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Abstract

We consider four cost allocation rules in minimum cost spanning
tree problems. These rules were introduced by Bird (1976), Dutta
and Kar (2004), Kar (2002), and Feltkamp, Tijs and Muto (1994),
respectively. We give a list of desirable properties and we study which
properties are satis�ed by these rules.

1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). Con-
sider that a group of agents, located at di¤erent geographical places, want
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some particular service which can only be provided by a common supplier,
called the source. Agents will be served through connections which entail
some cost. However, they do not care whether they are connected directly
or indirectly to the source.
There are many economic situations that can be modeled in this way. For

instance, several towns may draw power from a common power plant, and
hence have to share cost of the distribution network. This example appears
in Dutta and Kar (2004).
Bergantiños and Lorenzo (2004, 2005) studied a real situation where vil-

lagers should pay the cost of constructing pipes from their respective houses
to a water supplier. Some houses in a valley sited in Galicia (Spain), required
access to a water dam built by the local authority. The cost of the pipes con-
nected to the houses´ water supply required villagers to pay for it. Some
villagers paid for the pipes which would connect them to the dam. After the
commencement of the system, most of the other villagers decided to connect
to the network. This becomes a source of dispute as the latter villagers want
usage of the existing network, paid by the former villagers creating a dis-
compensation to former villagers. This situation could have been avoided by
using a prior sharing cost rule.
The literature on mcstp starts by de�ning algorithms for constructing

minimum cost spanning trees (mt). Other important issue is how to allocate
the cost associated with the mt among the agents.
Bird (1976) proposed a cost allocation rule (we call it B). B has been

axiomatically characterized in Dutta and Kar (2004), Gómez-Rúa and Vidal-
Puga (2005) and Özsoy (2006). Bird (1976) associated a coalitional game
with any mcstp. Kar (2002) characterized the Shapley value of this coali-
tional game as an allocation rule for mcstp. We denote this rule as K. Dutta
and Kar (2004) proposed and characterized a new rule, which we denote as
DK. Finally, Feltkamp, Tijs and Muto (1994) introduced a rule for mcstp,
we call it FTM . This rule has been axiomatically characterized in Brânzei,
Moretti, Norde and Tijs (2004), and in Bergantiños and Vidal-Puga (2005,
2007a, 2007b).
In Bergantiños and Vidal-Puga (2007a), we gave a list of desirable prop-

erties that a fair rule should satisfy. Most of these properties are already
known in the literature of mcstp, others are de�ned applying well-known
principles to mcstp. We proved that FTM satis�es most of these properties.
In this paper we study which of these properties are satis�ed by the above
rules.
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In Bergantiños and Vidal-Puga (2007a), we de�ned the property of Inde-
pendence of Other Costs (IOC). This property says that the amount paid by
agent i depends only on the cost of the arcs to which he belongs. However,
no rule satis�es IOC.
In this paper we introduce two weaker versions of IOC. Independence

of Small Costs (ISC) says that the amount paid by each agent i does not
depend on the cost of the arcs that are cheaper than agent i�s cheapest arc.
Independence of Large Costs (ILC) says that the amount paid by each agent
i does not depend on the cost of the arcs that are more expensive than agent
i�s most expensive arc. We prove that B satis�es ISC but fails ILC. K
satis�es ISC but fails ILC. DK fails both. Nevertheless, FTM satis�es
both.
The paper is organized as follows. In Section 2 we introduce mcstp, along

with the rules and properties considered in the paper. In Section 3 we present
the results. In Section 4 we provide some concluding remarks.

2 The minimum cost spanning tree problem

This section is divided in three subsections. In the �rst subsection, we intro-
duce the problem. In the second subsection, we introduce the three rules of
the literature. Finally, in the third subsection, we present the properties.

