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Abstract
Alternating offers bargaining has been extensively used to model

two-sided negotiations. The celebrated model of Rubinstein (1982) has
provided a formal justification for equitable payoff division. A typical
assumption of these models under risk is that the termination event
means a complete and irrevocable breakdown in negotiations. In this
paper, the meaning of termination is reinterpreted as the imposition
to finish negotiations immediately. Specifically, bargaining terminates
when the last offer becomes definitive. While Rubinstein’s model pre-
dicts an immediate agreement with stationary strategies, we show that
the same payoff allocation is attainable under non-stationary strate-
gies. Moreover, the payoffs in delayed equilibria are potentially bet-
ter for the proposer than those in which agreement is immediately
reached.
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1 Introduction

Many economic situations can be modelled as two agents with independent
interests who may benefit from cooperation. However, no agreement can be
achieved without the approval of both individuals. Assuming the agents are
rational, it seems natural to predict that they will cooperate, and the question
arises how the benefits from cooperation are bound to be distributed between
them.
In his seminal paper, Rubinstein [20] addressed this question. He studied

a simple bargaining protocol of alternating offers between two agents who
want to share a pie of size 1. The agents alternatively propose a share of the
pie until a proposal is accepted. No prior deadline is imposed on the number
of offers that can be made. The driving force of the negotiation is that agents
are impatient. The pie shrinks as time passes by. Binmore, Rubinstein and
Wolinsky [2] reformulated the model in a way that the driving force is the
possibility of breakdown after a rejection, in which case both agents get
nothing. In both models, the only subgame perfect (SP) equilibrium has
two main properties: First, it is stationary. Second, the advantage of being
the first proposer disappears as the cost of delay (Rubinstein [20]) or the
probability of breakdown (Binmore et al. [2]) vanishes1.
In the classical literature on bargaining under risk, as in [2], termination

means a complete and irrevocable breakdown in negotiations, so that no
agreement is possible afterwards. The reason why the agents reach such
radical dead-end is explained in [17, p. 73] as follows: the players may
get fed up as negotiations become protracted, and thus walk away from the
negotiation table [...] Another possible cause for the existence of a risk of
breakdown is that ‘intervention’ by a third party results in the disappearance
of the ‘gains from cooperation’ that exists between the two players.
In the first case, it is certainly plausible that an agent gets fed up and

wants to stop negotiating immediately. In this case, however, we claim that
the rational thing to do is to accept the last offer on the table (as long as it is
better than nothing). In the second case, external intervention may become
so imminent that agents are forced to finish negotiations immediately. In
this case, we assume that even though there is no time for making a new
proposal, or doing so is too costly, it is still possible to accept the last offer.

1The resemblance between the results in [20] and [2] has led to the interpretation of
the cost of delay as an exogenous probability of breakdown.
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We emphasize that this assumption represents only a possible scenario, to be
contrasted with the classical scenario in which the pie disappears so quickly
that there is no time to react, and both players obtain zero.
For example, assume a client asks some firm to estimate the performance

of a complex project. Due to this complexity, the firm does not have capacity
to perform it by itself. The firm needs either to contract new employers, or
to renegotiate the labor conditions with the ones that it already has, or to
negotiate with another firm. Assume that during the negotiation process
between the firms (or firm-employers), the client gets fed up and decides
to cancel the offer so that he can hire another firm. In this new situation,
the original firm is always able to make a quick offer that would surely be
accepted by the client.
Another example: a patent holder offers a new technology to a coalition of

firms, who have to negotiate how to divide the returns from the exploitation
of the technology. If the negotiations get protracted, the patent holder may
decide to offer the technology to a third party. In this new situation, the
coalition of firms is always able to present a quick agreement that would be
accepted by the patent holder.
We model these situations as follows: Two agents bargain over the share

of a pie of size 1 by alternating offers. Each time an offer is rejected, there is a
(small) probability 1−ρ that the last proposal becomes a ‘take-it-or-leave-it’
offer (termination). The responder can then reconsider to accept this last
offer. There is a discount factor δ < 1, so that an agent’s utility for a piece of
size u at time t is given by δtu. If the last offer is rejected after termination,
the utility is zero for both agents (breakdown).
Many situations can be described in this manner. First, there can be

an external authority that may force the agents to terminate negotiations
immediately (for example, a superior authority to which they are delegating).
Second, there may exist a small probability that the negotiation proceedings
become public and one of the parties cannot change his offer in order to keep
its credibility. Third, one of the parties may make a mistake with a small
probability (following the ideas presented in [21]) and accept an offer that
could have been improved had he been more insistent.
Hence, after an offer is made, the proposer may be committed to it in such

a way that further renegotiation is not possible. This leads to an endogenous
payoff allocation after bargaining termination, as opposed to the standard
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alternating-offers model under risk2.
In real-life negotiations, small delays may happen because the agents

begin with proposals that are more favorable to them than the ones they
actually consider as the most reasonable (cheap talk). The driving force is
that there is a small probability that the other party considers the offer as
final.
Our model combines both the discounting factor of [20] and the risk of

breakdown of [2]. What induces the agents to reach an agreement is their
impatience, and not the risk of termination (as opposed to [2], where termi-
nation means breakdown). See [17, Section 4.6] for a model that combines
discounting and the risk of breakdown.
There exist models in which the probability of breakdown is not constant.

Hart [9, Section III] studied a model in which a crunch happens at round T ,
at which point the size of the pie shrinks rapidly. Even though the breakdown
can be seen as a radical crunch, in the model presented in this paper it cannot
be anticipated. In [3] and [13], the end of the negotiations depends on the
offers and concessions previously made by the agents, and hence it cannot
be seem as a termination in the sense studied here.
In Section 2 we summarize the results and compare them with those

in the existing literature. In Section 3 we formally present the model and
characterize some of the payoffs. In Section 4 we study the stationary SP
equilibria. In Section 5 we study the non-stationary SP equilibria. In Section
6 we briefly discuss the case when the agents are risk averse. In Section 7 we
give some concluding remarks. In the Appendix (Section 8) we prove most
of the results.

