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Abstract

In this paper, we study the generalization of (Nash) equilibrium and domi-

nance solvability to interval fuzzy games in strategic form. We show that the more

straightforward generalizations of these concepts do not inherit their most relevant

results, either in terms of existence or refinement. To efficiently handle the fuzzi-

ness of the payoffs, we use the Hurwicz criterion and introduce new equilibrium

concepts and dominance solutions which greatly overcome these drawbacks.

Keywords: Dominance solvability, Fuzzy interval payoffs, Hurwicz criterion

1 Introduction

In order to account for uncertainty in game-theoretical models, many papers in the liter-

ature focus on the randomness aspect of uncertainty, developing stochastic models where

probability distributions describe uncertain parameters. However, the probability distri-

bution may not be available in practice or difficult to estimate from limited data points.

In this context, the fuzzy set theory is an appropriate modeling tool when probability

distribution cannot describe uncertain parameters. Other papers consider uncertainty
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with different tools, for example interval uncertainty (there is an uncertain variable and

its lower and upper bounds are known) or similar (Palancı et al., 2014).

In this paper, we study interval fuzzy games in strategic form, i.e., games (in strategic

form) in which the payoff of an agent is generally a fuzzy set. Such fuzzy sets arise

when there is uncertainty on the worth that an agent can get under certain strategy

profiles. This approach to considering uncertainty fits with several concrete situations:

for example in Xu et al. (2013) a class of supply chain, where the uncertainties of demands

are described as fuzzy sets, is studied.

We present two generalizations of the Nash equilibrium (Nash, 1951) and of domi-

nant solvable schemes (Moulin, 1979). To set a dominant solvable scheme, we eliminate

equilibria in which some player’s strategy is iteratively dominated.

First introduced by Moulin (1979) in the context of voting, dominance solvability

relies on a straightforward procedure: if a player has a strictly dominated strategy, i.e., a

strategy that generates worse payoffs than another regardless of what other players select,

she should never use it. If strictly dominated strategies are eliminated, the reduced game

may have further strictly dominated strategies that can then be eliminated, and so on.

When this iterative procedure converges to a unique strategy profile, that profile turns

out to be a Nash equilibrium, and the game is said dominance solvable. The dominated

strategies elimination procedure allows to rule out some multiple Nash equilibria and thus

it becomes an equilibrium refinement tool. See for example Carlsson and van Damme

(1993).

Previous generalization of Nash equilibrium to fuzzy games are given by Maeda (2003);

Cunlin and Qiang (2011), which focus on triangular two-person zero-sum games, and

Chakeri and Sheikholeslam (2013), which defines a graded representation of Nash equi-

libria in crisp and fuzzy games. In Yu and Zhang (2010) a fuzzy Nash equilibrium

definition based on a binary fuzzy ordering relation is presented and applied to a traffic

flow problem.

The most direct generalization of weakly dominated strategies in the class of interval

fuzzy games (loose dominance) requires one strategy to dominate another for some agent

if it results in a weakly higher interval payoff when facing any set of opponent’s profiles

and in a strictly higher interval payoff against some of them. In the context of crisp

games, a loosely dominant solution is a Nash equilibrium (Moulin, 1979). This result has

been generalized to the class of multicriteria games (Gerasimou, 2019). However, it is no

more true in the class of fuzzy interval games (see Example 4.1 in Section 4).

In order to overcome this difficulty, we consider the Hurwicz criterion (in line with
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Mallozzi and Vidal-Puga (2021)) in fuzzy interval games in strategic form. We introduce

three new concepts: the Hurwicz Nash equilibrium, the loose Hurwicz Nash equilibrium,

and the interior Hurwicz Nash equilibrium. These concepts are equivalent to classical

Nash equilibria in the context of crisp games. In particular, the Hurwicz Nash equilibrium

coincides the the tight Nash equilibrium. Moreover, the equivalent dominance solution

of the interior Hurwicz Nash equilibrium works as a refinement of both the loose Nash

equilibrium and the interior Hurwicz Nash equilibrium.

Another backward of the two most direct generalizations of the Nash equilibrium

deals with their existence for mixed strategies. A strategy profile is an equilibrium if

any individual deviation provides a (weakly) worse payoff (tight Nash equilibrium) or

if no deviation provides a (weakly) better payoff (loose Nash equilibrium). They both

generalize the concept of Nash equilibrium in the context of fuzzy intervals. In the

context of crisp games with a finite number of strategies, existence of Nash equilibria

is guaranteed for mixed strategies Nash (1951). However, in the class of fuzzy interval

games it only holds for loose Nash equilibria (see Section 6). On the other hand, existence

also holds for interior Hurwicz Nash equilibria when fuzzy set are symmetric. The study

of symmetric fuzzy sets is well motivated in literature from a theoretical point of view

and a computational one (see for example Buckley and Feuring (2000); Ganesan and

Veeramani (2006); Allahviranloo et al. (2007); Nasseri (2008); Veeramani et al. (2013)).