2.1 The problem

Let N = f1; 2; :::g be the set of all possible agents. Let �N be the set of all
permutations over the �nite set N � N . Given � 2 �N ; let Pre (i; �) denote
the set of elements of N which come before i in the order given by �; i.e.
Pre (i; �) = fj 2 N j � (j) < � (i)g. Given S � N , let �S denote the order
induced by � among the agents in S.
We are interested in networks whose nodes are elements of a set N0 =

N [ f0g, where N � N is �nite and 0 is a special node called the source.
Usually we take N = f1; :::; ng :
A cost matrix C = (cij)i;j2N0 on N represents the cost of direct link

between any pair of nodes. We assume that cij = cji � 0 for each i; j 2 N0
and cii = 0 for each i 2 N0. Since cij = cji we work with undirected arcs, i.e.
(i; j) = (j; i) :
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We denote the set of all cost matrices over N as CN . Given C; C 0 2 CN
we say C � C 0 if cij � c0ij for all i; j 2 N0.
Aminimum cost spanning tree problem, brie�y anmcstp, is a pair (N0; C)

where N � N is the �nite set of agents, 0 is the source, and C 2 CN is the
cost matrix.
Given an mcstp (N0; C) ; we de�ne the mcstp induced by C in S � N as

(S0; C).
A network g over N0 is a subset of f(i; j) ji; j 2 N0g : The elements of g

are called arcs:
Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of di¤erent arcs f(ih�1; ih)glh=1 satisfying (ih�1; ih) 2 g for all
h 2 f1; 2; :::; lg, i = i0, and j = il.
A tree is a network satisfying that for each i 2 N there exits a unique

path from i to the source. If t is a tree we usually write t = f(i0; i)gi2N where
i0 represents the �rst node in the unique path in t from i to 0:
Let GN denote the set of all networks over N0. Let GN0 denote the set of

all networks where each agent i 2 N is connected to the source, i.e. there
exists a path from i to 0 in the network.
Given an mcstp (N0; C) and g 2 GN , we de�ne the cost associated with

g as
c (N0; C; g) =

X
(i;j)2g

cij:

When there are no ambiguities, we write c (g) or c (C; g) instead of c (N0; C; g).
A minimum cost spanning tree for (N0; C), brie�y an mt; is a tree t 2 GN0

such that c (t) = min
g2GN0

c (g). It is well-known that anmt exists, even though it

does not necessarily have to be unique. Given an mcstp (N0; C) ; we denote
the cost associated with any mt t in (N0; C) as m (N0; C).
Given an mcstp, Prim (1957) provided an algorithm for building an mt.

The idea of this algorithm is simple: starting from the source we construct
a network by sequentially adding arcs with the lowest cost and without in-
troducing cycles.
Formally, Prim�s algorithm is de�ned as follows. We start with S0 = f0g

and g0 = ;:
Stage 1 : Take an arc (0; i) such that c0i = min

j2N
fc0jg. If there are several

arcs satisfying this condition, select one of them. Now, S1 = f0; ig and
g1 = f(0; i)g.
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Stage p + 1: Assume that we have de�ned Sp � N0 and gp 2 GN . We
now de�ne Sp+1 and gp+1. Take an arc (j; i) with j 2 Sp and i 2 N0nSp such
that cji = min

k2Sp;l2N0nSp
fcklg. If there are several arcs satisfying this condition,

select one of them. Now, Sp+1 = Sp [ fig and gp+1 = gp [ f(j; i)g.
This process is completed in n stages. We say that gn is a tree obtained

following Prim�s algorithm. Notice that this algorithm leads to a tree, but
that this is not always unique.

We use Prim�s algorithm to prove the following result:

Lemma 1. A tree t is an mt if and only if for all S  N0, S 6= ;, there
exists (i; j) 2 t with i 2 S, j 2 N0nS such that cij = min

k2S;l2N0nS
fcklg.