2 Summary of the results

Our results may be summarized as follows: If the agents are infinitely patient
(i.e. they do not care when agreement is reached) then their optimal strategy
is to permanently ask for the whole pie. As the agents become more impa-
tient, delay may occur, but an agent eventually presents a reasonable offer
and agreement may be reached without termination. If agents are impatient

2A recent model with complete information that makes endogenous the level of sur-
plus destruction after the deadline is [16]. In their model, however, the deadline is also
endogenously imposed.
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enough, we recover Rubinstein’s result of a unique stationary SP equilibrium
with immediate agreement.
Our model explains delay maintaining the original assumptions of Ru-

binstein’s, i.e. unbounded rationality, complete information and no outside
options, as well as the most tractable concept of subgame perfect equilib-
rium. See [6] for a recent work explaining delay in a model with incomplete
information. Delay due to outside options can be found in [15] and references
therein3. Delay due to externalities can be found in [11]. Delay may also arise
when the agents can destroy part of the pie ( [1, 14]) or are committed not
to accept poorer proposals than those already rejected ([7]).
Our model generalizes [20] in the sense that both models coincide when

ρ = 1. However, our model can easily be generalized so as to allow both
kinds of termination: the original breakdown of [2] with no possibility of
agreement, and our termination with a last ‘take-it-or-leave-it’ offer.
For arbitrary values of ρ and δ, we can distinguish three regions in the set

{(ρ, δ)}ρ,δ∈]0,1[. A first region IA where “Immediate Agreement” is reached,
i.e. the responder agrees on the offer at time 0 (like in [20]). A second
region DA (“Delayed Agreement”) where agreement is reached, but with a
possible delay. Finally, a third region PD (“Perpetual Disagreement”) where
termination always occurs. The three regions are represented in Figure 1.
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Figure 1: Regions IA, DA and PD.

We are interested in studying the agreements that arise when ρ and δ

are close to 1. A value of δ close to 1 can be interpreted as either that

3Outside options may cancel out the effect of incomplete information, as shown in [4].
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agents are patient (see [18, p. 52]) or that the interval between offers and
counteroffers is short. A value of ρ close to 1 means that the probability
of termination is small. In particular, these assumptions arise when the
probability of termination (and discounting) depend on time, but the delay∆
between offers and counteroffers goes to zero. Namely, we can write ρ = e−r∆

and δ = e−s∆ for some r > 0 and s > 0. Then, the PD condition is never
satisfied for∆ small enough4. Thus, when ρ and δ are close to 1, PD vanishes
and the only significant regions are those in which the agents make reasonable
offers.
The SP equilibrium payoffs for the proposer as a function of δ when

ρ = 0.5 are depicted in Figure 2. The figures for other values of ρ are simi-
lar. In IA there exists a unique SP equilibrium payoff allocation

¡
1
1+δ
, δ
1+δ

¢
which coincides with Rubinstein’s. Moreover, SP equilibria are stationary
and efficient (Theorem 1). The dotted line in Figure 2 represents the secu-
rity payoff 1−ρ

1−ρ2δ2 , which corresponds to the strategy of permanently asking
for the whole pie, and waiting for termination to occur (Remark 1).
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Figure 2: The SP equilibrium payoffs for the proposer as a function of δ when
ρ = 0.5. The dotted line represents the security level payoff.

In PD, there does not exist any SP equilibrium with immediate agree-
ment, and thus the dotted line in Figure 2 coincides with the unique SP
equilibrium payoff (Proposition 1).
InDA, there are no stationary SP equilibria, and there exists a continuum

of SP equilibrium payoffs (Theorem 2). Remarkably, Rubinstein’s alloca-

4As ∆ aproaches zero, we fall into IA for 2s > r; and into DA for 2s ≤ r.
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tion
¡
1
1+δ
, δ
1+δ

¢
is always an attainable outcome in DA under non-stationary

strategies for any value of ρ (Corollary 1). Hence, even though Rubinstein’s
stationary equilibrium is not robust to reinterpretations of the meaning of
termination, the allocation

¡
1
1+δ
, δ
1+δ

¢
is. An immediate consequence is that

the classical assumption of the meaning of termination as breakdown can be
made without loss of generality, as long the final payoff allocation is con-
cerned.
Another remarkable feature in DA is that, in general, the payoffs attain-

able when agreement is immediate (below Ma in Figure 2) are potentially
worse for the proposer than those attainable when agreement is delayed (be-
low M r in Figure 2). The interpretation of this phenomenon is as follows:
The most unfavorable SP equilibria for the proposer are those in which her
initial proposal is accepted. Hence, in general it is beneficial to begin with an
unacceptable offer. Do bargainers behave in this manner in real life negotia-
tions? It is obvious that they do. For example, in the Spanish house market,
the consultants Re/Max and Look&Find have recently pointed out that sell-
ers put a high price planning to decrease it during the bargaining. Claiming
high prices gives somehow a favorable status quo in case negotiations should
finish immediately.
It should be stressed that we characterize all the SP equilibria payoffs,

and not only the stationary ones. There are no stationary SP equilibria in
DA, only non-stationary ones. The result is also true for the other direc-
tion: if there are non-stationary SP equilibria, then there are no stationary
ones. In IA, the only stationary SP equilibrium is efficient (i.e. agreement
is reached immediately). In PD, the only stationary SP equilibrium is inef-
ficient (agreement is only reached after termination).

