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Abstract

We associate an optimistic TU game with each minimum cost span-
ning tree problem. We define the worth of a coalition S as the cost of
connecting agents in S to the source assuming that agents in N\S are
already connected to the source, and agents in S can connect through
agents in N\S. We study the Shapley value of this new game.
Keywords: minimum cost spanning tree problems, optimistic TU

game, Shapley value.

1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). Imag-
ine that a group of agents, located at different geographical places, want some
particular service which can only be provided by a common supplier, called
the source. Agents will be served through connections which entail some cost.
However, they do not care whether they are connected directly or indirectly.
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There are many economic situations that can be modeled in this way. For
instance, several towns may draw power from a common power plant, and
hence have to share the cost of the distribution network (Dutta and Kar,
2004). Bergantiños and Lorenzo (2004) study a real situation where villagers
had to pay the cost of constructing pipes from their respective houses to a
water supplier. Other examples include communication networks, such as
telephone, Internet, or cable television.
The literature on mcstp starts by defining algorithms for constructing

minimal cost spanning trees (mt). We can mention, for instance, the papers
of Kruskal (1956) and Prim (1957).
Other important issue is how to allocate the cost associated with an

mt among agents. Bird (1976) and Dutta and Kar (2004) introduce two
rules based on Prim’s algorithm. Feltkamp, Tijs, and Muto (1994) introduce
the Equal Remaining Obligation rule (ERO) based on Kruskal’s algorithm.
ERO is called the P − value in Branzei et al (2004).
Bird (1976) associates with eachmcstp a cooperative game with transfer-

able utility (TU game). According to Bird, the worth of a coalition is the cost
of connection, assuming that the rest of the agents are not present. Hence,
this worth takes the classical “stand alone” interpretation. The worth of a
coalition is simply the best they can do without other players’ contribution.
In this paper, we associate with each mcstp a different TU game. We

define the worth of a coalition as the cost of connection, assuming that the
rest of the agents are already connected, and that connection is possible
through them at no charge.
Both TU games compute the cost of connecting agents to the source.

The former takes a pessimistic point of view because it assumes, given a
coalition, that the rest of the agents are not connected. The latter takes an
optimistic point of view because it assumes that the rest of the agents are
already connected.
In general there is no relationship between the optimistic and the pes-

simistic TU game. However, it is possible to find a relationship in an in-
teresting class of problems. An mcstp is irreducible if reducing the cost of
any arc, the total cost of connection is also reduced. Given an mcstp, Bird
(1976) defined the irreducible problem associated with it. We prove that, in
irreducible problems, both TU games are dual (two TU games v, w are dual
if v (S) + w (N \ S) is constant for all S).
We apply this result to study the important issue of cost sharing. A cost

sharing rule allocates the cost associated with an mt between the agents.

2



An idea is to use a solution concept in the field of TU games and applying
it in the mcstp. The core and the nucleolus of the pessimistic TU game
are studied in Granot and Huberman (1981, 1984). The Shapley value of
the pessimistic TU game is studied in Kar (2002). Bergantiños and Vidal-
Puga (2005a) define the rule ϕ, of the mcstp C, as the Shapley value of the
pessimistic TU game of the irreducible form associated with C. Bergantiños
and Vidal-Puga (2005b) prove that ϕ coincides with ERO. Moreover, in
irreducible problems, the rule presented by Bird (1976) coincides with ϕ.
We define two rules in mcstp using the optimistic TU game. The first

rule is the Shapley value of the optimistic TU game. The second one is
the Shapley value of the optimistic TU game associated with the irreducible
problem.
We thus have four rules in mcstp based on the Shapley value. We prove

that, in fact, the Shapley value of the optimistic TU game coincides with
the Shapley value of the optimistic TU game associated with the irreducible
form, and with the Shapley value of the pessimistic TU game associated with
the irreducible form. The classical Shapley value (as defined by Kar (2002))
differs from these three.
Finally, we present a new characterization of this rule using a property

of equal contributions.
The paper is organized as follows. In Section 2 we introduce mcstp. In

Section 3 we introduce the optimistic TU game and present the main result.
In Section 4 we study the four Shapley values. In the Appendix we give the
proof of some of the results.