Proof. ()) Let S  N0 such that S 6= ;. Let (i; j) be an arc with
i 2 S, j 2 N0nS and cij = min

k2S;l2N0nS
fcklg. Suppose (i; j) =2 t. We consider

the graph g = t [ f(i; j)g. Since t is a tree, there exists a path in t from i
to j. In this path, there exists an arc (i0; j0) 2 t with (i; j) 6= (i0; j0), i0 2 S
and j0 2 N0nS. Thus, t0 = gn f(i0; j0)g is a tree in (N0; C). Since t is an mt,
ci0j0 � cij. Hence, ci0j0 = min

k2S;l2N0nS
fcklg.

(() We prove that t is an mt proving that it can be obtained through
Prim�s algorithm. There exists (0; i1) 2 t with i1 2 N such that c0i1 =
min
j2N

fc0jg. Thus, (0; i1) is an eligible arc in the �rst step of Prim�s algorithm
and S1 = f0; i1g. There exists (i02; i2) 2 t with i02 2 S1 and i2 2 Nn fi1g such
that ci02i2 = min

k2S1;l2N0nS1
fcklg. Thus, (i02; i2) is again eligible following Prim�s

algorithm. Following this reasoning, we deduce that t can be computed
following Prim�s algorithm. Hence, t is an mt. �

A game with transferable utility, TU game, is a pair (N; v) where v : 2N !
R satis�es v (?) = 0. Sh (N; v) denotes the Shapley value (Shapley, 1953) of
(N; v).
Bird (1976) associated a TU game (N; vC) with each mcstp (N0; C). For

each coalition S � N ,
vC (S) = m (S0; C) :

This is a �pessimistic�approach, because the players in S assume that the
rest of the players are not present. An alternative approach is to assume that
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the rest of the players are already connected and thus connection is possible
through them. In Bergantiños and Vidal-Puga (2007b), we associated an
�optimistic�TU game

�
N; v+C

�
with each mcstp (N0; C). For each coalition

S � N ,
v+C (S) = m

�
S0; C

+(NnS)�
where c+(NnS)ij = cij for all i; j 2 S and c+(NnS)i0 = minj2N0nS fcijg for all i 2 S.

2.2 Rules

One of the most important issues addressed in the literature about mcstp is
how to divide the cost of connecting agents to the source.
A (cost allocation) rule is a function  such that  (N0; C) 2 RN for

each mcstp (N0; C) and
P
i2N

 i (N0; C) = m (N0; C). As usual,  i (N0; C)

represents the cost allocated to agent i.
We will now introduce four rules.
The Bird rule (Bird, 1976) and Dutta-Kar�s rule (Dutta and Kar, 2004)

are de�ned through Prim�s algorithm. We �rst assume that there is a unique
mt t.
Given i 2 N , let i0 be the �rst node in the unique path in t from i to the

source. The Bird rule (B) is de�ned for each i 2 N as

Bi (N0; C) = ci0i:

The idea of this rule is simple. Agents connect sequentially to the source
following Prim�s algorithm and each agent pays the corresponding connection
cost.
Dutta-Kar�s rule (DK) is de�ned in a more elaborate way. Assume that

the agents, according with Prim�s algorithm, connect in the order 1; 2; :::; n:
First agent 1 connects to the source. We de�ne p1 = c01: Now agent 2 con-
nects to 20 where c202 = min fc02; c12g :We take x1 = min fp1; c202g and p2 =
max fp1; c202g : Now agent 3 connects to 30 where c303 = min fc03; c13; c23g :
We take x2 = min fp2; c303g and p3 = max fp2; c303g. This process continue
until we reach agent n. In this case we take xn = max fpn�1; cn0ng. Then,
the �nal allocation is given by x, i.e.

DKi (N0; C) = xi

for all i 2 N .
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Assume now there exists more than one mt. In this case, the Bird rule
and Dutta-Kar�s rule can be de�ned as an average of the trees associated
with Prim�s algorithm.
Dutta and Kar (2004) proceeded as follows. Given � 2 �N they de�ned

B� (N0; C) as the allocation obtained when they applied the previous protocol
to (N0; C) and solved the indi¤erences by selecting the �rst agent given by
�. Then they de�ned

B (N0; C) =
1

n!