3 The model

Two agents, A and B, bargain over a pie of size 1 following a protocol of
alternating offers: At time t = 0, 2, 4, ..., agent A is the proposer. At time
t = 1, 3, 5, ..., agent B is the proposer. At time t = 0, A proposes a division
x = (xA, xB), where xA + xB ≤ 1. B should then accept or reject the offer.
If he accepts, the game finishes with this division at time t = 0. If he rejects,
then with probability ρ, the process is repeated at time t = 1, with B being
the proposer. With probability 1− ρ, the proposal made by A becomes final
(termination), and B should decide if he accepts or rejects it. If he accepts,
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the game finishes with this share at time t = 0. If he rejects, the game
finishes in disagreement and each agent receives zero (see Figure 3). Each
time an offer is rejected, the value of the pie decreases by a factor of δ ∈ [0, 1[
for each agent. This means that a share of xi of the cake at time t yields a
utility of δtxi for agent i.
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x

B

yes

B

0

no

no
ρ

1–ρ

yes[x; 0]
[x; 0]

disagreement

y

[y; 1]

[y; 1]

disagreement
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yes

no

1–ρ

ρ

0

A

yes

B

A

A
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ρ

1–ρ

yes[x; 0]
[x; 0]

disagreement

y

[y; 1]

[y; 1]

disagreement

no

yes

no

1–ρ

ρ

0

A

yes

B

A

Figure 3: The first two periods of the bargaining model.

The factor 1− ρ can be considered as some kind of external factor which
represents the belief that the proposal on the table will become a ‘take-it-or-
leave-it’ offer. On the other hand, the discount factor δ may be an internal
factor that represents impatience.
For simplicity, we assume that agents propose admissible shares of the

pie (i.e. xi ∈ [0, 1] for i ∈ {A,B} besides xA + xB ≤ 1). By termination we
mean that the last offer is made final (and not necessarily that each agent
receives zero). We say that bargaining finishes in agreement when the agents
follow strategies in which an offer is accepted without termination.
The structure of the game is stationary, and so all the subgames that begin

when agent i makes an offer are equivalent. Let U be the set of possible SP
equilibrium payoffs for the proposer in these subgames (by symmetry, this
set is the same for both agents). If U is nonempty, we denote the supremum
of U as M , and the infimum of U as m.
There are two kinds of SP equilibria. Let Ua be the set of payoffs for A in

the equilibria in which the first offer is accepted. Let U r be the set of payoffs
for A in the equilibria in which the first offer is rejected.
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Remark 1 In this model, A can assure herself a positive expected final payoff
by always offering (1− ε, ε). If her offer is rejected but termination occurs,
perfectness of the equilibrium will imply that B accepts. Since this is true for
any ε > 0, we assume without loss of generality that an agent always accepts
a payoff of at least 0 when termination occurs. Hence, the SP equilibrium
payoff 5 for the proposer is at least

∞X
t=0

(ρδ)2t (1− ρ) =
1− ρ

1− ρ2δ2
.

This is the final payoff for the proposer when both agents always ask for
the whole pie. It represents the security level payoff for the proposer. Hence,
if U 6= ∅,

1− ρ

1− ρ2δ2
≤ m. (1)

Intuitively, it seems clear that if the agents are sufficiently patient (δ
large) or the risk of breakdown is sufficiently large (ρ small), then they will
keep asking for the whole pie until a proposal is made final (termination).
We will see that the set of pairs (ρ, δ) where this happens is

PD :=
©
(ρ, δ) : δ (1− ρ) > ρ

¡
1− ρδ2

¢ª
where PD stands for “Perpetual Disagreement”.

Proposition 1 If (ρ, δ) ∈ PD, then there exists a unique SP equilibrium. In
this equilibrium, the proposer always claims the whole pie, and the responder
rejects when this proposal is not final. Moreover,

U = U r =

½
1− ρ

1− ρ2δ2

¾
.

Proof. Assume we are in a SP equilibrium and the proposer, say A, offers
(xA, xB) and B accepts. By rejecting, B can ensure himself a final payoff of
at least ρδm+(1− ρ)xB. Thus, ρδm+(1− ρ) xB ≤ xB, i.e. δm ≤ xB. Since
xA+xB ≤ 1, we have xA ≤ 1− δm. On the other hand, A can assure herself
a payoff of at least m. Thus, m ≤ xA. Under (1),

m ≤ xA ≤ 1− δm
1− ρ

1− ρ2δ2
≤ xA ≤ 1− δ

1− ρ

1− ρ2δ2

5From now on, we omit the term ‘expected’ when referring to final payoffs.
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which implies 1− ρ ≤ 1− ρ2δ2− δ (1− ρ). Thus δ (1− ρ) ≤ ρ
¡
1− ρδ2

¢
and

hence (ρ, δ) /∈ PD. This means that in PD there cannot be an accepted
proposal in SP equilibrium. From this, it is clear that the only optimal
strategy is to ask for the whole pie. In particular, consider the following
strategy for A: if she is the proposer, she offers (1, 0); if she is the responder
and the offer is (xA, xB), she accepts iff xA >

δ(1−ρ)
1−ρ2δ2 . In case of termination,

she accepts any offer. B follows the same strategy.
These strategies constitute a SP equilibrium when (ρ, δ) ∈ PD.
If A deviates when she is the proposer, she receives at most 1 − δ(1−ρ)

1−ρ2δ2 ,

an amount that is strictly less than 1−ρ
1−ρ2δ2 in PD.

If A deviates when she is the responder and accepts xA ≤ δ(1−ρ)
1−ρ2δ2 , she will

receive no more than

ρδ
1− ρ

1− ρ2δ2
+ (1− ρ)xA (2)

which is the payoff she would receive by rejecting. Finally, if A deviates when
she is the responder and rejects xA >

δ(1−ρ)
1−ρ2δ2 , she will get (2), which is strictly

less than xA.
The set PD is represented in Figure 1.

4 Stationary SP equilibria

We study the SP equilibria which satisfy the following properties:

Efficiency Whenever a proposer makes an offer, this proposal is accepted
by the responder. Moreover, the proposals always satisfy xA+ xB = 1.

Stationarity The proposer always makes the same offer.

Given stationarity, we denote the offer made by agent i in SP equilib-
rium as x∗i . Given efficiency, when A proposes (x∗A, 1− x∗A), B accepts.
By perfectness, the offer made by A should leave B indifferent to accept-
ing or rejecting. If B rejects and there is no termination (probability ρ),
B will propose (1− x∗B, x∗B) and this proposal is accepted by A (by effi-
ciency). Thus, 1 − x∗A = ρδx∗B + (1− ρ) (1− x∗A) . Analogously, 1 − x∗B =
ρδx∗A + (1− ρ) (1− x∗B) .
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We obtain the unique solution

x∗A = x
∗
B =

1

1 + δ
. (3)

Thus, any SP equilibrium payoff satisfying efficiency and stationarity is
characterized by this offer. Notice that this payoff for the proposer coincides
with the one proposed by Rubinstein [20]. Such a strategy profile is a SP
equilibrium in the following region:

IA :=
©
(ρ, δ) : ρ

¡
1− δ2

¢
> δ (1− ρ)

ª
where IA stands for “Immediate Agreement”.