This paper is organized as follows. In Section 2, we present basic notions from the

fuzzy interval theory. In Section 3, we present fuzzy interval games in strategic form. In

Section 4, we describe the dominance concept. In Section 5, we consider the Hurwicz

criterion and present the results. In Section 6, we study mixed strategies. In Section 7,

we conclude.

2 Fuzzy intervals

Traditionally, a payoff xi ∈ R of an agent i in a game is either possible or not possible to

achieve. In the fuzzy logic, this possibility is not binary but uses a degree of membership

that can vary in the closed real-valued interval [0, 1]. If the fuzzy number is 0, this payoff

is not possible to achieve. If the fuzzy number is 1, this payoff is possible to achieve.

However, all the intermediate situations are also feasible.

Formally, a fuzzy set in R is a real-valued function F : R→ [0, 1] which associates with

each xi ∈ R the grade of achievement F (xi) of xi. This F (xi) is then called a fuzzy number.

Following Zadeh (1965), who interprets a fuzzy number as the grade of membership, we
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say that F (xi) represents the grade of membership of xi in the set of possible payoffs

for player i. Another interpretation, due to Zadeh (1978), is that F (xi) represents the

possibility of xi to be achieved. Dubois and Prade (1997) acknowledges the existence of

several interpretations of fuzzy numbers. Far away from being a weakness, this multiple

existence provides a high potential in order to enrich its pervasiveness among many

different fields. Dubois and Prade (1997) mentions three different types of interpretation,

based on the degree of similarity, the degree of preference and the degree of uncertainty.

In this paper, we consider the degree of uncertainty, where the grades of membership

allow to rank the payoffs in terms of plausibility.

Given a fuzzy set F, for any α ∈ (0, 1], we denote

[F ]α := {xi ∈ R : α ≤ F (x)}

and [F ]0 := Cl {xi ∈ R : F (xi) > 0} , where Cl(X) is the closure of X. A fuzzy interval

is a fuzzy set satisfying

• compactness, i.e., [F ]α is compact for any α ∈ [0, 1]

• convexity, i.e., [F ]α is convex for any α ∈ [0, 1]

• normality, i.e., there exits x ∈ R such that F (x) = 1.

Let F be the set of fuzzy intervals. For any F ∈ F , there exist a, b, c, d ∈ R with

a ≤ b ≤ c ≤ d, L : [a, b]→ [0, 1] non-decreasing, and R : [c, d]→ [0, 1] non-increasing such

that F (xi) = L(xi) if xi ∈ [a, b), F (xi) = 1 if xi ∈ [b, c], F (xi) = R(xi) if xi ∈ (c, d], and

F (xi) = 0 otherwise.

Some particular cases of fuzzy sets are the following:

• Symmetric fuzzy sets, where b−a = d− c and R(x) = L(a+d−x) for all x ∈ [c, d].

• Triangular fuzzy sets, where L and R are linear functions and b = c. We denote a

triangular fuzzy set as F = (b, l, r), where l = b− a and r = d− b.

• Any real number yi ∈ R is identified with the fuzzy set with a = b = c = d = yi,

so that F (yi) = 1 and F (xi) = 0 otherwise. With some abuse of notation, we write

yi ∈ F .

• Any closed interval [e, e] with e, e ∈ R and e ≤ e is identified with the fuzzy set

with a = b = e and c = d = e, so that F (xi) = 1 for all xi ∈ [e, e] and F (xi) = 0

otherwise. With some abuse of notation, we write [e, e] ∈ F .
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Figure 1: Relationships among some particular cases of fuzzy sets.

Relationships among these cases are depicted in Figure 1.

For any F ∈ F and α ∈ [0, 1], let Fα be the supremum of [F ]α and let Fα be the

infimum of [F ]α. In particular, for each real number x, xα = xα = x; and for each closed

interval [x, z], [x, z]α = z and [x, z]α = x.

Given two fuzzy intervals F,G, we say that F � G if Fα ≤ Gα and Fα ≤ Gα for all

α ∈ [0, 1] as in (Dubois and Prade, 1997; Mallozzi et al., 2011). Moreover, F ≺ G means

F � G and F 6= G.

3 Fuzzy interval games in strategic form

A fuzzy interval game in strategic form is a tuple (N,A, u) where

• N = {1, . . . , n} is a set of players,

• A =
∏

i∈N Ai with Ai a set of strategies, or actions, for each player i ∈ N , and

• u = (ui)i∈N with ui : A→ F a payoff function for each player i ∈ N.

A (pure) strategy profile a ∈ A is a collection of strategies, one for each player.

Given i ∈ N, we use the notation A−i =
∏

j∈N\{i}Aj and, given a ∈ A, we denote

a−i = (aj)j∈N\{i} ∈ A−i.
A Nash equilibrium is a strategy profile such that each strategy is a best response to

all the other strategies. In the fuzzy logic, this idea can be stated in two ways:

Definition 3.1 A tight Nash equilibrium (tNe) is a strategy profile a∗ ∈ A in which

each strategy weakly improves any other, i.e., ui
(
ai, a

∗
−i
)
� ui

(
a∗i , a

∗
−i
)

for all i ∈ N and

all ai ∈ Ai.
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left right

up 3, 3 [1, 3], 4

down 4, 1 2, 2

Figure 2: Payoffs in Example 3.1.