X
�2�N

B� (N0; C) :

They de�ned DK (N0; C) in a similar way.

The game theory approach can also be used for de�ning rules. The Kar
rule (K) is de�ned as

K (N0; C) = Sh (N; vC) :

In Bergantiños and Vidal-Puga (2007b), we proved that Feltkamp-Tijs-
Muto�s rule (FTM) can be de�ned as

FTM (N0; C) = Sh
�
N; v+C

�
:

2.3 Properties

We now introduce several properties of rules. For a detailed discussion of
these properties see, for instance, Bergantiños and Vidal-Puga (2007a).
Given a rule  ; we consider the following properties:

Core Selection (CS) For all mcstp (N0; C) and all S � N , we haveX
i2S

 i (N0; C) � m (S0; C) :

CS says that no group of agents can be better o¤ by building their own
network. In particular, this property prevents some agents to subsidy others.

Cost Monotonicity (CM) For all mcstp (N0; C) and (N0; C 0) such that
cij < c0ij for some i 2 N , j 2 N0 and otherwise ckl = c0kl, we have

 i (N0; C) �  i (N0; C
0) :
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CM says that a decrease in the cost of a link cannot harm their adjacent
agents. In particular, this property prevents the agents to take advantage by
reporting false connection costs.

Strong Cost Monotonicity (SCM) For all mcstp (N0; C) and (N0; C 0)
such that C � C 0, we have

 (N0; C) �  (N0; C
0) :

SCM says that a decrease in the cost of a link cannot harm any agent.
SCM is called solidarity in Bergantiños and Vidal-Puga (2007a).

Population Monotonicity (PM) For all mcstp (N0; C), S � N , and i 2
S, we have

 i (N0; C) �  i (S0; C) :

PM says that no agent is worse o¤ with the entrance of new agents.
In particular, this property prevents incentives to veto the entrance of new
agents.

Continuity (CON) For all N � N ,  (N0; �) is a continuous function of
CN .

CON says that small changes in the costs do not mean a big change in
the allocation.

Positivity (POS) For all mcstp (N0; C) and all i 2 N , we have

 i (N0; C) � 0:

POS says that no agent can make a pro�t.

Separability (SEP ) For allmcstp (N0; C) and S � N satisfyingm (N0; C) =
m (S0; C) +m ((N n S)0 ; C), we have

 i (N0; C) =

�
 i (S0; C) if i 2 S
 i ((N n S)0 ; C) if i 2 N n S:

SEP says that if two groups of agents can connect to the source inde-
pendently, then their respective allocations should also be independent.
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Symmetry (SYM) For all mcstp (N0; C) and all pair of symmetric agents
i; j 2 N ,

 i (N0; C) =  j (N0; C) :

We say that i; j 2 N are symmetric if for all k 2 N0 n fi; jg, cik = cjk.

Independence of Other Costs (IOC) For allmcstp (N0; C) and (N0; C 0),
and all i 2 N such that cij = c0ij for all j 2 N0 n fig, we have

 i (N0; C) =  i (N0; C
0) :

IOC says that an agent�s allocation should only depend on the cost of
their adjacent links.

Equal Share of Extra Costs (ESEC) Let (N0; C) and (N0; C 0) be two
mcstp. Let c0; c00 � 0. Assuming c0i = c0 and c00i = c00 for all i 2 N ,
c0 < c00, and cij = c0ij � c0 for all i; j 2 N , we have

 i (N0; C
0) =  i (N0; C) +

c00 � c0
n

:

ESEC says that the agents should share equally any extra cost of direct
connection to the source, when it is the more expensive one and it is equal
for all the agents.
We say that two mcstp (N0; C) and (N0; C 0) are tree-equivalent if there

exists a tree t such that, �rstly, t is an mt for both (N0; C) and (N0; C 0), and
secondly, cij = c0ij for all (i; j) 2 t.