Theorem 1 a) There exists an efficient and stationary SP equilibrium if
and only if δ (1− ρ) ≤ ρ

¡
1− δ2

¢
.

b) if ρ
¡
1− δ2

¢
> δ (1− ρ), then the above SP equilibrium is unique; and

c) if δ (1− ρ) = ρ
¡
1− δ2

¢
, then there exists one inefficient SP equilib-

rium. In this SP equilibrium, A asks for the whole pie in the first round, B
rejects and proposes

¡
δ
1+δ
, 1
1+δ

¢
in the second round, and A accepts.

Moreover, δ (1− ρ) ≤ ρ
¡
1− δ2

¢
implies U = Ua =

©
1
1+δ

ª
.

Proof. See Appendix.
We represent the set IA in Figure 1. The set includes all the pairs (ρ, δ)

with ρ = 1, where this model coincides with Rubinstein’s [20].

5 Non-stationary SP equilibria

Since we have characterized the SP equilibria in IA and PD, we focus our
attention on the remaining values of (ρ, δ). We define

DA := {(ρ, δ) : (ρ, δ) /∈ IA ∪ PD}

where DA stands for “Delayed Agreement”.
Let em := maxn (1−δ)(1+ρδ)

1−ρδ2 , 1−ρ
1−ρ2δ2

o
, fMr := ρδ (1− em)+1−ρ; andgMa :=

1− δ em.
Theorem 2 If (ρ, δ) ∈ DA, then there exist non-stationary SP equilibria.
Furthermore, the set of SP equilibrium payoffs for the proposer is given by
U = U r =

hem, fM r
i
and Ua =

hem,gMa
i
.
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Proof. See Appendix.
These intervals are represented in Figure 2 for ρ = 0.5. Notice that when

(ρ, δ) belongs to the interior of DA, we have fMr >gMa.
The strategy profiles which yield these intervals are described in Table I.

We use the language of automata (see [18, p. 39-40]). Acceptance applies
when the offer is not final. If the offer is final, the responder always accepts
(as explained in Remark 1). The strategies are the most favorable to A in
column Favor A; the strategies are the most favorable to B in column Favor
B; the initial offer is accepted in column Agreement whengMa > u; and the
initial offer is rejected in column Delay.

TABLE I: SP equilibrium strategies in DA

Favor A Favor B Agreement Delay

A offers (1, 0) (em, 1− em) (u, 1− u)
³
u−ρδ(1−em)

1−ρ , 0
´

A accepts xA ≥ 1− em xA > δ em − −
B offers (1− em, em) (0, 1) − −
B accepts xB > δ em xB ≥ 1− em − −
Transitions if A deviates, if B deviates, if A deviates, go to Favor B

go to Favor B go to Favor A Otherwise, go to Favor A.

The following corollary is an important consequence of Theorem 2.

Corollary 1 Given (ρ, δ) ∈ DA, 1
1+δ
∈ Ua.

Proof. From Theorem 2, it is enough to prove that em ≤ 1
1+δ
≤gMa.

Assume first em = (1−δ)(1+ρδ)
1−ρδ2 . We have to prove (1−δ)(1+ρδ)

1−ρδ2 ≤ 1
1+δ
≤

1− δ (1−δ)(1+ρδ)
1−ρδ2 . The first inequality is equivalent to ρδ

¡
1− δ2

¢ ≤ δ2 (1− ρ),
which holds because (δ, ρ) /∈ IA. The second inequality is equivalent to
ρδ2

¡
1− δ2

¢ ≤ δ3 (1− ρ), which holds because (δ, ρ) /∈ IA.
Assume now em = 1−ρ

1−ρ2δ2 . We have to prove
1−ρ

1−ρ2δ2 ≤ 1
1+δ
≤ 1 − δ 1−ρ

1−ρ2δ2 .

The first inequality is equivalent to δ (1− ρ) ≤ ρ
¡
1− ρδ2

¢
, which holds

because (δ, ρ) /∈ PD. The second inequality is equivalent to δ2 (1− ρ) ≤
ρδ
¡
1− ρδ2

¢
, which holds because (δ, ρ) /∈ PD.
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6 Risk aversion

In the previous sections we have assumed that the agents are risk-neutral.
Hence, a natural question is how risk aversion would affect our results. In
the original Rubinstein’s paper there is no randomness and hence no need to
discuss risk attitudes. However, in our model risk aversion is not innocuous
because the agents have to make comparisons between lotteries.
Without going into formal details, we can still conjecture how risk aver-

sion affects our results. We study the frontier line between IA and DA, de-
noted as ∂A :=

©
(ρ, δ) : δ (1− ρ) = ρ

¡
1− δ2

¢ª
, and between DA and PD,

denoted as ∂D :=
©
(ρ, δ) : δ (1− ρ) = ρ

¡
1− ρδ2

¢ª
.

By Theorem 1, when (ρ, δ) ∈ ∂A and the agents are risk-neutral, there
exist exactly two possibilities for SP equilibria, namely:

• A offers ¡ 1
1+δ
, δ
1+δ

¢
and B accepts.

• A offers (1, 0) and B rejects. If there is no termination, B offers¡
δ
1+δ
, 1
1+δ

¢
and A accepts.

In both cases, A gets a final (expected) payoff of 1
1+δ
. In the first case, A

gets 1
1+δ
. In the second case, A gets either 1 (with probability 1− ρ) or δ2

1+δ

(with probability ρ).
However, under risk aversion A would strictly prefer to get 1

1+δ
. Hence,

one may expect that the set IA ”advances” whilst the set DA ”retreats”.
This implies that immediate agreement is more likely under risk aversion.
A similar argument can be followed for ∂D. When the agents are risk-

neutral, the strategy of asking for the whole pie (waiting for breakdown to
occur) is a possible SP equilibrium in both PD and ∂D. However, under risk
aversion this ”security” strategy is less attractive, and hence one may expect
that the set DA ”advances” whilst the set PD ”retreats”. This implies that
agreement is more likely under risk aversion.