A loose Nash equilibrium (lNe) is a strategy profile a∗ ∈ A in which no other strategy

makes any player weakly improved, i.e., there exist no i ∈ N and ai ∈ Ai such that

ui
(
ai, a

∗
−i
)
� ui

(
a∗i , a

∗
−i
)
.

In both a loose and a tight Nash equilibrium, any unilateral deviation by some player

that results in a gain for some α ∈ [0, 1], also results in a loss for some other α′ ∈ [0, 1].

Obviously, any tNe is also a lNe. However, not every lNe is a tNe.

Example 3.1 Let N = {1, 2} , A1 = {up, down}, A2 = {left, right}, (u1, u2) given in

Figure 2. In this example, (down, right) is a lNe, but not a tNe because u1(down, right) =

2 and u1(up, right) = [1, 3] are not comparable for player 1.

4 Dominance

In this section, we generalize the concept of dominance (Moulin, 1979) to the class of

fuzzy games.

Definition 4.1 Given a fuzzy interval game in strategic form (N,A, u), a strategy a∗i ∈
Ai of player i loosely dominates another strategy ai ∈ Ai in A if there exists no a−i ∈ A−i
such that ui(a

∗
i , a−i) ≺ ui(ai, a−i) and there exists some a−i ∈ A−i such that ui(a

∗
i , a−i) �

ui(ai, a−i).

This definition coincides with the standard definition of weak dominance (Moulin,

1979) when ui(a) ∈ R for all i ∈ N and a ∈ A. For A′ ⊆ A, let U(A′) be the set of

strategies profiles a ∈ A′ such that ai is not loosely dominated for any player i.

Definition 4.2 A fuzzy game (N,A, u) is loosely dominance solvable if there exists a

finite sequence A = A0 ! A1 ! A2 ! · · · ! Ak such that Al = U(Al−1) for all l = 1, . . . , k,

Ak = U(Ak), and, for each i ∈ N, there exist no a−i ∈ Ak−i, ai, a
′
i ∈ Aki such that

ui(ai, a−i) ≺ ui(a
′
i, a−i). Each a ∈ Ak is then called a loosely dominant solution (lds).
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left center right

up 1, [3, 4] [3, 4], 0 0, [2, 4]

middle [0, 3], [0, 1] 2, [3, 4] 3, 0

down 2, [0, 1] 1, [1, 2] 3, [2, 4]

Figure 3: Payoffs in Example 4.1.

The given definition generalizes the notion of dominance solvability as defined by

Moulin (1979) when ui(a) ∈ R for all i ∈ N and a ∈ A. Notice that we discard the

dominated strategies of all players in each step. As opposed to Moulin (1979), we do not

impose equality among all the strategies in the last step. Instead, we impose either equal-

ity or that they are not comparable. When payoffs are real-valued, indifference between

two strategies, given fix strategies by the other players, is equivalent to either payoff

equality or no-dominance. Both concepts are equivalent. When payoffs are fuzzy sets,

equality and no-dominance are not equivalent. We use no-dominance in the generalization

of dominance solvability.

In the context of crisp cooperative games, a lNe is the same as a Nash equilibrium

and a lds is the same as a dominant solution. As shown by (Moulin, 1979), each dom-

inant solution is a Nash equilibrium. This result has been generalized to the class of

multicriteria games (Gerasimou, 2019).

However, in fuzzy interval games, such result does not hold for these generalizations,

as next example shows.

Example 4.1 Let N = {1, 2} , A1 = {up,middle, down}, A2 = {left, center, right}, u =

(u1, u2) given in Figure 3.

In this example, middle dominates down because u1(middle, center) = 2 > 1 =

u1(down, center), u1(middle, right) = u1(down, right) = 3 and u1(middle, left) = [0, 3]

is not comparable with u1(down, left) = 2. Once down is excluded, left dominates right

because u2(up, left) = [3, 4] � [2, 4] = u2(up, right) and u2(middle, left) = [0, 1] � 0 =

u2(middle, right). Once right is excluded, up dominates middle since u1(up, left) = 1

is not comparable with u1(middle, left) = [0, 3] and u1(up, center) = [3, 4] � 2 =

u1(middle, center). Finally, once middle and down are excluded, left dominates center

because u2(up, left) = [3, 4] � 0 = u2(up, center).

Hence, (up, left) is the only lds. However, it is not a lNe because u1(up, left) = 1 ≺
2 = u1(down, left). The only (both loose and tight) Nash equilibrium in this example is

(down, right).
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5 Hurwicz criterion in fuzzy games

Hurwicz Hurwicz (1951) first stated what became the most well-known criterion to deal

with uncertainly. Assume each player i ∈ N has a coefficient ηi ∈ [0, 1] which determines

its degree of optimism.1 This means that, when the level of uncertainty is given by

α ∈ [0, 1], player i evaluates a fuzzy interval F as

ηi ◦ Fα := (1− ηi) · Fα + ηi · Fα.