Independence of Irrelevant Trees (IIT ) If twomcstp (N0; C) and (N0; C 0)
are tree-equivalent,

 (N0; C) =  (N0; C
0) :

IIT says that any mt provides all the relevant information.
In Bergantiños and Vidal-Puga (2007a), we proved that there is no rule

satisfying IOC. We now introduce two properties weaker than IOC.
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Independence of Small Costs (ISC) Let (N0; C) and (N0; C 0) be two
mcstp and i 2 N satisfying three conditions: First, cik = c0ik for all
k 2 N0: Second, given j; k 2 N0, then cjk � cmini if and only if c0jk � cmini

where cmini = min
k2N0nfig

fcikg : Third, given j; k 2 N0 such that cmini < cjk

then, c0jk = cjk: Then,

 i (N0; C) =  i (N0; C
0) :

ISC says that the amount paid by agent i does not depend on the cost
of the arcs cheaper than his cheapest arc.

Independence of Large Costs (ILC) Let (N0; C) and (N0; C 0) be two
mcstp and i 2 N satisfying three conditions: First, cik = c0ik for all
k 2 N0. Second, given j; k 2 N0, then cmaxi � cjk if and only if
cmaxi � c0jk where c

max
i = max

k2N0nfig
fcikg. Third, given j; k 2 N0 such

that cjk < cmaxi then, c0jk = cjk. Then,

 i (N0; C) =  i (N0; C
0) :

ILC says that the amount paid by agent i does not depend on the cost
of the arcs larger than his most expensive arc.

In the next proposition we summarize the relations among these proper-
ties. Parts (a) and (b) appear in Bergantiños and Vidal-Puga (2007a). Part
(c) is proved in this paper.

Proposition 1. (a) SCM implies CM and IIT .
(b) PM implies CS and SEP .
(c) IIT implies ILC.

Proof. (c)Assume that  is a rule satisfying IIT and let (N0; C), (N0; C 0)
and i 2 N be as in the de�nition of ILC. We �rst prove the following claim:
Claim. If there exist j; k 2 N0 and a > 0 such that, for all l;m 2 N0,

clm =

�
c0lm � a if (l;m) = (j; k)
c0lm otherwise

and cmaxi � cjk, then  i (N0; C) =  i (N0; C
0) :
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Since cmaxi � cjk < c0jk we deduce that i 6= j and i 6= k:
Let t = f(l0; l)gl2N be an mt in (N0; C) : If (j; k) =2 t, then t is also an mt

in (N0; C 0). Since  satis�es IIT ,  i (N0; C) =  i (N0; C
0) :

If (j; k) 2 t, we can assume, without loss of generality, that j = k0. Two
cases are possible:

1. Link (j; k) is not in the unique path in t from i to 0: We de�ne t� =
(t n f(j; k)g)[f(i; k)g. It is trivial to see that t� is a tree satisfying that

c (N0; C; t
�)� c (N0; C; t) = cik � cjk:

Since cmaxi � cjk we deduce that c (N0; C; t�) � c (N0; C; t) : Thus, t� is
an mt in both (N0; C) and (N0; C 0). Since  satis�es IIT;  i (N0; C) =
 i (N0; C

0).

2. Link (j; k) is in the unique path in t from i to 0: We de�ne t� =
(t n f(j; k)g) [ f(0; i)g. Using similar arguments to those used in the
�rst case we can conclude that  i (N0; C) =  i (N0; C

0).

This concludes the proof of the claim.

Let Ai = f(i1l ; i2l )g
p
l=1 be the set of arcs satisfying that ci1l i2l 6= c0

i1l i
2
l
.

We take C0 = C. For all l = 1; :::; p we de�ne the mcstp
�
N0; C

l
�
where

cl
i1l i

2
l
= c0

i1l i
2
l
and cllm = cl�1lm otherwise.

For each l = 1; :::; p we take (j; k) = (i1l ; i
2
l ). Under the claim,  i

�
N0; C

l�1� =
 i
�
N0; C

l
�
for all l = 1; ::; p.