2 The minimum cost spanning tree problem

In this section we introduce minimum cost spanning tree problems.
Let N = {1, 2, ...} be the set of all possible agents. Given a finite set

N ⊂ N , let ΠN be the set of all permutations over N . Given π ∈ ΠN , let
Pre (i, π) denote the set of elements of N which come before i in the order
given by π, i.e. Pre (i, π) = {j ∈ N : π (j) < π (i)}. Given S ⊂ N , let πS
denote the order induced by π among agents in S.
We are interested in networks whose nodes are elements of a set N0 =

N ∪ {0}, where N ⊂ N is finite and 0 is a special node called the source.
Usually we take N = {1, ..., n}.
A cost matrix C = (cij)i,j∈N0 on N represents the cost of direct link
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between any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0

and cii = 0 for each i ∈ N0. Since cij = cji we work with undirected arcs, i.e.
(i, j) = (j, i).
We denote the set of all cost matrices over N as CN . Given C, C 0 ∈ CN

we say C ≤ C 0 if cij ≤ c0ij for all i, j ∈ N0.
Aminimum cost spanning tree problem, briefly anmcstp, is a pair (N0, C)

where N ⊂ N is a finite set of agents, 0 is the source, and C ∈ CN is the
cost matrix.
Given an mcstp (N0, C), we define the mcstp induced by C for S ⊂ N as

(S0, C).
A network g over N0 is a subset of {(i, j) : i, j ∈ N0} . The elements of g

are called arcs.
Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of different arcs {(ih−1, ih)}lh=1 satisfying (ih−1, ih) ∈ g for all
h ∈ {1, 2, ..., l}, i = i0, and j = il.
A tree is a network such that for all i ∈ N there is a unique path from i to

the source. If t is a tree, we usually write t = {(i0, i)}i∈N where i0 represents
the first agent in the unique path in t from i to 0.
Let GN denote the set of all networks over N0. Let GN0 denote the set of

all networks where every agent i ∈ N is connected to the source, i.e. there
exists a path from i to 0 in the network.
Given an mcstp (N0, C) and g ∈ GN , we define the cost associated with

g as
c (N0, C, g) =

X
(i,j)∈g

cij.

When there is no ambiguity, we write c (g) or c (C, g) instead of c (N0, C, g).
A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t over

N0 such that c (t) = min
g∈GN0

c (g). It is well-known that an mt exists, even

though it is not necessarily unique. Given an mcstp (N0, C), we denote the
cost associated with any mt t in (N0, C) as m (N0, C).
Given an mcstp, Prim (1957) introduced an algorithm for solving the

problem of connecting all agents to the source, such that the total cost of
creating the network is minimal. The idea of this algorithm is quite simple:
starting from the source, we construct a network by consecutively connecting
agents with the lowest cost to agents already connected
Formally, Prim’s algorithm is defined as follows. We start with S0 = {0}

and g0 = ∅.
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Stage 1: Take an arc (0, i) such that c0i = min
i∈N

{c0i} . If there are several
arcs (0, i) satisfying this condition, select any of them. Now, S1 = {0, i} and
g1 = {(0, i)} .
Stage p + 1: Assume we have defined Sp ⊂ N0 and gp ∈ GN . We now

define Sp+1 and gp+1. Take an arc (j, i) with j ∈ Sp and i ∈ N0\Sp such that
cji = min

k∈Sp,l∈N0\Sp
{ckl}. If there are several arcs (j, i) satisfying this condition,

select any of them. Now, Sp+1 = Sp ∪ {i} and gp+1 = gp ∪ {(j, i)}.
This process is completed in n stages. We say that gn is a tree obtained

via Prim’s algorithm. Notice that this algorithm leads to a tree, but that
this is not always unique.

One of the most important issues addressed in the literature about mcstp
is how to divide the cost of connecting agents to the source between them.
We now briefly introduce some of the rules studied in the literature.
A (cost allocation) rule is a function ψ such that ψ (N0, C) ∈ RN andP

i∈N
ψi (N0, C) = m (N0, C) for each mcstp (N0, C). As usual, ψi (N0, C)

represents the cost allocated to agent i.
Notice that we implicitly assume that the agents build an mt. As far as

we know, all the rules proposed in the literature make this assumption.
A game with transferable utility, briefly a TU game, is a pair (N, v) where

v : 2N → R satisfies that v (∅) = 0. Sh (N, v) denotes the Shapley value
(Shapley (1953)) of (N, v).
A quite standard approach for defining rules in some problems is using

TU games. We first associate with each problem a TU game. We then
compute a solution for TU games (Shapley value, core, ...) in the associated
TU game. Thus, the rule in the original problem is defined as the solution
applied to the TU game associated with the original problem. This approach
was already applied in mcstp.
Bird (1976) associated a TU game (N, vC) with each mcstp (N0, C). For

each coalition S ⊆ N ,
vC (S) = m (S0, C) .