The Hurwicz criterion allows us to redefine the partial ordering of fuzzy numbers,

tight and loose Nash equilibria, and dominance.

5.1 Partial ordering

Given F,G ∈ F , we say that F �∗ G if ηi ◦Fα ≤ ηi ◦Gα for all α, ηi ∈ [0, 1]. Analogously,

F ≺∗ G if F �∗ G and F 6= G.

This definition is equivalent to the one presented in Section 2, as shown in the following

result.

Proposition 5.1 Order relations � and �∗ are equivalent, i.e., F � G if and only if

F �∗ G, and F ≺ G if and only if F ≺∗ G.

Proof. Let F,G ∈ F . Assume first F � G. Then, Fα ≤ Gα and Fα ≤ Gα for all

α ∈ [0, 1]. Take α, ηi ∈ [0, 1]. Then, since both ηi and 1− ηi are nonnegative,

ηi ◦ Fα = (1− ηi) · Fα + ηi · Fα ≤ (1− ηi) ·Gα + ηi ·Gα = ηi ◦Gα

and hence F �∗ G. Assume now F ≺ G, i.e., F � G and F 6= G. Hence, F �∗ G and

F 6= G, and thus F ≺∗ G. Assume now F �∗ G. Given α ∈ [0, 1], by taking η = 0 and

η = 1, we deduce that Fα ≤ Gα and Fα ≤ Gα, respectively. Hence, F � G. Finally,

assume F ≺∗ G, i.e., F �∗ G and F 6= G. Hence, F � G and F 6= G, and thus F ≺ G.

Q.E.D.

5.2 Nash equilibria

By using the Hurwicz criterion, we have two new equilibrium concepts. Given η ∈ [0, 1]N ,

α ∈ [0, 1], and F ∈ FN , let η ◦ Fα be the vector in RN whose coordinates are given by

ηi ◦ Fα
i for each i ∈ N.

1We use the term η instead of the usual Hurwicz term α in order to avoid confusion with the coefficient

in fuzzy numbers.
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Definition 5.1 We say that a strategy profile a∗ ∈ A is a Hurwicz Nash equilibrium

(HNe) if each strategy is a best response to the other strategies under the Hurwicz crite-

rion for all possible η and α, i.e.,

ηi ◦ ui(ai, a∗−i)α ≤ ηi ◦ ui(a∗)α

for all i ∈ N, ai ∈ Ai, and ηi, α ∈ [0, 1].

Analogously, we define the loose Hurwicz Nash equilibrium.

Definition 5.2 We say that a strategy profile a∗ ∈ A is a loose Hurwicz Nash equilibrium

(lHNe) if there exists η ∈ [0, 1]N such that each strategy is a best response to the other

strategies under the Hurwicz criterion for η, i.e.,

ηi ◦ ui(ai, a∗−i)α ≤ ηi ◦ ui(a∗)α

for all i ∈ N, ai ∈ Ai, and α ∈ [0, 1].

Obviously, any HNe is also a lHNe. However, not every lHNe is a HNe. For

example, the strategy profile described in Example 3.1 is a lHNe but not a HNe.

We next study the relation between these new equilibrium concepts and the ones

defined in Section 2.

Theorem 5.1 Hurwicz Nash equilibria are equivalent to tight Nash equilibria, i.e., a∗ ∈
A is Hurwicz Nash equilibrium if and only if it is a tight Nash equilibrium.

Proof. Let a∗ be a HNe and take i ∈ N and ai ∈ Ai. We have to prove that ui
(
ai, a

∗
−i
)
�

ui
(
a∗i , a

∗
−i
)
, i.e., ui

(
ai, a

∗
−i
)α ≤ ui

(
a∗i , a

∗
−i
)α

and ui
(
ai, a∗−i

)α ≤ ui
(
a∗i , a

∗
−i
)α

for all α ∈
[0, 1]. Take any α ∈ [0, 1]. Then,

ui
(
a∗i , a

∗
−i
)α

= 0 ◦ ui
(
ai, a

∗
−i
)α ≤ 0 ◦ ui (a∗)α = ui (a

∗)α

and

ui
(
a∗i , a

∗
−i
)α

= 1 ◦ ui
(
ai, a

∗
−i
)
≤ 1 ◦ ui (a∗)α = ui (a∗)

α

where inequalities come from taking ηi = 0 and ηi = 1, respectively. Now, let a∗ be a tNe

and take i ∈ N, ai ∈ Ai, and ηi, α ∈ [0, 1]. Then, since both 1−ηi and ηi are nonnegative,

ηi ◦ ui
(
ai, a

∗
−i
)α

= (1− ηi) · ui
(
ai, a

∗
−i
)α

+ ηi · ui
(
ai, a∗−i

)α
≤ (1− ηi) · ui

(
a∗i , a

∗
−i
)α

+ ηi · ui
(
a∗i , a

∗
−i
)α

= ηi ◦ ui
(
a∗i , a

∗
−i
)α
.
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left right

up [1, 4], 1 [1, 4], 1

middle [0, 5], 1 [0, 5], 0

down 3, 1 3, 0

Figure 4: Payoffs in Example 5.1.

left right

up 0, 1 F, 0

down [0, 1], 1 G, 0

Figure 5: Payoffs in Example 5.2.