Since C0 = C and Cp = C 0,  satis�es ILC. �

3 Properties of the rules

In this section we study which properties the rules satisfy. Some of the results
are already known in the literature. In this case we only refer to the paper
in which it is proved.

Theorem 1. (a) B satis�es CS, POS, SYM , ESEC, and ISC. B does
not satisfy CM , SCM , PM , CON , SEP , IIT , and ILC.
(b) K satis�es CM , CON , SYM , ESEC, and ISC. K does not satisfy

CS, SCM , PM , POS, SEP , IIT , and ILC.
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(c) DK satis�es CS, CM , POS, and SYM . DK does not satisfy SCM ,
PM , CON , SEP , ESEC, IIT , ISC, and ILC.
(d) FTM satis�es CS, CM , SCM , PM , CON , POS, SEP , SYM ,

ESEC, IIT , ISC, and ILC.

Proof. (a)

� B satis�es CS:

See Bird (1976).

� B satis�es POS:

It is trivial.

� B satis�es SYM:

Let i; j be two symmetric agents in (N0; C) : Given � 2 �N we de�ne
�ij 2 �N such that �ij (i) = � (j) ; �ij (j) = � (i) ; and �ij (k) = � (k)
for all k 2 N nfi; jg : It is trivial to see that B�

i (N0; C) = B�ij

j (N0; C) :
Thus,

Bi (N0; C) =
1

n!

X
�2�N

B�
i (N0; C) =

1

n!

X
�2�N

B�ij

j (N0; C)

=
1

n!

X
�2�N

B�
j (N0; C) = Bj (N0; C) :

� B satis�es ESEC:

Let (N0; C) and (N0; C 0) be as in the de�nition of ESEC: It is straight-
forward to see that for all � 2 �N ;

B�
i (N0; C

0) =

�
B�
i (N0; C) + (c

0
0 � c0) if � (i) = 1

B�
i (N0; C) otherwise.

Now it is not di¢ cult to check that B satis�es ESEC.

� B satis�es ISC.

Let (N0; C), (N0; C 0), and i 2 N be as in the de�nition of ISC: It is
enough to prove that B�

i (N0; C) = B�
i (N0; C

0) for each � 2 �N :
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We �rst assume that there exits a unique arc (j; k) such that c0jk 6= cjk.
This means i 6= j and i 6= k. We can assume without loss of gen-
erality that c0jk < cjk � cmini . When we compute B� (N0; C) (resp.
B� (N0; C

0)) following Prim�s algorithm, the agents connect sequen-
tially to the source in a speci�c order. We denote this order as ��

(resp. ��0). We consider three cases:

1. �� (i) < min f�� (j) ; �� (k)g. Thus, Pre (i; ��) = Pre (i; ��0).
Hence,

B�
i (N0; C) = B�

i (N0; C
0) = min

l2Pre(i;��)
fcilg :

2. min f�� (j) ; �� (k)g < �� (i) < max f�� (j) ; �� (k)g. We assume
without loss of generality that �� (j) < �� (i) < �� (k). We know
that B�

i (N0; C) = ci0i. Thus, cmini � ci0i � cjk. Since cjk � cmini

we have that cjk = ci0i and B�
i (N0; C) = cmini .

Since c0jk < cjk, Pre (i; ��) � Pre (i; ��0). Thus, B�
i (N0; C

0) �
B�
i (N0; C) = cmini . Moreover, B�

i (N0; C
0) = min

l2Pre(i;��0)
fcilg �

cmini . Thus, B�
i (N0; C

0) = cmini :

3. max f�� (j) ; �� (k)g < �� (i) : Thus, Pre (i; ��) = Pre (i; ��0).
Hence,

B�
i (N0; C) = B�

i (N0; C
0) = min

l2Pre(i;��)
fcilg :