We define, in mcstp, the rule Sh1 as the Shapley value of the associated
TU game, i.e.

Sh1 (N0, C) = Sh (N, vC) .

This rule was studied in Kar (2002).
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An mcstp (N0, C) is irreducible if reducing the cost of any arc, the cost of
connecting all agents to the source (m (N0, C)) is also reduced. In Bergan-
tiños and Vidal-Puga (2005a) we proved that (N0, C) is irreducible if and
only if there exists an mt t in (N0, C) satisfying the following two conditions:
(A1) t = {(ip−1, ip)}np=1 where i0 = 0 (the source).
(A2) Given ip, iq ∈ N0, p < q, then cipiq = max

p<r≤q

©
cir−1ir

ª
.

Given anmcstp (N0, C), Bird (1976) defined the irreducible form (N0, C
∗)

associated with (N0, C). We define the rule Sh2 as the Shapley value of the
TU game associated with the irreducible form, i.e.

Sh2 (N0, C) = Sh (N, vC∗) .

In Bergantiños and Vidal-Puga (2005b) we proved that Sh2 coincides
with the ERO rule (Feltkamp et al. (1994)).

3 The optimistic game

In many class of problems it is possible to associate two TU games to each
problem in the class: a pessimistic game and an optimistic game. An example
could be queuing problems, where a set of agents stands to receive a service.
No two agents can be served simultaneously. Each agent has a constant
per unit of time waiting cost. A queue has to be organized, but monetary
compensations may be set up for those who have to wait. Maniquet (2003)
defined the worth of a coalition S as the sum of its waiting cost in an efficient
queue if they had the power to be served before agents in N\S. Maniquet is
taking an optimistic approach. Chun (2006) defined the worth of a coalition S
as the sum of its waiting cost in an efficient queue, assuming that members
of S are served after the members of N\S. Chun is taking a pessimistic
approach.
In this section, we associate an “optimistic” TU game

¡
N, v+C

¢
with each

mcstp (N0, C).
Given S ⊆ N , Bird (1976) defined the worth of coalition S, vC (S), as

the minimal cost of connecting all agents of S to the source, assuming that
agents in N\S are out. This is a pessimistic approach because agents in N\S
also want to be connected to the source.
Alternatively, we can take an optimistic approach. We can define the

worth of coalition S, v+C (S), as the minimal cost of connecting all agents of

6



S to the source, assuming that the agents in N \ S are already connected to
the source, and that the agents in S can connect to the source through them.
Given an mcstp (N0, C), S, T ⊆ N , S ∩ T = ∅,

¡
S0, C

+T
¢
is the mcstp

obtained from (N0, C) assuming that the agents in S have to be connected
to the source, the agents in T are already connected to the source, and
the agents in S can connect to the source through agents in T . Formally,
c+Tij = cij for all i, j ∈ S and c+T0i = min

j∈T0
cji for all i ∈ S.

We now associate a TU game
¡
N, v+C

¢
with each mcstp (N0, C). For each

S ⊆ N,
v+C (S) = m

¡
S0, C

+(N\S)¢ .
Notice that given S ⊆ N , v+C (S) is the minimal cost of connecting all

the agents of S to the source, assuming that agents of N \ S are already
connected.

Example 1. Let (N0, C) be such that N = {1, 2} and

C =

⎛⎝ 0 10 100
10 0 2
100 2 0

⎞⎠ .

We now compute vC and v+C .

S vC(S) v+C (S)
{1} 10 2
{2} 100 2
{1,2} 12 12

This example shows that vC and v+C could be different.

We say that two mcstp (N0, C) and (N0, C
0) are tree-equivalent if there

exists a tree t such that, firstly, t is an mt for both (N0, C) and (N0, C
0) and

secondly, cij = c0ij for all (i, j) ∈ t.
In Bergantiños and Vidal-Puga (2005a) we proved that (N0, C) and (N0, C

∗)
(its irreducible form) are tree-equivalent.
In the next theorem we give some results about v+C .

