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Abstract

In this paper, we study allocation problems and other related problems where

a discrete estate should be divided among agents who have claims on it.

We characterize the set of rules satisfying additivity on the estate along

with additivity on the estate and the claims. These results complete the

characterizations given by Bergantiños and Vidal-Puga (Mathematical Social

Sciences) in the continuous case.
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1 Introduction

Many economic and political situations can be modelled as a problem of how

to divide a resource among agents who have claims on it. The way in which

this division should take place may depend on the particular problem to be

studied.

In some problems agents have legitimate rights over a scarce good. In

this case no agent should receive more than his claim, but neither less than

nothing. These problems are called bankruptcy problems (O’Neill, 1982;

Aumann and Maschler, 1985; Young, 1987).

Other problems are those which arise when the agents collectively con-

tribute in a common project which generates a surplus. The claims of the

agents should then be interpreted as their contribution to the project. For

example, a group of families may collaborate to build a row of terraced houses

for living. In these circumstances, the only restriction is that nobody should

receive less than nothing. We call these problems surplus problems (Moulin,

1987).

In allocation problems (Chun, 1988; Maschler, Herrero and Villar, 1999)

there are no restrictions in what an agent may receive. In loss problems

(Bergantiños and Vidal-Puga, 2004) nobody should receive more than his

claim.

All these papers are devoted to the continuous problem, i.e. the resource

is perfectly divisible (for instance, money). Nevertheless, there are some

practical situations in which the resources come in indivisible units. We call

the class of such problems discrete problems.

We now give some examples of discrete problems. The assignment of

seats in a parliament, queuing problems where the demands consist of finite

number of "jobs", or secretaries to departments in a university, can be mod-

elled as a discrete bankruptcy problem1. Consider a group of families that

collaborate to build a row of terraced houses for living. This situation corre-

sponds to a discrete surplus problem. Assume now the terraced houses in the

previous example are built not by families but by building contractors. They

just need to distribute the houses but they may have other (real or projected)

1These examples appear in Moulin (2000) and Herrero and Martínez (2004).

1



houses on their own. In this case, the assignment may be such that some

contractors cede some of their own houses. This situation corresponds to a

discrete allocation problem.

Finally, assume that the joint project by the contractors fails, and there

are less houses than claimed. Since the joint project failed, no contractor

should get more houses than those he has rights on. Thus, we can model this

situation as a discrete loss problem.

Even though most of the literature is devoted to the continuous problem,

during the last years many papers study the discrete problem. We can men-

tion, for instance, Moulin (2000), Moulin (2002a), Moulin and Stong (2002),

and Herrero and Martínez (2004). Also, in Balinski and Young (1982) it

is possible to find an extensive literature on discrete allocation problems in

other settings.

We can study these problems from two different approaches. One of them

is the axiomatic characterizations of rules. The idea is to propose desirable

properties and find out which of them characterize every rule. Properties

often help agents to compare different rules and to decide which rule is pre-

ferred for a particular situation. Another approach is to study what the rules

satisfying a set of properties are. For instance, Young (1988) characterizes

the rules satisfying continuity, symmetry, and consistency; de Frutos (1999)

characterizes the rules satisfying non-manipulability; andMoulin (2000) char-

acterizes the rules satisfying consistency, composition up, composition down,

and scale invariance. Thomson (2003) and Moulin (2002b) give a survey of

this literature. In this paper, we follow the second approach and concentrate

on the property of additivity.

Additivity is a widely used property. For instance, the Shapley value,

the most important value in cooperative games with transferable utility, is

characterized by additivity and other properties. If we compare the Shapley

value with other prominent values (for example the nucleolus) we realize

that these values satisfy all the properties characterizing the Shapley value

(efficiency, null player, and symmetry) except additivity.

Bergantiños and Vidal-Puga (2004) study the property of additivity in

the continuous problem. In this paper we study this property in the discrete

problem. We must note that even though the results of this paper are related
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with those of Bergantiños and Vidal-Puga (2004), the proofs are completely

different and this paper is not a consequence of the previous one. We use

two definitions of additivity: additivity on the estate (A1) (Moulin, 1987; and

Chun, 1988), and additivity on the estate and the claims (A2) (Bergantiños

and Méndez-Naya, 2001).