7 Concluding remarks

The importance of the alternating-offers model rests on two important fea-
tures. First, it comprises most of the ideas that one may expect to find in a
real process of negotiation (see [10] for a nice discussion). For example, time
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is valuable, and still the agents perceive that they always have the choice to
make a new offer and continue the negotiation under more or less the same
circumstances. Second, it answers the question of what is a reasonable payoff
division that the agents are bound to agree. For example, Corominas-Bosch
[5] avoids the details of the bargaining process between pairs in a network by
simply assigning the division

¡
1
1+δ
, δ
1+δ

¢
in two-sided negotiations.

On the other hand, stationary strategies in general, and immediate agree-
ments in particular, are somehow problematic features. They do not seem
to have a counterpart in real-life negotiations. Stationary strategies imply
that each agent should not take into account previous offers and rejections.
Immediate agreement rules out the possibility of small and harmless delays
that seem very willing to happen in real-life negotiations.
This paper maintains the main features of the classical alternating offers

model. In particular, it explains delay maintaining the original assumptions
of Rubinstein’s, i.e. unbounded rationality, complete information and no
outside options, as well as the most tractable concept of subgame perfect
equilibrium.
It is worth to note that for some parameter values there exist equilibria

in which the players begin by making unacceptable offers. In the classical
work of Harsanyi-Zeuthen [23, 8] and Raiffa [19] (see [12, Ch. 6.7]), the
players are assumed to start by making unacceptable proposals, and then go
though a sequence of concessions. The Harsanyi-Zeuthen formulation leads
to the Nash bargaining solution, whilst the Raiffa process leads to a different
point. Even though there exist non-cooperative bargaining games that lead
to the Nash (as for example [2]) or Raiffa (see [22]) solutions, the equilibria
of these games do not have the property that the players start by making
unacceptable demands.

8 Appendix

Lemma 1 1− δM ≤ m.

Proof. Clearly, B would not reject any offer (xA, xB) with xB satisfying
xB > ρδM + (1− ρ)xB, i.e. xB > δM , because ρδM + (1− ρ)xB would be
his maximum payoff after rejection. Thus, there does not exist u ∈ U such
that 1− δM > u. Hence, 1− δM ≤ m.
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8.1 Proof of Theorem 1

a) Let IA :=
©
(ρ, δ) : δ (1− ρ) ≤ ρ

¡
1− δ2

¢ª
denote the closure of IA. We

have previously proved that any stationary and efficient SP equilibrium is
characterized by (3). We now check that the strategy profile in which both
agents ”offer 1

1+δ
and accept at least δ

1+δ
” constitutes a SP equilibrium in

IA.
Assume the proposer A deviates and makes an unacceptable proposal

(xA, xB). Then, B rejects and A’s final payoff is ρδ δ
1+δ

+ (1− ρ)xA, which
should be no more than 1

1+δ
, i.e. ρδ δ

1+δ
+ (1− ρ)xA ≤ 1

1+δ
. Since xA ≤ 1, it

is enough to prove that ρδ δ
1+δ
+1−ρ ≤ 1

1+δ
, which holds because (ρ, δ) ∈ IA.

Assume the responder B receives an offer (xA, xB). By rejecting, he
gets in expected terms ρδ 1

1+δ
+ (1− ρ)xB. Thus, it is optimal to accept iff

ρδ 1
1+δ
+(1− ρ)xB ≤ xB, i.e. δ

1+δ
≤ xB. Hence the strategy for B is optimal.

This proves that there exists a stationary SP equilibrium when (ρ, δ) ∈ IA.
Assume now (ρ, δ) /∈ IA. Assume the proposer A deviates and proposes

(1, 0). Her final payoff is ρδ δ
1+δ

+ 1 − ρ. Since (ρ, δ) /∈ IA, this payoff is
greater than 1

1+δ
. Hence, A improves. This shows that there is no efficient

and stationary SP equilibria when (ρ, δ) /∈ IA.

We now prove that U =
©

1
1+δ

ª
. Since the above strategies constitute a

SP equilibrium in IA, we know that U 6= ∅ in IA.
We will prove that M = m = 1

1+δ
. We proceed with a series of Claims.

Claim 1 M ≤ 1− δm.

Proof. Let (xA, xB) be A’s proposal. In a SP equilibrium, B rejects any offer
such that ρδm+(1− ρ)xB > xB, i.e. such that δm > xB. Since xA+xB ≤ 1,
this means that B rejects any offer such that xA > 1− δm.
There exist two types of SP equilibria: (I) Equilibria in which B accepts

A’s initial offer, and (II) equilibria in which B rejects A’s initial offer.
In equilibria of type (I), it is clear that xA ≤ 1 − δm. In equilibria of

type (II), let u be A’s final payoff and let v be B’s final payoff. If B becomes
the proposer (this occurs with probability ρ), B gets u0 ∈ U and A gets
v0. Since u0 + v0 ≤ 1, we deduce that v0 ≤ 1 − u0 ≤ 1 − m. Moreover,
xA ≤ 1. Thus, u = ρδv0 + (1− ρ)xA ≤ ρδ (1−m) + 1 − ρ. In summary,
u ≤ max {1− δm, ρδ (1−m) + 1− ρ}. We will prove that this maximum is
1− δm and thus M ≤ 1− δm. We want to prove that ρδ (1−m) + 1− ρ ≤
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1 − δm, i.e. δ (1− ρ)m ≤ ρ (1− δ). Since m ≤ 1
1+δ

in IA, it is enough to
prove that δ 1−ρ

1+δ
≤ ρ (1− δ), which holds because (ρ, δ) ∈ IA.

Claim 2 M ≤ 1
1+δ
.

