 ≤ min{15, 5}+min{15, 5} =

min{bρ
≺1c,3

1 , c41}+ min{bρ
≺1c,3

2 , c42}, it follows that

Oc(A)
(
bρ

≺1c,3, c4, E4
)

= Oc(A)
(
(5, 5) , c4, E4

)
= A ((5, 5) , 5) =

(
5

2
,
5

2

)
.

We conclude replicating the exercise for the constrained equal-losses rule, L. The

allocation for the first period will be

Oc(L)(bρ
≺1c,0, c1, E1) = L(c1, E1) = (0, 10) .

As E2 = 20 ≥ min{0, 20} + min{10, 20} = min{bρ
≺1c,1

1 , c21} + min{bρ
≺1c,1

2 , c22}, it follows

that

Oc(L)(bρ
≺1c,1, c2, E2) = (0, 10) + L ((20, 10) , 10) = (10, 10) .

As bρ
≺1c,2 = ρ≺1 ((0, 10) , (10, 10)) = (0, 10), and E3 = 10 = min{20, 0} + min{30, 10} =

min{bρ
≺1c,2

1 , c31}+ min{bρ
≺1c,2

2 , c32}, it follows that

Oc(L)
(
bρ

≺1c,2, c3, E3
)

= Oc(L)
(
(0, 10) , c3, E3

)
= L ((0, 10) , 10) = (0, 10) .

Thus, bρ
≺1c,3 = ρ≺1 ((0, 10) , (10, 10) , (0, 10)) = (0, 10). As E4 = 5 ≤ min{15, 0} +

min{15, 10} = min{bρ
≺1c,3

1 , c41}+ min{bρ
≺1c,3

2 , c42}, it follows that

Oc(L)
(
bρ

≺1c,3, c4, E4
)

= Oc(L)
(
(0, 10) , c4, E4

)
= L ((0, 10) , 5) = (0, 5) .

In summary,

ρ≺1 (c1, E1) (c2, E2) (c3, E3) (c4, E4)

P
(
10
3
, 20

3

) (
80
9
, 100

9

) (
10
3
, 20

3

) (
5
3
, 10

3

)
A (5, 5) (10, 10) (5, 5) (5

2
, 5
2
)

L (0, 10) (10, 10) (0, 10) (0, 5)
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4.1.4 The max aggregator

We conclude considering the max aggregator ρ≺m. If the static rule is the proportional

rule, then the allocation for the first period will be

Oc(P )(bρ
≺mc,0, c1, E1) = P (c1, E1) =

(
10

3
,
20

3

)
= bρ

≺mc,1.

As E2 = 20 ≥ min{10
3
, 20}+ min{20

3
, 20} = min{bρ

≺mc,1
1 , c21}+ min{bρ

≺mc,1
2 , c22}, it follows

that

Oc(P )(bρ
≺mc,1, c2, E2) =

(
10

3
,
20

3

)
+ P

((
50

3
,
40

3

)
, 10

)
=

(
80

9
,
100

9

)
.

As bρ
≺mc,2 = ρ≺m

((
10
3
, 20

3

)
,
(
80
9
, 100

9

))
=
(
80
9
, 100

9

)
, and E3 = 10 ≤ min{20, 80

9
}+min{30, 100

9
} =

min{bρ
≺mc,2

1 , c31}+ min{bρ
≺mc,2

2 , c32}, it follows that

Oc(P )
(
bρ

≺mc,2, c3, E3
)

= Oc(P )

((
80

9
,
100

9

)
, c3, E3

)
= P

((
80

9
,
100

9

)
, 10

)
=

(
40

9
,
50

9

)
.

Thus, bρ
≺mc,3 = ρ≺m

((
10
3
, 20

3

)
,
(
80
9
, 100

9

)
,
(
40
9
, 50

9

))
=
(
80
9
, 100

9

)
. As E4 = 5 ≤ min{15, 80

9
}+

min{15, 100
9
} = min{bρ

≺mc,3
1 , c41}+ min{bρ

≺mc,3
2 , c42}, it follows that

Oc(P )
(
bρ

≺mc,3, c4, E4
)

= Oc(P )

((
80

9
,
100

9

)
, c4, E4

)
= P

((
80

9
,
100

9

)
, 5

)
=

(
20

9
,
25

9

)
.