In this paper we characterize the rules satisfying A1 and A2 in each of

the four problems mentioned before. The rules satisfying A1 are as follows:

In allocation problems they are characterized by the product of the estate

and a claims-dependent function. In surplus problems all the estate is given

to an agent, who is selected depending on the claims. In loss and bankruptcy

problems there are no rules.

The rules satisfying A2 are as follows: In allocation problems they are

characterized by the sum of two parts, one depending on the estate and the

other depending on the claims. In surplus problems, the estate is always

given to a fixed agent. In loss problems, all the loss is always suffered by a

fixed agent. There is no bankruptcy rule satisfying this additivity.

The paper is organized as follows. Section 2 introduces the problems

studied in this paper. Section 3 studies the rules which satisfy these additivity

properties.

2 Preliminaries

Let Z denote the set of integer numbers and let N denote the set of non-
negative integer numbers. Let R denote the set of real numbers and let R+
denote the set of non-negative real numbers.

We also denote the set of potential agents as N. Let N be any finite

subset of N. Given x, y ∈ RN , x ≥ y means xi ≥ yi for all i ∈ N ; and x+ y

is the vector (xi + yi)i∈N . Moreover, 0N = (0, ..., 0) ∈ RN . Given S ⊂ N , 1S
is the vector (xi)i∈N such that xi = 1 if i ∈ S and xi = 0 if i /∈ S.

We study problems where an estate E ∈ N must be divided among a

group of agents N . Let ci be the claim of agent i ∈ N , let c = (ci)i∈N be the
vector of claims, and let C =

P
i∈N ci be the sum of the claims. We assume

that the estate and the claims are non-negative. The question that arises is:

how to divide the estate among agents? This question is answered by means
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of defining rules. A rule, f , is a map which assigns to any problem (c, E) a

vector f (c, E) in ZN , where fi (c, E) denotes the part of the estate received
by agent i ∈ N.

The estate to be distributed and the claims come in indivisible units, i.e.

(c, E) ∈ NN×N. It is not difficult to check that our results are still valid if we
take (c, E) ∈ RN

+×N. Allocation of organs for transplants, college admissions,
and in general queuing problems where individual claims consisting of a finite

number of jobs, could be some problems in which the claims are indivisible.

In Moulin (2000, 2002a) and Moulin and Stong (2002) some of these discrete

problems are studied.

We now give a list of problems that fit in our general framework. Notice

that the difference among these problems is, mainly, in the definition of what

a rule is.

A bankruptcy problem, BP , is a pair (c, E) ∈ NN × N where C ≥ E.

We denote the set of all bankruptcy problems as B. A bankruptcy rule is a
function fB : B→ ZN satisfying that for all (c, E) ∈ B,Pi∈N fBi (c, E) = E

and 0 ≤ fBi (c, E) ≤ ci for all i ∈ N.

A surplus problem, SP , is a pair (c, E) ∈ NN×N. We denote the set of all
surplus problems as S. A surplus rule is a function fS : S → ZN satisfying
that for all (c, E) ∈ S,Pi∈N fSi (c, E) = E and 0 ≤ fSi (c, E) for all i ∈ N.

An allocation problem, AP , is a pair (c, E) ∈ NN ×N. We denote the set
of all allocation problems as A. An allocation rule is a function fA : A →
ZN satisfying that for all (c, E) ∈ A,Pi∈N fAi (c, E) = E.

A loss problem, LP , is a pair (c, E) ∈ NN × N where C ≥ E. We denote

the set of all loss problems as L. A loss rule is a function fL : L → ZN

satisfying that for all (c, E) ∈ L, Pi∈N fLi (c, E) = E and fLi (c, E) ≤ ci for

all i ∈ N .