Proof. Under Claim 1 and Lemma 1, M ≤ 1 − δm ≤ 1 − δ (1− δM), and
thus

¡
1− δ2

¢
M ≤ 1− δ, hence M ≤ 1

1+δ
.

Claim 3 1− δu ∈ U for all u ∈ U .

Proof. Let u ∈ U , and let v be A’s final payoff in a subgame in which
B is the proposer and he gets u. Hence, v ≤ 1 − u. We consider the
following strategies: A proposes (1− δu, δu) and B accepts an offer (xA, xB)
iff δu ≤ xB. Thereafter, agents play the strategies that yield u to B and v
to A. We will check that these strategies constitute a SP equilibrium. It is
clear that these strategies are an SP equilibrium after the first offer has been
rejected.
If B rejects a proposal (xA, xB) with δu ≤ xB, he gets ρδu+(1− ρ)xB ≤

ρxB + (1− ρ)xB = xB, and his payoff does not increase. Analogously, B’s
payoff does not increase by accepting a proposal (xA, xB) with δu > xB.
If A deviates and proposes xA > 1 − δu, he gets ρδv + (1− ρ)xA. We

need to prove that A does not improve, i.e. ρδv+(1− ρ)xA ≤ 1− δu. Since
v ≤ 1−u and xA ≤ 1, it is enough to prove that ρδ (1− u)+ 1− ρ ≤ 1− δu,
i.e. u ≤ ρ(1−δ)

δ(1−ρ) . Since u ≤ M , under Claim 2 it is enough to prove that
1
1+δ
≤ ρ(1−δ)

δ(1−ρ) , which holds because (ρ, δ)∈ IA.

Claim 4 m ≤ 1− δM and 1− δm ≤M .

Proof. Assumem > 1−δM . Thus, there exists u ∈ U such thatm > 1−δu.
But by Claim 3 this is not possible.
Assume 1 − δm > M . Thus, there exists u ∈ U such that 1 − δu > M .

But this is not possible under Claim 3.

From Lemma 1, Claim 1 and Claim 4, we deduce that m = 1− δM and
M = 1− δm, which yield a unique solution M = m = 1

1+δ
. This proves that

U =
©

1
1+δ

ª
and completes the proof of part a).

b) Assume ρ
¡
1− δ2

¢
> δ (1− ρ). It is enough to prove that all SP

equilibria are efficient. Assume, on the contrary, that there exists a SP
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equilibrium where A proposes (xA, xB) and B rejects. Let v be A’s payoff in
the subgame which begins when B is the proposer. Then, A’s final payoff is
ρδv + (1− ρ)xA ≤ ρδ δ

1+δ
+ 1 − ρ. Since A’s final payoff is 1

1+δ
, we deduce

that 1
1+δ
≤ ρδ δ

1+δ
+ 1− ρ which is not possible when ρ

¡
1− δ2

¢
> δ (1− ρ).

c) Assume δ (1− ρ) = ρ
¡
1− δ2

¢
. Assume A proposes (xA, xB) and B

rejects. Let v be A’s payoff in the subgame which begins when B is the
proposer. By an analogous argument as in the proof of part b), we prove
that ρδv + (1− ρ)xA = ρδ δ

1+δ
+ 1 − ρ and thus v = δ

1+δ
and xA = 1. This

implies that A asks for the whole pie in the first round (because xA = 1) and
that the second round is efficient (because v = δ

1+δ
).

8.2 Proof of Theorem 2

Let u ∈
hem, fM r

i
. We describe the strategies that yield u as final payoff for

the proposer in Table I. Acceptance applies when the offer is not final. If the
offer is final, the responder always accepts.
We will prove that the strategies are the most favorable to A (resp. B)

in Favor A (resp. Favor B); the initial offer is accepted in Agreement whengMa > u; and the initial offer is rejected in Delay.
In order to check that these strategies are well-defined, we prove that

u−ρδ(1−em)
1−ρ ≤ 1, or equivalently, em ≤ 1−ρ+ρδ−u

ρδ
. Since u ≤ fMr, it is enough to

prove that em ≤ 1−ρ+ρδ−gMr

ρδ
, which holds because fM r = ρδ (1− em) + 1− ρ.

We now check that these strategies are a SP equilibrium.

Favor A and Favor B: Assume the state is Favor A. The proof for
Favor B is analogous (note that both states are symmetric). If the proposer
is B, then his offer is accepted and the final payoff is 1− em for A and em for
B. If the proposer is A, then her offer is rejected and the final payoffs are
ρδ (1− em) + 1− ρ = fM r for A and ρδ em for B.
We prove that these strategies are optimal.

A’s strategy is optimal when she is the responder. If A rejects
(xA, xB) with 1− em ≤ xA, we will go to Favor B, B only accepts xB ≥ 1− em
and proposes (0, 1). Thus, A’s final payoff is at most ρδ em + (1− ρ)xA (if
A offers xB ≥ 1 − em afterwards) or ρδ(1−ρ)

1−ρ2δ2 + (1− ρ) xA (if A permanently
makes unacceptable offers). We have to prove that xA is not less than these
payoffs.
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1. First, inequality ρδ em+(1− ρ)xA ≤ xA is equivalent to em ≤ xA
δ
. Since

1− em ≤ xA, it is enough to prove em ≤ 1−em
δ
, i.e. em ≤ 1

1+δ
.

(a) Assume first em = (1−δ)(1+ρδ)
1−ρδ2 . We have to prove (1−δ)(1+ρδ)

1−ρδ2 ≤ 1
1+δ
,

which holds because (ρ, δ) /∈ IA.
(b) Assume now em = 1−ρ

1−ρ2δ2 . We have to prove
1−ρ

1−ρ2δ2 ≤ 1
1+δ
, which

holds because (ρ, δ) /∈ PD.

2. Second, inequality ρδ(1−ρ)
1−ρ2δ2 + (1− ρ)xA ≤ xA is equivalent to δ(1−ρ)

1−ρ2δ2 ≤
xA. Since 1− em ≤ xA, it is enough to prove δ(1−ρ)

1−ρ2δ2 ≤ 1− em.
(a) Assume first em = (1−δ)(1+ρδ)

1−ρδ2 . We have to prove δ(1−ρ)
1−ρ2δ2 ≤ 1 −

(1−δ)(1+ρδ)
1−ρδ2 , which holds trivially.