If we now replicate the exercise for the constrained equal-awards rule A, the allocation

for the first period will be

Oc(A)(bρ
≺mc,0, c1, E1) = A(c1, E1) = (5, 5) .

As E2 = 20 ≥ min{5, 20} + min{5, 20} = min{bρ
≺mc,1

1 , c21} + min{bρ
≺mc,1

2 , c22}, it follows

that

Oc(A)(bρ
≺mc,1, c2, E2) = (5, 5) + A ((15, 15) , 10) = (10, 10) .

As bρ
≺mc,2 = ρ≺m ((5, 5) , (10, 10)) = (10, 10), and E3 = 10 ≤ min{20, 10}+min{30, 10} =

min{bρ
≺mc,2

1 , c31}+ min{bρ
≺mc,2

2 , c32}, it follows that

Oc(A)
(
bρ

≺mc,2, c3, E3
)

= Oc(A)
(
(10, 10) , c3, E3

)
= A ((10, 10) , 10) = (5, 5) .

Thus, bρ
≺mc,3 = ρ≺m ((5, 5) , (10, 10) , (5, 5)) = (10, 10). As E4 = 5 ≤ min{15, 10} +

min{15, 10} = min{bρ
≺mc,3

1 , c41}+ min{bρ
≺mc,3

2 , c42}, it follows that

Oc(A)
(
bρ

≺mc,3, c4, E4
)

= Oc(A)
(
(10, 10) , c4, E4

)
= A ((10, 10) , 5) =

(
5

2
,
5

2

)
.
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We conclude replicating the exercise for the constrained equal-losses rule, L. The

allocation for the first period will be

Oc(L)(bρ
≺mc,0, c1, E1) = L(c1, E1) = (0, 10) .

As E2 = 20 ≥ min{0, 20} + min{10, 20} = min{bρ
≺mc,1

1 , c21} + min{bρ
≺mc,1

2 , c22}, it follows

that

Oc(L)(bρ
≺mc,1, c2, E2) = (0, 10) + L ((20, 10) , 10) = (10, 10) .

As bρ
≺mc,2 = ρ≺m ((0, 10) , (10, 10)) = (10, 10), and E3 = 10 ≤ min{20, 10}+min{30, 10} =

min{bρ
≺mc,2

1 , c31}+ min{bρ
≺mc,2

2 , c32}, it follows that

Oc(L)
(
bρ

≺mc,2, c3, E3
)

= Oc(L)
(
(10, 10) , c3, E3

)
= L ((10, 10) , 10) = (5, 5) .

Thus, bρ
≺mc,3 = ρ≺m ((0, 10) , (10, 10) , (0, 10)) = (10, 10). As E4 = 5 ≤ min{15, 10} +

min{15, 10} = min{bρ
≺mc,3

1 , c41}+ min{bρ
≺mc,3

2 , c42}, it follows that

Oc(L)
(
bρ

≺mc,3, c4, E4
)

= Oc(L)
(
(10, 10) , c4, E4

)
= L ((10, 10) , 5) =

(
5

2
,
5

2

)
.

In summary,

ρ≺m (c1, E1) (c2, E2) (c3, E3) (c4, E4)

P
(
10
3
, 20

3

) (
80
9
, 100

9

) (
40
9
, 50

9

) (
20
9
, 25

9

)
A (5, 5) (10, 10) (5, 5) (5

2
, 5
2
)

L (0, 10) (10, 10) (5, 5) (5
2
, 5
2
)

4.2 A result

The numbers from the previous example suggest a pattern. If endowments are not in-

creasing, endowments are below n times the minimum claim in the previous period, the

static rule is the constrained equal-awards rule, and the aggregator is either the previous,

or the min, then equal division of the endowment is persistent in the long run (for the

composition extension operator). Formally,

Proposition 4.1 Let (c•, E•) be a sequence of problems such that

Et ≤ min{Et−1, n ·min
i∈N

ct−1i },

for each t > 1. Then, for each ρ ∈ {π, ρ≺1},

Oρc(A)i
(
bρc,t−1, ct, Et

)
=
Et

n

for each i ∈ N and each t > 1.
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Proof. Let ρ ∈ {π,min}. Let {(ct, Et)}t=1,2,... be a sequence of rationing problems such

that

Et ≤ Et−1 for each t > 1 (4)

E1 ≤ n ·min
i∈N

c1i (5)

Et ≤ n ·min
i∈N

ct−1i for each t > 2. (6)

By (5) and (6), bρc,1 = A (c1, E1) =
(
E1

n
, . . . , E

1

n

)
≤ c2. By (4), E2 ≤ E1 =

∑
i∈N min{b1i , c2i }

and, thus, the solution in the second period is

Oc(A)
(
bρc,1, c2, E2

)
= A(bρc,1, E2) = bρc,2 =

(
E2

n
, . . . ,

E2

n

)
≤ c3.