Theorem 1. (a) If (N0, C) is irreducible, for all S ⊂ N

vC (S) + v+C (N \ S) = m (N0, C) .
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(b) If (N0, C) and (N0, C
0) are tree-equivalent, then v+C = v+C0.

(c) C∗ = C 0∗ if and only if v+C = v+C0.
Proof. See the Appendix.

Theorem 1(a) says that (N, v) and (N, v+) are dual games in irreducible
problems. This result it is not true when (N0, C) is not an irreducible prob-
lem. In Example 1, vC ({2}) = 100, v+C ({1}) = 2, and m (N0, C) = 12.

It is clear from Theorem 1(b) that we can compute the optimistic game
v+C from an mt t of C. We now present an algorithm to do this:
Let (N0, C) be an mcstp and let t = {(i0, i)}i∈N be an mt such that i0

represents the first player in the (unique) path in t from node i to the source.
We start with i0 = 0, S0 = {i0} and va (N) = m (N0, C).

Stage 1: Take i1 ∈ N\S0 such that i01 = 0 and c0i1 = min {c0i : (0, i) ∈ t}.
If there are several arcs (0, i) satisfying this condition, select any of them.
Define S1 = {i0, i1}, cai0i1 = c0i1 , and va (N\ {i1}) = m (N0, C)− cai0i1 .
Stage p+1: Assume we have defined Sp = {i0, i1, ..., ip} ⊂ N0, caiqir ∈ R+

when q, r ∈ {0, 1, ..., p}, and va (S) when N\S ⊂ Sp. Take ip+1 ∈ N\Sp such
that i0p+1 ∈ Sp and

ci0p+1ip+1 = min
©
ci0i : i

0 ∈ Sp and i ∈ N\Sp
ª
.

If there are several arcs (i0, i) satisfying this condition, select any one of
them.
Define Sp+1 = Sp ∪ {ip+1}, and caiqip+1 = max

n
caiqip, ci0p+1ip+1

o
for each

q = 0, ..., p.
Let S ⊂ N be such that N\S ⊂ Sp+1 and ip+1 ∈ N\S. Assume that

N\S =
©
iq1 , ...., iqn−s

ª
where qr−1 ≤ qr for all r = 2, ..., n−s. Define va (S) =

m (N0, C)−
n−sP
r=1

caiqr−1 iqr where q0 = 0.

The next Proposition says that with this algorithm we compute the irre-
ducible form and the optimistic game of an mcstp.

Proposition 1. For each mcstp (N0, C) and each mt t = {(i0, i)}i∈N ,
Ca = C∗ and va = v+C .
Proof. Following Bergantiños and Vidal-Puga (2005a), we say that "the

agents in C connect to the source via t0 in the order π = (π1, ..., πn) following
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Prim’s algorithm" if t0 is obtained through Prim’s algorithm and the selected
arc in stage p is

¡
π0p, πp

¢
, for each p. In Bergantiños and Vidal-Puga (2005a)

we proved that C∗ can be computed as c∗πqπp = max
s:q<s≤p

©
cπ0sπs

ª
.

Because of the definition of the algorithm, it is trivial to see that the
agents in C connect to the source via t in the order (i1, ..., in) following
Prim’s algorithm.
We now prove that given p, q ∈ {1, ..., n} such that q < p, we have

that caiqip = c∗iqip. We use an induction argument. It is trivial to see that
cai0i1 = c∗i0i1 = ci01i1. Assume that c

a
iqip = c∗iqip when p ≤ α. We prove this

when p = α + 1. Take q < α + 1. By the induction hypothesis caiqiα = c∗iqiα.
Thus,

caiqip = max
n
caiqiα , ci0pip

o
= max

n
c∗iqiα, ci0pip

o
= max

½
max

s:q<s≤α

©
ci0sis

ª
, ci0pip

¾
= max

s:q<s≤α+1

©
ci0sis

ª
= c∗iqip .