(b) Assume now em = 1−ρ
1−ρ2δ2 . We have to prove

δ(1−ρ)
1−ρ2δ2 ≤ 1 − 1−ρ

1−ρ2δ2 ,
which holds because (ρ, δ) /∈ PD.

B’s strategy is optimal when he is the proposer. IfB offers (xA, xB)
with xA > 1 − em, then his offer is accepted, but his final payoff decreases.
If B proposes (xA, xB) with xA < 1 − em, then his offer is rejected and his
final payoff is at most ρ2δ2 em+ 1− ρ. This deviation is not profitable when
ρ2δ2 em+ 1− ρ ≤ em, i.e. 1−ρ

1−ρ2δ2 ≤ em, which holds by definition.
B’s strategy is optimal when he is the responder. Assume B is the

responder and the offer is (xA, xB). Thus, B’s final payoff after rejection is
ρδ em+(1− ρ)xB. Perfectness implies that B rejects if xB < ρδ em+(1− ρ)xB
and accepts if xB > ρδ em+ (1− ρ)xB. However, it is equivalent to say that
B rejects when xB < δ em and accepts when xB > δ em. This completes the
proof that B’s strategy is optimal (when the state is Favor A).

A’s strategy is optimal when she is the proposer. Assume A is the
proposer. She may deviate in two possible ways: 1. by making an acceptable
offer (by the transition rule, this means xB ≥ 1− em and thus xA ≤ em) or 2.
by making an unacceptable offer (xB < 1− em).
1. The deviation is not profitable when xA ≤ fMr, and since xA ≤ em, it is
enough to prove that em ≤ fMr, i.e. em ≤ ρδ (1− em)+1−ρ; equivalently,em ≤ 1− ρ

1+ρδ
.
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(a) Assume first em = (1−δ)(1+ρδ)
1−ρδ2 . We have to prove (1−δ)(1+ρδ)

1−ρδ2 ≤
1− ρ

1+ρδ
, which holds because (ρ, δ) /∈ IA.

(b) Assume now em = 1−ρ
1−ρ2δ2 . We have to prove

1−ρ
1−ρ2δ2 ≤ 1 − ρ

1+ρδ
,

which holds because δ < 1.

2. The deviation is not profitable when ρ2δ2 em+ (1− ρ)xA ≤ fM r.

Since xA ≤ 1, it is enough to prove that ρ2δ2 em + 1 − ρ ≤ fM r, i.e.
ρ2δ2 em+ 1− ρ ≤ ρδ (1− em) + 1− ρ; equivalently, em ≤ 1

1+ρδ
.

(a) Assume first em = (1−δ)(1+ρδ)
1−ρδ2 . We have to prove (1−δ)(1+ρδ)

1−ρδ2 ≤ 1
1+ρδ

,

i.e. 1 − 2 (1− ρ) ≤ ρ2δ2 + ρδ (1− ρ); since (1− ρ)2 > 0, it is
enough to prove that 1− 2 (1− ρ) + (1− ρ)2 ≤ ρ2δ2 + ρδ (1− ρ),
i.e. ρ2 ≤ ρ2δ2 + ρδ (1− ρ), which holds because (ρ, δ) /∈ IA.

(b) Assume now em = 1−ρ
1−ρ2δ2 . We have to prove

1−ρ
1−ρ2δ2 ≤ 1

1+ρδ
, which

holds trivially.

Agreement: Assume now we are in Agreement. Following these strate-
gies, A proposes (u, 1− u) and B accepts if 1− u > δ em. Thus, the proposal
is accepted when u <gMa.

1. If A changes her strategy and proposes an unacceptable offer (i.e.
(xA, xB) with xB < 1− em), she gets no more than ρ2δ2 em+ (1− ρ)xA.
Thus, we need to prove that ρ2δ2 em+(1− ρ)xA ≤ u. Since xA ≤ 1 andem ≤ u, it is enough to prove that ρ2δ2 em+ 1− ρ ≤ em, i.e. 1−ρ

1−ρ2δ2 ≤ em,
which holds by definition.

2. If A changes her strategy and proposes an acceptable offer (i.e. (xA, xB)
with xB ≥ 1− em), she gets no more than em. Since u ≥ em, this deviation
is not profitable.

Hence,
hem,gMa

h
⊂ Ua. By a slight change of B’s strategy in Favor A

when he is the responder, it is analogous to check that gMa ∈ Ua. Hence,hem,gMa
i
⊂ Ua.

Delay: Assume now we are in Delay. Following these strategies, A
proposes

³
u−ρδ(1−em)

1−ρ , 0
´
, and B rejects the offer. The final payoff for A is
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ρδ (1− em) + (1− ρ) u−ρδ(1−em)
1−ρ = u. By an analogous reasoning as in Agree-

ment, we deduce that no deviation is profitable as long as u ∈
hem, fMr

i
.

Hence,
hem, fMr

i
⊂ U r.

We have then
hem,gMa

i
⊂ Ua and

hem, fM r
i
⊂ U r, from where we conclude

that
hem, fMr

i
⊂ U .

We now prove that u ∈
hem, fM r

i
for all u ∈ U .

Let Ma be the supremum of the SP equilibrium payoffs in which the
proposer’s initial offer is accepted. Let Mr be the supremum of the SP
equilibrium payoffs in which the proposer’s initial offer is rejected. Clearly,
M = max {Ma,Mr}. Notice that both Ma and Mr are well-defined because
Ua and U r are nonempty.

Claim 5 Ma ≤ min
n
1− δ + δ2M, 1− δ(1−ρ)

1−ρ2δ2
o
.