The solution in the third period is

Oc(A)
(
ρ(bρc,1, bρc,2), c3, E3

)
.

It is straightforward to see that ρi(b
ρc,1, bρc,2) = ρj(b

ρc,1, bρc,2) for each i, j ∈ N . By (4)

and (6), it follows that, for each i ∈ N , min{bρc,1i , bρc,2i , c3i } = min
{
E1

n
, E

2

n
, c3i

}
= E2

n
.

Thus,

Oc(A)
(
ρ(bρc,1, bρc,2), c3, E3

)
= A

(
bρc,2, E3

)
= bρc,3 =

(
E3

n
, . . . ,

E3

n

)
≤ c4.

The proof follows the same process from here.

4.3 Inheritance of some basic properties

Suppose a static rule R satisfies a given property (in the benchmark model). Is it the

case that Oρ(R) satisfies the corresponding property in the dynamic model? This question

is quite broad. Thus, we provide only some partial answers. To do so, we consider the

composition aggregator operators described above, and concentrate first on some standard

properties in the static case, introduced next, reflecting ethical or operational principles.

We start with Equal Treatment of Equals, a basic requirement of impartiality, which

requires allotting equal amounts to those agents with equal claims. Formally, a rule R

satisfies equal treatment of equals if, for each (c, E) ∈ P, and each pair i, j ∈ N, we have

Ri (c, E) = Rj (c, E) , whenever ci = cj. A strengthening is Order Preservation in Gains,

which says that agents with larger claims receive larger awards. That is, ci ≥ cj implies

that Ri (c, E) ≥ Rj (c, E), for each (c, E) ∈ P, and each pair i, j ∈ N . Finally, we say

that a rule R satisfies Scale Invariance when if claims and endowment are multiplied by

18



the same positive number, then so should all awards. Formally, for each (c, E) ∈ P and

λ ∈ R+, R(λc, λE) = λR(c, E).

We now need to define the alter ego properties in the dynamic setting. We say

that a dynamic rule satisfies Equal Treatment of Equals if for each sequence of rationing

problems (c•, E•) ∈ PN, each period t̂, and each pair of agents i, j ∈ N such that cti = ctj

for each t ≤ t̂, we have Dt̂
i (c•, E•) = Dt̂

j (c•, E•).

We say that a dynamic rule satisfies Order Preservation in Gains if for each sequence

of rationing problems (c•, E•) ∈ PN, each period t̂, and each pair of agents i, j ∈ N such

that cti ≤ ctj for each t ≤ t̂, we have Dt̂
i (c•, E•) ≤ Dt̂

j (c•, E•).

We say that a dynamic rule satisfies Scale Invariance if for each sequence of rationing

problems (c•, E•) ∈ PN, and each λ > 0,

Dt (λc•, λE•) = λDt (c•, E•) ,

for each period t, where (λc•, λE•) :=
(
((λct, λEt))t∈N

)
.

It is not difficult to show that the previous properties are not preserved in general.

One could simply resort to the numerical example at the previous section, but using

different aggregators. To avoid those (somewhat pathological) cases, we follow Hougaard

et al. (2012) exploring consequent preservation instead. More precisely, we say that a

property P is consequently preserved if, when a rule R satisfies a property P , and the

aggregator satisfies the corresponding property too, then Oρc(R) satisfies the alter ego

property in the dynamic setting.

We need to define the corresponding properties for aggregators. Formally, for each

m ∈ N \ {0}, let M = {1, . . . ,m}. We say that an aggregator ρ satisfies Equal Treatment

of Equals if, for each m and each a = (a1, . . . , am) ∈ RN×M
+ , and for each pair i, j ∈ N ,

such that aki = akj , for each k ∈M ,

ρi(a) = ρj(a).