Q.E.D.

However, lHNe and lNe are not equivalent, as next examples show:

Example 5.1 Let N = {1, 2} , A1 = {up,middle, down}, A2 = {left, right}, (u1, u2)

given in Figure 4.

In this example, (up, left), (up, right),(middle, left), and (down, left) are all lNe

because [1, 4], [0, 5], and 3 are not comparable. However, (up, left) and (up, right) are

not lHNe because, for any α ∈ [0, 1], ηi ◦ [1, 4]α ≥ ηi ◦ [0, 5]α implies ηi ≤ 1
2
, whereas

ηi ◦ [1, 4]α ≥ ηi ◦ 3α implies ηi ≥ 2
3
, which are incompatible conditions.

Notice also that, in Example 5.1, (up, left) is a lds, whereas (up, right) is not. Hence,

not all lNe that are not lHNe are lds.

Example 5.2 Let N = {1, 2} , A1 = {up, down}, A2 = {left, right}, (u1, u2) given in

Figure 5 (F,G are fuzzy intervals).

In this example, (up, left) is a lHNe with η1 = 0, but not a lNe because 0 ≺ [0, 1].

Notice that the strategy profile described in Example 5.2 is a somehow unstable

equilibrium. Player 1 has incentives to deviate for any η1 > 0, and for η1 = 0 it is

indifferent.

In order to rule out this kind of equilibria, we may request the feasible ηi not to be a

extreme case (0 or 1).

Formally, we give the definition.
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Definition 5.3 We say that a strategy profile a∗ ∈ A is an interior Hurwicz Nash equi-

librium (iHNe) if there exists η ∈ (0, 1)N such that each strategy is a best response to

the other strategies under the Hurwicz criterion for η, i.e.,

ηi ◦ ui(ai, a∗−i)α ≤ ηi ◦ ui(a∗)α

for all i ∈ N, ai ∈ Ai, and α ∈ [0, 1].

Each tNe is an iHNe.

Theorem 5.2 Each tight Nash equilibrium is an interior Hurwicz Nash equilibrium.

Proof. Let us suppose that a∗ ∈ A is a tNe, i.e., ui
(
ai, a

∗
−i
)
� ui

(
a∗i , a

∗
−i
)

for all i ∈ N
and all ai ∈ Ai that by Proposition 5.1 is equivalent to

ηi ◦ ui(ai, a∗−i)α ≤ ηi ◦ ui(a∗)α

for all i ∈ N, ai ∈ Ai, and α, ηi ∈ [0, 1]. This means that a∗ ∈ A an iHNe for any

η ∈ (0, 1)N .

Q.E.D.

The reciprocal is not true. In Example 3.1, the strategy profile (down, right) is an

iHNe for any η1 ∈ (0, 1
2
] and not a tNe.

Moreover, each iHNem is also a lHNe.

Theorem 5.3 Each interior Hurwicz Nash equilibrium is a loose Hurwicz Nash equilib-

rium.

Proof. Let a∗ be an iHNe, i.e., there exists η ∈ (0, 1)N such that ηi ◦ ui(ai, a∗−i)α ≤
ηi ◦ ui(a∗)α for all i ∈ N, ai ∈ Ai and α ∈ [0, 1]. Hence, η ∈ [0, 1]N and it satisfies the

conditions of lHNe.

Q.E.D.

The reciprocal is not true as, for example, the lHNe described in Example 5.2 is not

an iHNe.

Finally, every iHNe is also a lNe.

Theorem 5.4 Each interior Hurwicz Nash equilibrium is a loose Nash equilibrium.
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Proof. Let a∗ be an iHNe, i.e., there exists η∗ ∈ (0, 1)N such that

η∗i ◦ ui(ai, a∗−i)α ≤ η∗i ◦ ui(a∗)α for all i ∈ N, ai ∈ Ai, α ∈ [0, 1]. (1)

We proceed by contradiction. Assume a∗ is not a lNe, i.e., there exist i ∈ N, ai ∈ Ai

such that ui(ai, a
∗
−i) � ui(a

∗). Under Proposition 5.1, ui(ai, a
∗
−i) �∗ ui(a∗). Thus

ηi ◦ ui(ai, a∗−i)α ≥ ηi ◦ ui(a∗)α for all ηi, α ∈ [0, 1] (2)

and there exist η′i, α
′ ∈ [0, 1] such that

η′i ◦ ui(ai, a∗−i)α
′
> η′i ◦ ui(a∗)α

′
. (3)