Proof. Assume we are in a SP equilibrium in which the first offer of the
proposer, say A, is accepted. Thus, A proposes (xA, xB) with xA = u ∈ Ua
and B agrees. If B disagreed, then he would get at least ρδm + (1− ρ)xB.
Thus, the fact that B agrees with xB implies that ρδm + (1− ρ)xB ≤ xB.
This means that δm ≤ xB. Since u ≤ 1−xB, we deduceMa ≤ 1− δm. This
implies (with Lemma 1)Ma ≤ 1−δ (1− δM) = 1−δ+δ2M and (under(1)),
Ma ≤ 1− δ(1−ρ)

1−ρ2δ2 .

Claim 6 M r ≤ min
n
ρδ2M + 1− ρ, ρ2δ 1−ρδ

2

1−ρ2δ2 + 1− ρ
o
.

Proof. Assume we are in a SP equilibrium in which the offer of the proposer,
say A, is rejected. Thus, A proposes (xA, xB) and B rejects the offer. Let
u ∈ U r be A’s final payoff. Thus, u = ρδv + (1− ρ)xA with v ≤ 1− u0 such
that u0 ∈ U . Since 1−u0 ≤ 1−m and xA ≤ 1, we have u ≤ ρδ (1−m)+1−ρ

and thus M r ≤ ρδ (1−m) + 1− ρ. This inequality implies (with Lemma 1),
Mr ≤ ρδ2M + 1− ρ and (under (1)),

Mr ≤ ρδ

µ
1− 1− ρ

1− ρ2δ2

¶
+ 1− ρ = ρ2δ

1− ρδ2

1− ρ2δ2
+ 1− ρ.

We use Claim 5 and Claim 6 in order to prove M = fMr. We have two
cases:
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Case 1. M =Ma.

Subcase 1a. em = (1−δ)(1+ρδ)
1−ρδ2 . Under Claim 5, M ≤ 1− δ + δ2M ; equivalently,

M ≤ 1
1+δ
. Thus, it is enough to prove 1

1+δ
≤ fMr = ρδ (1− em) +

1− ρ, i.e. 1
1+δ
≤ ρδ

³
1− (1−δ)(1+ρδ)

1−ρδ2
´
+1− ρ, which holds because

(ρ, δ) /∈ IA.
Subcase 1b. em = 1−ρ

1−ρ2δ2 . Under Claim 5, M ≤ 1− δ(1−ρ)
1−ρ2δ2 . Thus, it is enough

to prove 1− δ(1−ρ)
1−ρ2δ2 ≤ fM r = ρδ (1− em) + 1− ρ, i.e. ρ− δ + ρδ ≤

ρ3δ2 + ρ2δ − ρ3δ3. Since em = max
n
(1−δ)(1+ρδ)
1−ρδ2 , 1−ρ

1−ρ2δ2
o
, we have

(1−δ)(1+ρδ)
1−ρδ2 ≤ 1−ρ

1−ρ2δ2 ; equivalently, ρ−δ+ρδ ≤ 2ρ2δ2+ρ3δ3−ρ2δ3−
ρ3δ4. Thus, it is enough to prove 2ρ2δ2 + ρ3δ3 − ρ2δ3 − ρ3δ4 ≤
ρ3δ2 + ρ2δ − ρ3δ3, i.e. −ρ3δ2 (1− δ)2 ≤ ρ2δ (1− δ)2, which holds
trivially.

Case 2. M =M r.

Subcase 2a. em = (1−δ)(1+ρδ)
1−ρδ2 . Under Claim 6, M ≤ ρδ2M +1− ρ; equivalently,

M ≤ 1−ρ
1−ρδ2 . Thus, it is enough to prove

1−ρ
1−ρδ2 ≤ fMr = ρδ (1− em)+

1− ρ = ρδ
³
1− (1−δ)(1+ρδ)

1−ρδ2
´
+ 1− ρ; i.e. 1−ρ

1−ρδ2 ≤ ρδ2(1−ρ)
1−ρδ2 + 1− ρ,

which holds trivially.

Subcase 2b. em = 1−ρ
1−ρ2δ2 . Under Claim 6, M ≤ ρ2δ 1−ρδ

2

1−ρ2δ2 + 1 − ρ. Thus, it is

enough to prove ρ2δ 1−ρδ
2

1−ρ2δ2 + 1− ρ ≤ fM r = ρδ (1− em) + 1− ρ =

ρδ
³
1− 1−ρ

1−ρ2δ2
´
+ 1− ρ, which holds trivially.

This proves that M = fM r. We now check that m = em. Assume firstem = (1−δ)(1+ρδ)
1−ρδ2 . Under Lemma 1,

m ≥ 1− δM = 1− δfM r

= 1− δ (ρδ (1− em) + 1− ρ)

= 1− δ

µ
ρδ2

1− ρ

1− ρδ2
+ 1− ρ

¶
=

(1− δ) (1 + ρδ)

1− ρδ2
= em.
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Assume now em = 1−ρ
1−ρ2δ2 . Under (1), m ≥ 1−ρ

1−ρ2δ2 = em. Hence, U =hem, fMr
i
.

The last step is to prove that Ma = gMa and mr = ma = m, where
mr (resp. ma) is the minimum of the SP equilibrium payoffs in which the
proposer’s initial offer is rejected (resp. accepted).

Since
hem,gMa

i
⊂ Ua, ma ≤ em = m. Thus, ma = m.

Since
hem, fMr

i
⊂ U r, mr ≤ em = m. Thus, mr = m.

Since
hem,gMa

i
⊂ Ua, gMa ≤ Ma. Assume first em = (1−δ)(1+ρδ)

1−ρδ2 . Under

Claim 5, Ma ≤ 1− δ + δ2M ; since M = ρδ (1− em) + 1− ρ,

Ma ≤ 1− δ + δ2 (ρδ (1− em) + 1− ρ)

= 1− δ + δ2
µ
ρδ2

1− ρ

1− ρδ2
+ 1− ρ

¶
= 1− δ

(1− δ) (1 + ρδ)

1− ρδ2

= 1− δ em =gMa.

Assume now em = 1−ρ
1−ρ2δ2 . Under Claim 5,M

a ≤ 1− δ(1−ρ)
1−ρ2δ2 = 1−δ em =gMa.

Thus, Ma =gMa.
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