Remark 1 These four problems cover all possible definitions of a rule. Given
i ∈ N , a bankruptcy rule satisfies 0 ≤ fBi (c, E) ≤ ci, a surplus rule satisfies

0 ≤ fSi (c, E), a loss rule satisfies f
L
i (c, E) ≤ ci, and an allocation rule has

no restrictions. Notice that every bankruptcy rule is a loss rule and every

surplus rule is an allocation rule. A bankruptcy rule fB is not a surplus rule

because fB is not defined for surplus problems with C < E. Similarly, a loss

rule is not an allocation rule.
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In BP and LP we need to impose the condition C ≥ E because otherwise

it is not possible to find f satisfying
P

i∈N fi (c, E) = E and fi (c, E) ≤ ci

for all i ∈ N.

We now present the two additivity properties considered in this paper.

Additivity on E (A1). For all (c, E) and (c, E0),

f(c, E +E0) = f(c, E) + f(c, E0).

Moulin (1987) and Chun (1988) use this property in surplus problems and

in allocation problems, respectively. Additivity on E indicates that dividing

the estate among the agents is the same as dividing, first, one part of the

estate, and afterwards, the remaining estate.

Additivity on (c, E) (A2). For all (c, E) and (c0, E0),

f(c+ c0, E +E0) = f(c, E) + f(c0, E0).

Bergantiños and Méndez-Naya (2001) introduced this property in bank-

ruptcy problems and in allocation problems. Suppose that the product sold

by a firm depends on several parts (quality and marketing, for instance). The

manager wants to award the employees with E + E0 days off. This revenue
can be divided into two parts: one motivated by quality (E) and the other

by marketing (E0). We can also determine the contribution of every agent of
the firm to quality (c) and marketing (c0). Now we can allocate the revenue
according to two procedures. First, we allocate the total revenue (E + E0)
according to the total contribution (c+ c0). Second, we allocate the revenue
motivated by quality (E) according to the contribution to quality (c), and

the revenue of marketing (E0) according to the contribution to marketing
(c0). A2 guarantees that both procedures coincide.
Usually it is not very difficult to determine the contribution of the agents

to each part (for instance, hours worked) and to the total revenue. But

sometimes it seems impossible to know exactly the contribution of each part

to the total revenue. Under these circumstances it appears that the second

procedure cannot be applied. However, if the allocation rule satisfies A2, its

application is possible since both procedures coincide.
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There is no logical relation between A1 and A2. Later, we will see ex-

amples of rules satisfying A1 but not A2 and rules satisfying A2 but not

A1.

Remark 2 Another possibility is to define additivity on c. For all (c, E)

and (c0, E), f(c + c0, E) = f(c, E) + f(c0, E). Nevertheless, no rule satis-
fies this property because

P
i∈N fi (c+ c0, E) = E,

P
i∈N fi (c, E) = E, andP

i∈N fi (c
0, E) = E.

Three properties will now be considered. Symmetry is a standard prop-

erty that could be defined in each of the four problems studied in this paper.

Symmetry (SYM). For every problem (c, E), if ci = cj, then

fi(c, E) = fj(c, E).

Assume that agent i0s claim is larger than agent j0s claim. Weak order
preservation says that agent i must receive at least the same amount as agent

j.

Weak Order Preservation (WOP). For every problem (c, E), if ci > cj,

then

fi (c, E) ≥ fj (c, E) .

Assume that agent i0s claim is at least as large as agent j0s claim. Order
preservation says that agent i must receive at least the same amount as agent

j.

Order Preservation (OP). For every problem (c, E), if ci ≥ cj, then

fi (c, E) ≥ fj (c, E) .

Of course, OP implies both SYM and WOP .

Even though SYM and OP are appealing properties, no rule satisfies

them, as the following Lemma shows:

Lemma 3 There is no rule satisfying SYM or OP for discrete problems.

Proof. Take two agents with equal claims and E = 1. Since the one unit
cannot be split equally between the agents, SYM and OP must fail.
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3 The additive rules

In this section we characterize the set of additive rules in the four problems.

In Theorem 4 we characterize the rules satisfying A1 and in Theorem 6 the

rules satisfying A2. Finally, we compare, briefly, the rules satisfying A1 with

the rules satisfying A2.