We now prove that va = v+. Recall that (N0, C) and (N0, C
∗) are tree-

equivalent. Under Theorem 1(b) , v+C = v+C∗ . Under Theorem 1(a), for each
S ⊂ N , v+C (S) = m (N0, C)− vC∗ (N\S).
Assume that N\S =

©
iq1, ...., iqn−s

ª
where qr−1 ≤ qr for all r = 2, ..., n−

s. In Bergantiños and Vidal-Puga (2005a) we proved that vC∗ (N\S) =
n−sP
r=1

c∗iqr−1 iqr where q0 = 0. Since C
∗ = Ca we conclude that va = v+C . ¥

4 The Shapley value

In Section 2, we defined two rules formcstp based on the Shapley value of the
pessimistic game: Sh1 (N0, C) = Sh (N, vC) and Sh2 (N0, C) = Sh (N, vC∗).
We now introduce two rules based on the Shapley value of the optimistic

game. For all mcstp (N0, C), we define

Sh3 (N0, C) = Sh
¡
N, v+C

¢
and

Sh4 (N0, C) = Sh
¡
N, v+C∗

¢
.
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For Example 1, the four rules are

Rule Agent 1 Agent 2
Sh1(N0, C) -39 51
Sh2(N0, C) 6 6
Sh3(N0, C) 6 6
Sh4(N0, C) 6 6

In this example Sh2 (N0, C) = Sh3 (N0, C) = Sh4 (N0, C). We now prove
that this is true in general.

Theorem 2. For all mcstp (N0, C),

Sh2 (N0, C) = Sh3 (N0, C) = Sh4 (N0, C) .

Proof. Let (N0, C) be an mcstp. Recall that (N0, C) and (N0, C
∗) are

tree-equivalent. According to Theorem 1(b), v+C = v+C∗ . Thus, Sh
3 (N0, C) =

Sh4 (N0, C).
According to Theorem 1(a), vC∗ (S) + v+C∗ (N \ S) = m (N0, C) for all

S ⊆ N . Hence, Sh2 (N0, C) = Sh4 (N0, C) follows directly from self-duality
of the Shapley value (see, e.g. Kalai and Samet (1987)). ¥

Because of Theorem 2 we can define the rule ϕ as

ϕ (N0, C) = Sh (N, vC∗) = Sh
¡
N, v+C

¢
= Sh

¡
N, v+C∗

¢
.

We now present an axiomatic characterization of this rule. Myerson
(1980) introduced the property of balanced contributions in TU games. The
next property is inspired by Myerson’s property.
We say that a rule ψ satisfies Equal Contributions (EC) if for all i, j ∈ N,

i 6= j,

ψi (N0, C)− ψi

¡
(N \ {j})0 , C+j

¢
= ψj (N0, C)− ψj

¡
(N \ {i})0 , C+i

¢
.

EC says that the impact of the connection of agent j on agent’s i cost is
equal to the impact of the connection of agent i on agent’s j cost.

The next theorem characterizes ϕ as the only rule satisfying EC.

Theorem 3. The rule ϕ is the only rule satisfying EC.
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Proof. We first prove that ϕ satisfies EC.
For all i ∈ N, we denote N−i = N \ {i} and N−i

0 = N0 \ {i} .
Given a TU game (N, v), Myerson (1980) proved that the Shapley value

satisfies

Shi (N, v)− Shi
¡
N−j, v

¢
= Shj (N, v)− Shj

¡
N−i, v

¢
for all i, j ∈ N , i 6= j.
Take i, j ∈ N, i 6= j. By Claim 1 of the proof of Theorem 1, v+C (S) =

v+
C+j

(S) for all S ⊆ N−j. Since ϕi (N
−j, C+j) = Shi

¡
N−j, v+

C+j

¢
, we have

ϕi (N
−j, C+j) = Shi

¡
N−j, v+C

¢
.

Applying Myerson’s result to the TU game
¡
N, v+C

¢
, we obtain that ϕ

satisfies EC.
We now prove uniqueness. Let ψ be a rule satisfying EC. We prove that

ψ = ϕ by induction on |N |. If |N | = 1 the equality is trivial. Assume that
ψ = ϕ when |N | ≤ α− 1. We prove that ψ = ϕ when |N | = α.
Given i, j ∈ N , for simplicity, we write ϕi = ϕi (N0, C) , ψi = ψi (N0, C) ,

ϕ+ji = ϕi

¡
N−j
0 , C+j

¢
, and ψ+ji = ψi

¡
N−j
0 , C+j

¢
.

Since ψ satisfies EC,X
j∈N\{i}

ψi −
X

j∈N\{i}

ψ+ji =
X

j∈N\{i}

ψj −
X

j∈N\{i}

ψ+ij .

Thus,
nψi = m (N0, C) +

X
j∈N\{i}

ψ+ji −
X

j∈N\{i}

ψ+ij .