Similarly, we say that an aggregator ρ satisfies Order Preservation in Gains if, for each

m and for each a = (a1, . . . , am) ∈ RN×M
+ , and for each pair i, j ∈ N , such that aki ≤ akj ,

for each k ∈M ,

ρi(a) ≤ ρj(a).

Finally, we say that an aggregator ρ satisfies Scale Invariance if, for each m and for each

a ∈ RN×M
+ , and for each λ > 0,

ρ(λa) = λρ(a).
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In what follows, we restrict ourselves to operators satisfying the following basic re-

quirement. We say that an aggregator ρ is proper if

ρ(x, . . . , x) = x

for each x ∈ RN
+ . Note that all of the aggregators presented in Section 3 satisfy this

property.

We then have the following result.

Proposition 4.2 Given a proper aggregator, Equal Treatment of Equals, Order Preser-

vation in Gains, and Scale Invariance are consequently preserved.

Proof. Let us start with Equal Treatment of Equals. Let R and ρ be a rule and a

proper aggregator, respectively, satisfying Equal Treatment of Equals. Let D denote the

dynamic rule arising after submitting R to the aggregator operator Oρc, i.e., D ≡ Oρc(R).

Let (c•, E•) ∈ PN be given, i, j ∈ N , and t̂ ∈ N such that cti = ctj, for each t ≤ t̂. We

prove, by induction, that Dt̂
i (c•, E•) = Dt̂

j (c•, E•).

Case t̂ = 2. In this base case, x1 = D1(c•, E•) = R(c1, E1), and x2 = D2(c•, E•) =

Oc(R)(b,c2, E2), where b = ρ1(x1) = x1 (the last equality holds because ρ is a proper

aggregator). Let i, j ∈ N be such that c1i = c1j and c2i = c2j . As R satisfies Equal

Treatment of Equals, bi = x1i = x1j = bj. Then, by Proposition 2 in Hougaard et al.

(2012), Oc(R)i(b,c
2, E2) = Oc(R)j(b,c

2, E2).

Case t̂ = k. Suppose, as induction hypothesis, that, for each pair i, j ∈ N , such that

cti = ctj, for each t ≤ k, then Dk
i (c•, E•) = Dk

j (c•, E•).

Case t̂ = k + 1. Let i, j ∈ N be such that cti = ctj, for each t ≤ t̂. Then, for l = i, j,

Dt̂
l (c•, E•) = Oc(R)l

(
bt̂−1, ct̂, E t̂

)
,

where bt̂−1 = ρ(x1, . . . , xt̂−1), and xt = Dt (c•, E•), for each t = 1, . . . ,t̂ − 1. By the

induction hypothesis, xti = xtj, for each t = 1, . . . t̂ − 1. As ρ satisfies Equal Treatment

of Equals, bt̂−1i = bt̂−1j . Finally, by Proposition 2 in Hougaard et al. (2012), as R satisfies

Equal Treatment of Equals, Oc(R)i(b
t̂−1,ct̂, E t̂) = Oc(R)j(b

t̂−1,ct̂, E t̂), which concludes

the proof.

We now move to Order Preservation in Gains. Let R and ρ be an order-preserving in

gains rule and a proper aggregator, respectively. Let D denote the dynamic rule arising

after submitting R to the aggregator operator Oρc, i.e., D ≡ Oρc(R). Let (c•, E•) ∈ PN

be given, i, j ∈ N , and t̂ ∈ N such that cti ≤ ctj, for each t ≤ t̂. We prove, by induction,

that Dt̂
i (c•, E•) ≤ Dt̂

j (c•, E•).
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Case t̂ = 2. In this base case, x1 = D1(c•, E•) = R(c1, E1), and x2 = D2(c•, E•) =

Oc(R)(b, c2, E2), where b = ρ(x1) = x1 (the last equality holds because ρ is a proper

aggregator). Let i, j ∈ N be such that c1i ≤ c1j and c2i ≤ c2j . As R satisfies Order

Preservation in Gains, bi = x1i ≤ x1j = bj. Then, by Proposition 2 in Hougaard et al.

(2012), Oc(R)i(b, c
2, E2) ≤ Oc(R)j(b,c

2, E2).

Case t̂ = k. Suppose, as induction hypothesis, that, for each pair i, j ∈ N , such that

cti ≤ ctj for each t < t̂, then Dt̂
i (c•, E•) ≤ Dt̂

j (c•, E•).