Theorem 4 a) An allocation rule fA satisfies A1 if and only if for all

(c, E) ∈ A,
fAi (c, E) = Eαi (c) for all i ∈ N

where α : NN → ZN satisfies
P

i∈N αi (c) = 1 for all c ∈ NN .

b) A surplus rule fS satisfies A1 if and only if for all (c, E) ∈ S,

fSi (c, E) =

(
E if i = s(c)

0 otherwise

where s : NN → N .

c) There is no loss rule satisfying A1.

d) There is no bankruptcy rule satisfying A1.

Proof. a) It is trivial to prove that, if fA (c, E) = Eα (c), then fA

satisfies A1.

We now prove the converse. Suppose that fA is an allocation rule sat-

isfying A1. Let α : NN → ZN be such that α(c) = fA(c, 1). Since f is an

allocation rule, we conclude that
P

i∈N αi(c) = 1. Given (c, E) ∈ A and

i ∈ N, by A1, fAi (c, E) = EfAi (c, 1) = Eαi (c) .

b) Since all surplus rules are allocation rules, the allocation rules of part

a) satisfying f (c, E) ≥ 0N for all (c, E) ∈ S are all the surplus rules satisfying
A1.

Assume that fS is defined as fS (c, E) = Eα (c) with
P

i∈N αi (c) = 1

and fS (c, E) ≥ 0N for all (c, E) ∈ S. Since
P

i∈N αi (c) = 1 for all c ∈ NN ,

it is not difficult to conclude that, given c ∈ NN , there exists ic ∈ N such

that αic (c) = 1 and αi (c) = 0 if i 6= ic. Considering s : NN → N such that

s (c) = ic the result holds trivially.

c) Using arguments similar to those used in part a) we can conclude that

if fL is a loss rule satisfying A1. Then, for all (c, E) ∈ L, fL (c, E) = Eα (c)
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where
P

i∈N αi (c) = 1. Then, given c ∈ NN , there exists j ∈ N such that

αj (c) ≥ 1. If E > cj, then fLj (c, E) = Eαj (c) > cj. Hence, fL is not a loss

rule.

d) Since every bankruptcy rule is a loss rule, part d) is a consequence of

part c).

The allocation and surplus rules satisfying A1 have a special structure.

Given a vector of claims c, what really matters is the way in which we divide

one unit among the agents. When there are E units, any agent receives E

times what he received when there is one unit.

Notice that in SP all the estate is received by one agent, meanwhile the

rest receive zero. This agent is selected depending on c.

Consider the family FS of surplus rules where an agent with the highest

claim receives all the estate and the rest of agents receive nothing. Formally,

FS =

 fS | ∀c ∈ NN , ∃s (c) ∈ N such that cs(c) = max
j∈N

cj,

fSs(c) (c, E) = E and fSi (c, E) = 0 if i 6= s (c)

 .

This kind of rules frequently appears in several real-life situations where

a prize is given to a single person. For example, the presidency of a chamber

may be given to the candidate with more votes and, in case of tie, to the

eldest candidate from among those with maximum number of votes. In this

case the set of agents is the set of candidates, the estate is the presidency,

and the claim of each candidate is the number of votes he receives.

The next corollary characterizes FS as the set of rules satisfying A1 and

WOP.

Corollary 5 A surplus rule fS satisfies A1 and WOP if and only if fS ∈
FS.

Proof. It is clear that the rules of FS satisfy A1 and WOP .

Assume that fS is a surplus rule satisfying A1 andWOP . By Theorem 4,

we know that there exists s (c) ∈ N such that fSs(c) (c, E) = E and fSi (c, E) =

0 if i 6= s (c) . Since fS satisfies WOP we conclude that cs(c) = maxj∈N {cj}.
Hence, fS ∈ F S.

8



This corollary is a tight characterization result. Let gS be given by

gSi (c, E) =

(
E if i = s (c)

0 otherwise

where s : NN → N satisfies cs(c) = mini∈N {ci} for all c ∈ NN . By Theorem

4b), gS satisfies A1. However, it does not satisfy WOP . For example,

gS ((2, 1) , 1) = (0, 1) .