Since ϕ also satisfies EC,

nϕi = m (N0, C) +
X

j∈N\{i}

ϕ+ji −
X

j∈N\{i}

ϕ+ij .

Under the induction hypothesis, for all i, j ∈ N, ψ+ji = ϕ+ji and ψ+ij =

ϕ+ij . Thus, ϕi = ψi for all i ∈ N. ¥

A rule ψ satisfies Equal Treatment (ET ) if given (N0, C) and (N0, C
0)

such that clk = c0lk for all (l, k) 6= (i, j),

ψi (N0, C)− ψi (N0, C
0) = ψj (N0, C)− ψj (N0, C

0) .
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ET says that if only the cost between agents i and j changes, both agents
must win (or lose) the same.
Kar (2002) characterized Sh1 as the only rule satisfying Efficiency, Ab-

sence of Cross Subsidization, Group independence, and Equal Treatment.
It follows from Theorem 3 that Sh1 does not satisfy EC. The next

example shows that ϕ does not satisfy ET .

Example 2. Let (N0, C) be such that N = {1, 2},

C =

⎛⎝ 0 5 14
5 0 10
14 10 0

⎞⎠ and C 0 =

⎛⎝ 0 5 14
5 0 12
14 12 0

⎞⎠ .

Computations reveal that ϕ (N0, C) = (5, 10) and ϕ (N0, C
0) = (5, 12).

Nevertheless, Sh1 (N0, C) = (3, 12) and Sh1 (N0, C
0) = (4, 13).

We have two rules for mcstp based on the Shapley value of an associated
TU game: Sh1 and ϕ. Both rules are very different, as we can see in the
examples. The rule Sh1 is defined through the pessimistic TU game. The
rule ϕ can be defined through the pessimistic TU game and both optimistic
TU games.
One may wonder which is the fairest rule (Sh1 or ϕ)? We strongly believe

that ϕ is a more suitable rule in mcstp. See Bergantiños and Vidal-Puga
(2005a) for a detailed discussion of this issue.

There exist many problems for which authors have proposed rules through
both: optimistic TU games and pessimistic TU games. We conclude the
section comparing mcstp with bankruptcy problems and queuing problems.
For bankruptcy problems the Shapley value of the pessimistic TU game

and the Shapley value of the optimistic TU game coincide. See, for instance,
Thomson (2003). The reason is that both games are dual, like in irreducible
mcstp.
For queuing problems the Shapley value of both games differ, like in

mcstp. Maniquet (2003) studied the Shapley value of the optimistic game.
He provided several axiomatic characterizations. Chun (2006) studied the
Shapley value of the pessimistic game, which he called the reverse rule. He
provided axiomatic characterizations of the reverse rule. These characteriza-
tions are obtained by replacing some properties in Maniquet’s characteriza-
tion by their ”reverse”.
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5 Appendix

We prove Theorem 1.
(a) Assume, without loss of generality, that t = {(i− 1, i)}ni=1 is the tree

associated with C satisfying (A1) and (A2). Let S =
©
i1, ..., i|S|

ª
, where

ip−1 ≤ ip for all p = 2, ..., |S|.
For each p = 1, ..., |S| , we define:

Sp = {(i− 1, i) ∈ t : ip−1 < i ≤ ip} .

If p = 1, let i0 = 0. Define, for each p = 1, ..., |S| , ckplp = max
(k,l)∈Sp

ckl. If

there are several arcs satisfying this condition, select any of them.
Construct

t0 = [t\ {(kp, lp) : 1 ≤ p ≤ |S|}] ,
t00 = {(ip−1, ip) : 1 ≤ p ≤ |S|} , and
t∗ = t0 ∪ t00.

We clarify these definitions with an example.
Example 3. Let N = {1, 2, 3, 4, 5, 6} and S = {1, 4, 5} . Thus, S1 =

{(0, 1)} , S2 = {(1, 2) , (2, 3) , (3, 4)} , and S4 = {(4, 5)} . Hence, (k1, l1) =
(0, 1) and (k3, l3) = (4, 5) . Assume that (k2, l2) = (3, 4) .Thus, t, t0, t00, and
t∗ are given by

Figure 1.

t: 0 1 2 3 4 5 6

t’: 0 1 2 3 4 5 6

t’’: 0 1 2 3 4 5 6

t*: 0 1 2 3 4 5 6

13



It is immediate that t00 is a tree in (S0, C) and t∗ a tree in (N0, C). Since
C is an irreducible matrix, if we take agents of S as the source, t0 can be
considered as a tree in

¡
(N\S)0 , C+S

¢
.