Case t̂ = k+ 1. Let i, j ∈ N be such that cti ≤ ctj, for each t < t̂. Then, for for l = i, j,

Dt̂
l (c•, E•) = Oc(R)l

(
bt̂−1, ct̂, E t̂

)
,

where bt̂−1 = ρ(x1, . . . , xt̂−1), and xt = Dt (c•, E•), for each t = 1, . . . ,t̂ − 1. By the

induction hypothesis, xti ≤ xtj, for each t = 1, . . . ,t̂−1. As ρ satisfies Order Preservation in

Gains, bt̂−1i ≤ bt̂−1j . Then, by Proposition 2 in Hougaard et al. (2012), Oc(R)i

(
bt̂,ct̂, E t̂

)
≤

Oc(R)j(b
t̂,ct̂, E t̂).

Finally, we move to Scale Invariance. Let R and ρ be a scale-invariant rule and a

proper aggregator, respectively. Let D denote the dynamic rule arising after submitting

R to the aggregator operator Oρc, i.e., D ≡ Oρc(R). Let (c•, E•) ∈ PN be given and let

λ > 0 be given too. Then, for each period t̂,

Dt̂ (λc•, λE•) = Oc(R)
(
bt̂−1λ ,λct̂, λE t̂

)
,

where bt̂−1λ = ρ(x1λ, . . . , x
t̂−1
λ ), and xtλ = Dt (λc•, λE•), for each t = 1, . . . ,t̂−1. As ρ satis-

fies scale invariance, bt̂−1λ = λbt̂−1 = λρ(x1, . . . , xt̂−1). Thus, by Proposition 2 in Hougaard

et al. (2012), as R satisfies Scale Invariance, Oc(R)(bt̂λ,λc
t̂, λE t̂) = λOc(R)(bt̂,ct̂, E t̂).

The previous proposition does not seem to be generally extended to many other prop-

erties. The reason being that most of the standard properties for static rules cannot be

adjusted for operators. For instance, a point in case is the property of Order Preservation

in Losses, which says that agents with larger claims face larger losses. That is, ci ≥ cj im-

plies that ci−Ri (c, E) ≥ cj−Rj (c, E) , for each (c, E) ∈ P, and each pair i, j ∈ N .7 This

property, which could indeed be adapted for dynamic rules, relates claims and awards

and that is an aspect that could not be transferred to operators. More precisely, the

corresponding property of Order Preservation in Losses for operators would require to

introduce claims as an additional input in the definition of operators. Alternatively, it

7The combination of Order Preservation in Gains and Order Preservation in Losses is usually referred

to as Order Preservation.
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could be defined with respect to a specific claims vector. But each period in a dynamic

setting might have a different claims vector. Similar issues would arise, for instance, with

many other standard properties such as Claims Monotonicity (Thomson, 2003), Additiv-

ity (Bergantiños and Vidal-Puga, 2004), Securement (Moreno-Ternero and Villar, 2004),

or Exemption (van den Brink et al., 2013), to name just a few.

5 Discussion

We have analyzed in this paper dynamic rationing problems. We have introduced a

natural family of operators, which extend rules in the (static) benchmark model into rules

able to solve dynamic problems. Each operator is associated to an aggregator indicating

how to aggregate the solutions from past periods into a baseline to be used in order

to solve the problem in a given period. We have studied the basic properties of these

operators.

We conclude stressing that our model is able to accommodate a variety of realistic

situations that cannot be fully addressed with the benchmark (static) model. We referred

in the introduction to the case of food rationing in refugee camps. Another instance is

the allocation of public resources (collected via taxes by a central government) among

the regional governments of a country, with a certain degree of decentralization, when the

government approves the budget for the upcoming fiscal year (Chambers and Moreno-

Ternero, 2019). University budgeting procedures (Pulido et al., 2002, 2008), some resource

allocation procedures in the public health care sector (Daniels, 2016), protocols for the

reduction of greenhouse gas emissions (Ju et al., 2019), or the allocation of revenues

collected from selling broadcasting rights of (typically, yearly) sports leagues (Bergantiños

and Moreno-Ternero, 2019) can also fit this general setting. Further research within the

field of operations research will help shed light on some of these problems.
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