Let hS be given by

hSi (c, E) =


E if i = s (c) and C 6= E

0 if i 6= s (c) and C 6= E

ci if C = E

where s : NN → N satisfies cs(c) = maxi∈N {ci} for all c ∈ NN . It is clear

that hS satisfies WOP . However, it does not satisfy A1. Let N = {1, 2} be
and assume s ((1, 1)) = 1. Then,

hS ((1, 1) , 1) + hS ((1, 1) , 2) = (1, 0) + (1, 1) = (2, 1)

hS ((1, 1) , 3) = (3, 0) .

The next theorem characterizes the rules satisfying A2.

Theorem 6 a) An allocation rule fA satisfies A2 if and only if, for all

(c, E) ∈ A,
fAi (c, E) = βi (c) +Exi for all i ∈ N

where β : NN → ZN satisfies
P

i∈N βi (c) = 0 for all c ∈ NN and β (c+ c0) =
β (c) + β (c0) for all c, c0 ∈ NN . Moreover, x ∈ ZN and Pi∈N xi = 1.

b) A surplus rule fS satisfies A2 if and only if there exists i0 ∈ N such

that for all (c, E) ∈ S,

fSi (c, E) =

(
E if i = i0

0 otherwise.

c) A loss rule fL satisfies A2 if and only if there exists i0 ∈ N such that

for all (c, E) ∈ L,

fLi (c, E) =

(
ci − (C −E) if i = i0

ci otherwise.

d) There is no bankruptcy rule satisfying A2.
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Proof. a) It is straightforward to prove that, if fA (c, E) = β (c) + Ex,

then fA satisfies A2.

We now prove the converse. Suppose that fA is an allocation rule satis-

fying A2. Given an allocation problem (c, E) and a rule fA satisfying A2,

fA(c, E) = fA(c, 0) + fA(0N , E).

Since fA satisfies A2, fA(0N , E) = EfA(0N , 1). Consider x = fA(0N , 1).

Then, x ∈ ZN andPi∈N xi =
P

i∈N fAi (0N , 1) = 1.

Consider β : NN → ZN given by β (c) = fA(c, 0) for all c ∈ NN . Then,P
i∈N βi(c) =

P
i∈N fAi (c, 0) = 0. Moreover, for all c, c0 ∈ NN , β(c + c0) =

fA(c+ c0, 0) = fA(c, 0) + fA(c0, 0) = β(c) + β(c0).
b) Since every surplus rule is an allocation rule, the allocation rules of

part a) satisfying f (c, E) ≥ 0N for all (c, E) ∈ S are all the surplus rules
satisfying A2.

Assume that fS is defined as in part a) and fS (c, E) ≥ 0N for all (c, E) ∈
S. Given c ∈ NN , β (c) = fS(c, 0) ≥ 0N and

P
i∈N fSi (c, 0) = 0. Hence,

β (c) = 0N . Since x = fS(0N , 1) ≥ 0N and
P

i∈N xi = 1, there exists i0 ∈ N

such that xi0 = 1 and xi = 0 for all i ∈ N \ {i0} . Now the result holds

trivially.

c) It is trivial to prove that, if fL (c, E) = c − (C −E) 1{i0}, then fL

satisfies A2.

We now prove the converse. Assume that fL satisfiesA2. Since fL (c, E) ≤
c and

P
i∈N fLi (c, E) = E we conclude that, for all i ∈ N ,

• fL
¡
1{i}, 1

¢
= 1{i}, and

• fL
¡
1{i}, 0

¢
= 1{i} − 1{i0} where i0 ∈ N .

Consider i ∈ N such that fL
¡
1{i}, 0

¢
= 1{i} − 1{i0}. Consider j ∈ N \ {i}

such that fL
¡
1{j}, 0

¢
= 1{j} − 1{j0}. Since f satisfies A2,

fL
¡
1{i,j}, 1

¢
= fL

¡
1{i}, 1

¢
+ fL

¡
1{j}, 0

¢
= 1{i} + 1{j} − 1{j0}

fL
¡
1{i,j}, 1

¢
= fL

¡
1{j}, 1

¢
+ fL

¡
1{i}, 0

¢
= 1{j} + 1{i} − 1{i0}

which means that i0 = j0.
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We have proved that there exists i0 ∈ N such that fL
¡
1{i}, 0

¢
= 1{i}−1{i0}

for all i ∈ N .