Therefore,

v+C (N\S) + vC (S) = m
¡
(N\S)0 , C+S

¢
+m (S0, C)

≤ c
¡
(N\S)0 , C+S, t0

¢
+ c (S0, C, t

00)

= c (N0, C, t
∗) .

As C is an irreducible matrix, for each p = 1, ..., |S| , ckplp = cip−1ip . Thus,

c (N0, C, t
∗) = c (N0, C, t) .

Hence,
v+C (N\S) + vC (S) ≤ m (N0, C) .

We now prove that m (N0, C) ≤ v+C (N\S) + vC (S). Let t0 be an mt in¡
(N\S)0 , C+S

¢
and let t00 be an mt in (S0, C) . It is possible to find a tree t000

in (N0, C) such that

c
¡
(N\S)0 , C+S, t0

¢
+ c (S0, C, t

00) = c (N0, C, t
000) .

Thus,
m (N0, C) ≤ c (N0, C, t

000) = v+C (N\S) + vC (S) .

(b) Assume that t = {(i0, i)}ni=1 is an mt in (N0, C) and (N0, C
0) such

that ci0i = c0i0i for all i = 1, ..., n. For all i ∈ N , i0 ∈ N0 is the first node in
the unique path from i to the source.
We proceed by induction on |N |. If |N | = 1 the result is trivial. Assume

that the result holds when |N | ≤ α− 1. We now prove it when |N | = α.
In order to simplify the notation, for all i ∈ N we denote N−i = N \ {i}.
We prove several claims.

Claim 1. For all mcstp (N0, C), S ⊂ N , and all j ∈ N \ S,¡
S0, C

+(N\S)¢ = µS0, ¡C+j
¢+(N−j\S)¶

.

Proof. Let i, k ∈ S be such that i 6= 0 and k 6= 0. Thus,

c
+(N\S)
ik = cik =

¡
c+jik
¢+(N−j\S)

.

14



Given i ∈ S,

c
+(N\S)
0i = min

k∈(N\S)0
{cki}

= min

½
min

k∈(N−j\S)
{cki} ,min {c0i, cji}

¾
= min

½
min

k∈(N−j\S)

©
c+jki
ª
, c+j0i

¾
= min

k∈(N−j\S)0

©
c+jki
ª

=
¡
c+j0i
¢+(N−j\S)

. ¥

Claim 2. Let t∗ be an mt in (N0, C) and j ∈ N . Let g = {(ip−1, ip)}rp=1
be the unique path in t∗ from 0 (= i0) to j (= ir). Let q be such that
ciq−1iq = max

p=1,...,r

©
cip−1ip

ª
. Given A∗j = {(j, k) : (j, k) ∈ t∗ \ {(iq−1, iq)}},

t∗j =
¡
t∗ \A∗j

¢
∪
©
(0, k) : (j, k) ∈ A∗j

ª
\ {iq−1, iq} (1)

is an mt in
¡
N−j
0 , C+j

¢
.

Proof. First, we clarify the definitions given above with an example.

Example 4. Let N = {1, 2, 3, 4, 5, 6} , j = 5, and t∗ the tree given by
Figure 2 below.

Figure 2.

t*:

0

2

1 3

5

6

4

Thus, g is given by
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Figure 3.

g: 0 1 3 5

Assume that (iq−1, iq) = (1, 3) . Then, A∗j = {(3, 5) , (5, 6)} and t∗j is given
by

Figure 4.

tj*:

0

2

1 3

6

4

First, we note that each arc (0, k) in (1) for
¡
N−j
0 , C+j

¢
corresponds to the

arc (j, k) for (N0, C) (notice that j becomes a source itself when connected).
Hence,

c (N0, C, t
∗) = c

¡
N−j
0 , C+j, t∗j

¢
+ ciq−1iq .

Suppose that t∗j is not an mt in
¡
N−j
0 , C+j

¢
. There exists a tree t0 in¡

N−j
0 , C+j

¢
such that

c
¡
N−j
0 , C+j, t0

¢
< c

¡
N−j
0 , C+j, t∗j

¢
.