Combining (1) and (2), we get η∗i ◦ui(ai, a∗−i)α
′
= η∗i ◦ui(a∗)α

′
. By definition, such equality

and inequality (3) become

(1− η∗i ) · ui(ai, a∗−i)α
′
+ η∗i · ui(ai, a∗−i)α

′ = (1− η∗i ) · ui(a∗)α
′
+ η∗i · ui(a∗)α

′ (4)

and

(1− η′i) · ui(ai, a∗−i)α
′
+ η′i · ui(ai, a∗−i)α

′ > (1− η′i) · ui(a∗)α
′
+ η′i · ui(a∗)α

′ (5)

respectively. Obviously, η′i 6= η∗i . Assume η′i > η∗i > 0 (the alternative case, 1 > η∗i > η′i,

is analogous). By multiplying each term in (4) by
−η′i
η∗i

and adding (5), we get[
1− η′i −

η′i
η∗i

(1− η∗i )
]
· ui(ai, a∗−i)α

′
>

[
1− η′i −

η′i
η∗i

(1− η∗i )
]
· ui(a∗)α

′
.

Since 1−η′i−
η′i
η∗i

(1− η∗i ) =
η∗i−η′i
η∗i

< 0, we deduce ui(ai, a
∗
−i)

α′ < ui(a
∗)α

′
. Since Fα′ = 0◦Fα′

for all F ∈ F , we conclude that 0 ◦ ui(ai, a∗−i)α
′
< 0 ◦ ui(a∗)α

′
, which contradicts (2).

Q.E.D.

There are strategy profiles that are both lHNe and lNe but not iHNe, as next

example shows:

Example 5.3 Let N = {1, 2} , A1 = {up, down}, A2 = {center}, (u1, u2) given in Figure

6, where G,H are arbitrary fuzzy intervals and F is a fuzzy interval defined by

F (x) =


x
4

if x ∈ [0, 2)

3− x if x ∈ [2, 3]

0 otherwise.

for each x ∈ R (see Figure 7).

In this example, all the strategy profiles are lNe because F and (2, 1, 1) are not com-

parable. Moreover, they are also lHNe with η1 = 1. However, (down, center) is not an

iHNe because, for any η1 < 1,

η1 ◦ F
1
2 = 2 +

η1

2
>

3

2
+ η1 = η1 ◦ (2, 1, 1)

1
2 .

12



center

up F,G

down (2, 1, 1), H

Figure 6: Payoffs in Example 5.3.

F

(2,1,1)

Figure 7: Fuzzy intervals in Example 5.3: F and (2, 1, 1). For each ηi ∈ (0, 1), ηi ◦ F ≤
ηi ◦ (2, 1, 1) for some α’s and ηi ◦ F ≤ ηi ◦ (2, 1, 1) for others.

5.3 Hurwicz dominance

In the following, we define the concept of Hurwicz dominance. Hurwicz dominance arises

when there exists a common η in each step of the procedure. We have two such possible

dominances, depending on whether the common η can be chosen interiorly or not.

Definition 5.4 Given a fuzzy interval game in strategic form (N,A, u), a strategy a∗i ∈
Ai of player i loosely Hurwicz dominates another strategy ai ∈ Ai in A if there exists

η̄ ∈ [0, 1]N such that

η̄i ◦ uα(a∗i , a−i) ≥ η̄i ◦ uα(ai, a−i), for all a−i ∈ A−i

and

η̄i ◦ uα(a∗i , a−i) > η̄i ◦ uα(ai, a−i), for some a−i ∈ A−i

hold for any α ∈ [0, 1].

For A′ ⊆ A and η̄ ∈ [0, 1]N , let U η̄(A′) be the set of strategies profiles a ∈ A′ such

that ai is not loosely Hurwicz dominated for any player i under η̄.

Definition 5.5 A fuzzy interval game in strategic form (N,A, u) is loosely Hurwicz dom-

inance solvable (resp., interiorly Hurwicz dominance solvable) if there exist η̄ ∈ [0, 1]N

(resp., η̄ ∈ (0, 1)N) and a finite sequence A = A0 ! A1 ! A2 ! · · · ! Ak such

13



that Al = U η̄(Al−1) for all l = 1, . . . , k, Ak = U η̄(Ak), and, for each i ∈ N, for any

a−i ∈ Ak−i, ai, a′i ∈ Aki

η̄i ◦ uα(a′i, a−i) = η̄i ◦ uα(ai, a−i),∀α ∈ [0, 1].

Each a ∈ Ak is then called a loosely Hurwicz dominant solution (lHds) (resp., interiorly

Hurwicz dominant solution (iHds)).

Obviously, each iHds is also a lHds. However, not every lHds is an iHds. For

example, the strategy profile (down, center) in example 5.3 is a lHds but not an iHds.

In line with Moulin (1979), we have the following results.

Theorem 5.5 Each loosely Hurwicz dominant solution of a fuzzy interval game is a loose

Hurwicz Nash equilibrium.

Proof. Let us suppose that a∗ ∈ A is a loosely Hurwicz dominant solutions for a given

η̄ ∈ [0, 1]N of the fuzzy interval game (N,A, u) and for each α ∈ [0, 1] consider the crisp

game (N,A, η̄ ◦ uα). By using the result in Moulin (1979) we obtain that a∗ ∈ A is

a pure-strategy Nash equilibrium of (N,A, η̄ ◦ uα), for any α. Then a∗ ∈ A is a loose

Hurwicz Nash equilibrium.