Assume now that there are several arcs (j; k) such that c0jk 6= cjk: Let
A =

��
jh1 ; j

h
2

�	p
h=1

be the set of those arcs. We consider the family��
N0; C

h
�	p

h=0
such that C0 = C and

chkl =

(
c0
jh1 j

h
2
if (k; l) =

�
jh1 ; j

h
2

�
ch�1kl otherwise

for all h = 1; :::; p. Notice that for all h = 1; :::; p;
�
N0; C

h�1�, �N0; Ch� ;
and i 2 N are as in the de�nition of ISC: Moreover,

�
jh1 ; j

h
2

�
is the

unique arc with di¤erent cost in both mcstp: Thus, B�
i

�
N0; C

h�1� =
B�
i

�
N0; C

h
�
for all h = 1; :::; p: SinceCp = C 0; B�

i (N0; C) = B�
i (N0; C

0).

� B does not satisfy CM .

See Dutta and Kar (2004).
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� B does not satisfy SCM .

Since B does not satisfy CM , under Proposition 1 (a), the result holds.

� B does not satisfy CON:

Example 1. Let (N0; Cx) be such that N = f1; 2g ; x � 0; and

Cx =

0@ 0 10 10 + x
10 0 2

10 + x 2 0

1A :

B (N0; C
x) = (10; 2) when x > 0 but B (N0; C0) = (6; 6) :

� B does not satisfy SEP .

Example 2. Let (N0; C) be such that N = f1; 2; 3g, S = f1; 2g, and

C =

0BB@
0 3 10 1
3 0 1 10
10 1 0 3
1 10 3 0

1CCA .

It is clear that m (S0; C) + m ((NnS)0 ; C) = m (N0; C). However,
B (N0; C) = (2; 2; 1) and B (S0; C) = (3; 1).

� B does not satisfy PM .

Since B does not satisfy SEP; under Proposition 1 (b) ; the result holds.

� B does not satisfy ILC.

In Example 1, (N0; C0) ; (N0; C2) and 1 are as in the de�nition of ILC.
Nevertheless, B1 (N0; C0) = 6 and B1 (N0; C2) = 10.

� B does not satisfy IIT:

Since B does not satisfy ILC, under Proposition 1 (c) ; the result holds.

(b)

� K satis�es CM .

See Dutta and Kar (2004).

14



� K satis�es CON .

Since K (N0; C) = Sh (N; vC) and vC is a continuous function on C,
the result holds.

� K satis�es SYM . It is trivial to see that if agents i and j are sym-
metric in (N0; C), they are symmetric in (N; vC) : Since K (N0; C) =
Sh (N; vC) and the Shapley value is symmetric, the result holds.

� K satis�es ESEC.

Let (N0; C) and (N0; C 0) be as in the de�nition of ESEC: It is easy to
see that vC0 (S) = vC (S) + (c

0
0 � c0) for all S � N . Thus,

Ki (N0; C
0) = Shi (N; vC0) = Shi (N; vC) +

c00 � c0
n

= Ki (N0; C) +
c00 � c0
n

:

� K satis�es ISC.

Let (N0; C) ; (N0; C 0) and i 2 N be as in the de�nition of ISC. We
assume that there exists a unique arc (j; k) such that cjk 6= c0jk. The
general case can be derived from this case using similar arguments to
those used withB:We assume, without loss of generality, that c0jk < cjk:

Since K (N0; C) = Sh (N; vC) and vC (S) = m (S0; C) for all S � N; it
is enough to prove that

m (S0; C)�m (S0n fig ; C) = m (S0; C
0)�m (S0n fig ; C 0)

when i 2 S: We prove it only when fj; kg � S: The other cases are
trivial.

Let t = f(l0; l)gl2S be anmt in (S0; C). We de�ne R as the set of agents
who are adjacent to agent i and connect to the source (in t) through
agent i. Namely,

R =
�
l 2 Sjl0 = i

	
:

We assume, without loss of generality, that R = f1; 2; :::; rg (R = ; is
possible).