Assume that, in Example 4, t0 is given by

16



Figure 5.

t’:

0

6

2

4

3

1

Let Sj denote the set of agents in N−j who are connected to the source
in t0 through agent j. We now define Sj formally. For each i ∈ N−j, let©
(0, li1) , (l

i
1, l

i
2) , ...,

¡
lis−1, i

¢ª
be the unique path in t0 from the source to i.

We define
Sj =

n
i ∈ N−j : c+j

0li1
= cjli1

o
.

Let (it−1, it) ∈ g ⊆ t∗ be such that it−1 ∈ N−j
0 \ Sj and it ∈ Sj ∪ {j}.

Let A0j =
©
(0, l) ∈ t0 : c+j0l = cjl

ª
. Thus,

t0j =
¡
t0 \A0j

¢
∪
©
(j, l) : (0, l) ∈ A0j

ª
∪ {(it−1, it)}

is a tree in (N0, C) .

We clarify these definitions in Example 4. Assume that S5 = {4, 6} . Let
(it−1, it) = (3, 4) . Thus, A05 = {(0, 6)} and t0j is given by

17



Figure 6.

tj’:

0

6

2

4

3

1

5

Since

c
¡
N0, C, t

0
j

¢
= c

¡
N−j
0 , C+j, t0

¢
+ cit−1it,

c (N0, C, t
∗) = c

¡
N−j
0 , C+j, t∗j

¢
+ ciq−1iq , and

cit−1it ≤ ciq−1iq

we deduce that
c
¡
N0, C, t

0
j

¢
< c (N0, C, t

∗)

which is a contradiction because t∗ is an mt of (N0, C). ¥

Claim 3. For all j ∈ N,
¡
N−j
0 , C+j

¢
and

¡
N−j
0 , C 0+j¢ are tree-equivalent.

Proof. Given j ∈ N , let tj be the mt in
¡
N−j
0 , C+j

¢
obtained from the

mt t in (N0, C) as in the statement of Claim 2. Similarly, let t0j be the mt in¡
N−j
0 , C 0+j¢ obtained from the mt t in (N0, C

0) as in the statement of Claim
2.
It is not difficult to see that tj = t0j. Moreover, for all (i, k) ∈ tj, c

+j
ik = c0+jik .

Thus,
¡
N−j
0 , C+j

¢
and

¡
N−j
0 , C 0+j¢ are tree-equivalent. ¥

Claim 4. v+C coincides with v+C0 .
Proof. We prove that v+C (S) = v+C0 (S) for all S ⊆ N. If S = N ,

v+C (N) = m (N0, C) = m (N0, C
0) = v+C0 (N) .
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Assume that S 6= N. Take j ∈ N \ S. Under Claim 1, v+C (S) =
v+
C+j (S) and v+C0 (S) = v+C0+j (S).
Under Claim 3,

¡
N−j
0 , C+j

¢
and

¡
N−j
0 , C 0+j¢ are tree-equivalent. Under

the induction hypothesis, v+C+j (S) = v+C0+j (S). Thus, v
+
C (S) = v+C0 (S). ¥

(c) (=⇒) Assume that C∗ = C 0∗. By Theorem 1(b), v+C = v+C∗ and
v+C0 = v+C0∗. Thus, v

+
C = v+C0 .

(⇐=) We first prove the following claim.

Claim 5. If C is an irreducible matrix, for all i, j ∈ N,

vC ({i, j}) = min {c0i, c0j}+ cij.

Proof. Let t = {(ip−1, ip)}np=1 be the mt given by conditions (A1) and
(A2). Assume, wlog, that i = ip, j = iq and p < q. Bergantiños and Vidal-
Puga (2005a) proved that vC ({i, j}) = c0i + cij . By (A2), c0i ≤ c0j. Thus,
vC ({i, j}) = min {c0i, c0j}+ cij. ¥

Assume that v+C = v+C0. Then,

m (N0, C) = v+C (N) = v+C0 (N) = m (N0, C
0) .

By Theorem 1(b) , v+C∗ = v+C = v+C0 = v+C0∗. By Theorem 1(a), vC∗ = vC0∗.
In particular, for any i ∈ N ,

c∗0i = vC∗ ({i}) = vC0∗ ({i}) = c0∗0i.

Given i, j ∈ N , by Claim 5,

c∗ij = vC∗ ({i, j})−min
©
c∗0i, c

∗
0j

ª
= vC0∗ ({i, j})−min

©
c0∗0i, c

0∗
0j

ª
= c0∗ij.

This finishes the proof of Theorem 1. ¥
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