Given (c, E) ∈ L, we can find a partition {N1, {i} , N2} of N such that

ci = c1i + c2i , c
1
i ∈ N, c2i ∈ N, and E =

P
j∈N1 cj + c1i . Since f

L satisfies A2,

fL (c, E) =X
j∈N1

fL
¡
cj1{j}, cj

¢
+ fL

¡
c1i 1{i}, c

1
i

¢
+ fL

¡
c2i 1{i}, 0

¢
+
X
j∈N2

fL
¡
cj1{j}, 0

¢
=

X
j∈N1

cjf
L
¡
1{j}, 1

¢
+ c1i f

L
¡
1{i}, 1

¢
+ c2i f

L
¡
1{i}, 0

¢
+
X
j∈N2

cjf
L
¡
1{j}, 0

¢
=

X
j∈N1

cj1{j} + c1i 1{i} + c2i
¡
1{i} − 1{i0}

¢
+
X
j∈N2

cj
¡
1{j} − 1{i0}

¢
= c− (C −E) 1{i0}.

d) Suppose that N = {1, 2}, E = 5, and c = (7, 7). We can find i ∈ N

such that fBi (c, E) ≥ 3. Assume without loss of generality that i = 1.
Since fB satisfies A2, fB1 (c, E) = fB1 ((6, 1), 1)+ fB1 ((1, 6), 4) ≤ 1+1 = 2,

which is a contradiction.

Remark 7 Part c) of Theorem 6 cannot be proved using part a) because the
set of allocation problems (A) is different from the set of loss problems (L).
If (c, E) ∈ L, then C ≥ E, but in A, C < E is also possible. This means

that an allocation rule could satisfy A2 in L but not in A. For example, let
i0, i1 ∈ N , i0 6= i1 and consider the rule fi (c, E) = ci − (C −E) if i = i0

and C ≥ E, fi (c, E) = ci − (C −E) if i = i1 and C < E, and fi (c, E) = ci

otherwise. This rule satisfies A2 in L but not in A.

The allocation rules satisfying A2 can be divided into two terms: the

first term depending on c (β (c)) and the second term depending on E (Ex) .

In the first term, given a vector of claims c, the function β reassigns units

of the indivisible good among agents in such a way that some agents must

provide to other agents some units of this good. In the second term any agent

receives E times the amount he would receive when all agents claim 0 and

only 1 unit is available. Notice that the class of allocation rules satisfying A2

is unrelated to the class of allocation rules satisfying A1 (there are allocation

rules satisfying A2 but not A1 and vice versa). As a consequence of Theorems
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4 and 6, an allocation rule fA satisfies A1 and A2 if and only if for all

(c, E) ∈ A, fA (c, E) = Ex where x ∈ ZN andPi∈N xi = 1.

The surplus rules satisfying A2 are those in which an agent receives all

the estate and the rest receive nothing. Notice that the class of surplus rules

satisfying A2 is a subset of the class of surplus rules satisfying A1.

The loss rules satisfying A2 are those in which an agent loses the total loss

(C −E) and the rest lose nothing. Notice that there is no loss rule satisfying

A1. Moreover, it is not difficult to check that the surplus rules satisfying A2

are dual2 of the loss rules satisfying A2, when we consider both as allocation

rules.

In BP there is no bankruptcy rule satisfying A1 or A2.

Our main conclusions are: In bankruptcy problems, both A1 and A2 are

very restrictive properties. In loss and surplus problems with A2, we char-

acterize the “everything for one agent” rules. Moreover, the rules satisfying

A2 in loss problems are dual of the rules satisfying A2 in surplus problems.

Notice that the results obtained with A1 are not so “homogeneous” as with

A2. For instance, the comments about duality are not true with A1.
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