Q.E.D.

We point out that a loosely Hurwicz dominant solution is not necessary a loose Nash

equilibrium. For example, (up, left) in Example 5.2 is a loosely Hurwicz dominant solu-

tion and not a loose Nash equilibrium.

Theorem 5.6 Each interiorly Hurwicz dominant solution of a fuzzy interval game is an

interior Hurwicz Nash equilibrium.

Proof. Let us suppose that a∗ ∈ A is an interiorly Hurwicz dominant solution for a given

η̄ ∈ (0, 1)N of the fuzzy interval game (N,A, u). Then, for each α ∈ [0, 1], the dominated

strategy elimination process in the crisp game (N,A, η̄ ◦ uα) ends to the profile a∗ ∈ A
that is a Nash equilibrium of the crisp game, then an interior Hurwicz Nash equilibrium.

Q.E.D.

The next example shows interior Hurwicz Nash equilibria that are not interiorly Hur-

wicz dominant solutions.

Example 5.4 Let N = {1, 2} , A1 = {up, down}, A2 = {left, right}, (u1, u2) given in

Figure 8. Then, (up, left) and (down, right) are interior Hurwicz Nash equilibria but not

interiorly Hurwicz dominant solutions.

14



left right

up 1, 1 −3, 0

down 0, [−1, 0] 1, 0

Figure 8: Payoffs in Example 5.4.

left right

up 0, [0, 1] [0, 1], 0

down [0, 1], 0 0, [0, 1]

Figure 9: Payoffs in Example 6.1.

6 Mixed strategies in fuzzy games

In this section, we study the role of mixed strategies. Assume players have von Neumann-

Morgenstern utility functions, so that the utility given by the lottery in which F ∈ F
happens with probability p ∈ [0, 1] and G ∈ F with probability q = 1− p is pF + qG ∈ F
defined as follows. For each α ∈ [0, 1],

[pF + qG]α = p[F ]α + q[G]α

and

[pF + qG]α = p[F ]α + q[G]α.

Let us consider the following example.

Example 6.1 Let N = {1, 2} , A1 = {up, down}, A2 = {left, right}, (u1, u2) given in

Figure 9. In this example, there are not equilibria, neither lNe nor lHNe (and hence,

neither iHNe nor tNe).

As it happens in crisp finite games, mixing can be of help. Let (p, 1−p) and (q, 1−q),
for p, q ∈ [0, 1], be probability distributions on the sets A1, A2 respectively, and consider

the expected payoff functions

û1(p, q) = p(1− p)[0, 1] + q(1− p)[0, 1] = [0, p+ q − 2pq]

û2(p, q) = pq[0, 1] + (1− p)(1− q)[0, 1] = [0, 2pq + 1− p− q].

15



The game
(
N, Â, û

)
, where û = (û1, û2), Â = Â1 × Â2 and Âi is the set of probability

distributions on Ai (for i = 1, 2), is a fuzzy interval game and ((p, 1− p), (q, 1− q)) with

p = q = 1
2

is an interior Hurwicz Nash equilibrium. Remark that for any α ∈ [0, 1], any

η ∈ (0, 1)2, η ◦ uα =
(
η1(p+ q − 2pq), η2(2pq + 1− p− q)

)
.

Then, in Example 6.1 we find a mixed interior Hurwicz Nash equilibrium for the game

(N,A, u), as specified in the following definition.

We consider finite fuzzy games, namely tuples (N,A, u) where N = {1, . . . , n} is a

set of players, A =
∏

i∈N Ai with Ai a finite set of strategies, for each player i ∈ N ,

and u = (ui)i∈N with ui : A → F a payoff function for each player i ∈ N. We consider

the mixed extension of the game, say
(
N, Â, û

)
, being Â =

∏
i∈N Âi with Âi the set of

the probability distributions on the finite set Ai and ûi the expected payoff (averages) of

player i (i = 1, ..., N).

Definition 6.1 We say that a strategy profile â∗ ∈ Â is a mixed loose Nash equilibrium

if each mixed strategy â∗ is not worse than any other mixed strategy, i.e., there exist no

i ∈ N and âi ∈ Âi such that

ûi(âi, â
∗
−i)

α � ûi(â
∗)α

for all α ∈ [0, 1] and ûi(âi, â
∗
−i)

α∗ � ûi(â
∗)α

∗
for some α∗ ∈ [0, 1].

We say that a strategy profile â∗ ∈ Â is a mixed interior Hurwicz Nash equilibrium if

there exists η ∈ (0, 1)N such that each mixed strategy â∗ is a best response to any other

mixed strategy under the Hurwicz criterion for η, i.e.,

ηi ◦ ûi(âi, â∗−i)α ≤ ηi ◦ ûi(â∗)α

for all i ∈ N, âi ∈ Âi, and α ∈ [0, 1].

Theorem 6.1 Each finite fuzzy game has a mixed loose Nash equilibrium.

Proof. Given a fuzzy set F, we define E(F ) as the expected value of the middle point of

Fα, i.e.,

E(F ) =

∫ 1

0

0.5 ◦ Fα dα.

It is straightforward to check that φ(α) = 0.5 ◦ Fα is a left-continuous function. Hence,

0.5 ◦ Fα ≤ 0.5 ◦Gα for all α ∈ [0, 1] and 0.5 ◦ Fα∗ < 0.5 ◦Gα∗ for some α∗ ∈ [0, 1] imply

E(F ) < E(G). Given (N,A, u), let (N,A,E(u)) be the crisp game where, for each i ∈ N,
E(u)i is defined as

E(u)i(a) = E(ui(a))

16



for all a ∈ A. It follows from the well-known Nash’s theorem on the existence of mixed

Nash equilibria for finite games applied to the crisp game (N,A,E(u)) that there exists

at least one Nash equilibrium (maybe with mixed strategies) â∗ ∈ Â. We check that

â∗ is also a mixed loose Nash equilibrium in (N,A, u). Assume, on the contrary, that

there exist i ∈ N and âi ∈ Âi such that ûi(â
∗)α � ûi(âi, â

∗
−i)

α for all α ∈ [0, 1] and

ûi(â
∗)α

∗ ≺ ûi(âi, â
∗
−i)

α∗ for some α∗ ∈ [0, 1]. Thus, 0.5 ◦ ûi(â∗)α ≤ 0.5 ◦ ûi(âi, â∗−i)α for all

α ∈ [0, 1] and 0.5 ◦ ûi(â∗)α
∗
< 0.5 ◦ ûi(âi, â∗−i)α

∗
. Hence,

E(û)i(â
∗) = E(ûi(â

∗)) < E(ûi(âi, â
∗
−i)) = E(û)i(âi, â

∗
−i))

which is a contradiction because â∗ is a Nash equilibrium in (N,A,E(u)).

Q.E.D.

Theorem 6.2 Each finite fuzzy game with symmetric fuzzy sets has a mixed interior

Hurwicz Nash equilibrium.

Proof. Take ηi = 0.5 for all i ∈ N. Given α ∈ [0, 1], it follows from the well-known

Nash’s theorem on the existence of mixed Nash equilibria for finite games to the crisp

game (N,A, η ◦ uα) that there exists at least one Nash equilibrium (maybe with mixed

strategies) â∗ ∈ Â. Given the symmetry of the fuzzy sets, η ◦uα is independent of α, and

hence â∗ is also a mixed interior Hurwicz Nash equilibrium.

Q.E.D.

Theorem 6.2 does not apply for general fuzzy games. Take for example the case N =

{1, 2} , A1 = {up, down}, A2 = {center}, u1(up, center) = (2, 0, 2) and u1(down, center) =

(3, 2, 0). For any α ∈ [0, 1], we have (2, 0, 2)α = [2, 4 − 2α] and (3, 2, 0)α = [2α + 1, 3].

Hence, given η1 ∈ [0, 1],

η1 ◦ (2, 0, 2)α = η1 ◦ [2, 4− 2α] = 2η1 − 2αη1 + 2

and

η1 ◦ (3, 2, 0)α = η1 ◦ [1 + 2α, 3] = 2η1 + 2α(1− η1) + 1

which implies that, independently of η1, for α < 0.5, η1 ◦ (2, 0, 2)α > η1 ◦ (3, 2, 0)α and,

for α > 0.5, η1 ◦ (2, 0, 2)α < η1 ◦ (3, 2, 0)α. Hence, neither (up, center) nor (down, center)

are iHNe. In the mixed strategy where up is played with probability p ∈ [0, 1] and down

with probability 1− p, p = 0 is always optimal for α > 0.5 and p = 1 for α < 0.5.
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7 Conclusion

In this paper, we define five reasonable extensions of the Nash equilibria for fuzzy games,

as well as three extensions of the notion of a dominant solution. We show that the most

natural extension of a dominant solution misses its most appealing properties in the con-

text of fuzzy games, since it may fail to be the most weak extensions of a Nash equilibrium

(namely, the so-called loose Nash equilibria and loose Hurwicz Nash equilibrium).

We find that loosely Hurwicz dominant solutions are loose Hurwicz Nash equilibria

and that interiorly Hurwicz dominant solutions are interior Hurwicz Nash equilibria.

Both these concepts, based on the classical Hurwicz criterion, provide a refinement tool.

However, in a finite fuzzy game, existence of a mixed loose Nash equilibrium is guaranteed,

while in a finite symmetric fuzzy game (i.e. payoffs are symmetric fuzzy sets) there

exist mixed interior Hurwicz Nash equilibria. Then, the concept of interiorly Hurwicz

dominance, introduced in this paper, turns out to be the most appropriate generalization

of the classical dominance notion in crisp games. In the class of symmetric fuzzy games,

the concept of interior Hurwicz Nash equilibrium turns out to be the most appropriate

generalization of the Nash equilibrium one.

We summarize the relationship between these solution concepts in Figure 10.
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