Given l 2 R, we de�ne Rl as the set of agents in S who connect to the
source in t through agent l. Namely, Rl is the set of agents p 2 S such
that agent l is in the unique path in t from p to 0: We consider l 2 Rl:
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Moreover, we de�ne

R0 = (S0n fig) n
[
l2R

Rl:

For each l 2 R, we de�ne the mcstp
��
Rl n flg

�
0
; C+l

�
as the mcstp

that results form
�
Rl; C

�
when agent l connects to the source and the

rest of the agents can connect through him. Formally, for all p 2 Rlnflg,
c+l0p = min fclp; c0pg and c+lqp = cqp when q 6= 0.
It is not di¢ cult to check that

m (S0; C) = m
�
R0; C

�
+
X
l2R

m
��
Rl n flg

�
0
; C+l

�
+
X
l2R

cil + ci0i:

Let p�0 2 R0 and p1 2
S
l2R

Rl be such that their connection cost is

minimal. Namely,

cp�0p1 = min

(
cqsjq 2 R0 and s 2

[
l2R

Rl

)
:

We can assume, without loss of generality, that p1 2 R1. Let p�1 2
R0[R1 and p2 2

S
l2Rnf1g

Rl be such that their connection cost is minimal,

i.e.

cp�1p2 = min

8<:cqs : q 2 R0 [R1 and s 2 [
l2Rnf1g

Rl

9=; :

Again, we can assume, without loss of generality, that p2 2 R2.
Following this procedure, we obtain

��
p�l�1; pl

�	
l2R such that pl 2 Rl

for all l = 1; ::; r. Under Lemma 1,

t� =

 
t n
 ��

i0; i
�	
[
[
l2R

f(i; l)g
!!

[
��
p�l�1; pl

�	
l2R

is an mt in (S0n fig ; C). Thus,

m (S0; C)�m (S0n fig ; C) = c (t)� c (t�)

=
X
l2R

cil + ci0i �
X
l2R

cp�l�1pl :

16



Wewill prove that this expression coincides withm (S0; C 0)�m (S0n fig ; C 0).
Recall cil = c0il for all l 2 N0; i =2 fj; kg. We see two cases:

1. There exists l 2 f0; 1; :::; rg such that fj; kg � Rl: We consider
three subcases:

(a) (j; k) 2 t: Since c0jk < cjk, t is an mt in (N0; C 0) ; t� is an mt
in (S0n fig ; C 0) ; and (j; k) 2 t�. Hence,

m (S0; C
0)�m (S0n fig ; C 0) =

X
l2R

c0il + c0i0i �
X
l2R

c0p�l�1pl :

=
X
l2R

cil + ci0i �
X
l2R

cp�l�1pl

= m (S0; C)�m (S0n fig ; C) :

(b) (j; k) =2 t and fj; kg � Rl with l 6= 0: We consider the graph
t[ f(j; k)g. Since t is a tree, there exists a cycle g in (S0; C) :
Moreover, (i; l) =2 g because fj; kg � Rl, (i; l) is in the unique
path connecting j with 0; and (i; l) is also in the unique path
connecting k with 0. Under Lemma 1, by deleting the most
expensive arc in g we get an mt t0 in (S0; C 0). Notice that
f(i; l)gl2R 2 t0; (i0; i) 2 t0; and

��
p�l�1; pl

�	
l2R 2 t0. Using

arguments similar to those used before with t and t� we obtain
that

m (S0; C
0)�m (S0n fig ; C 0) =

X
l2R

c0il + c0i0i �
X
l2R

c0p�l�1pl ;

which coincides with m (S0; C)�m (S0n fig ; C) :
(c) (j; k) =2 t and fj; kg � R0. We consider the graph t[f(j; k)g.

Since t is a tree, there exists a cycle g in (S0; C). Using
arguments similar to those used in the previous case we can
prove that

m (S0; C
0)�m (S0n fig ; C 0) = m (S0; C)�m (S0n fig ; C) :

2. j 2 Rl; k 2 Rq with l 6= q: Thus, l 6= 0 or q 6= 0: Assume, without
loss of generality, that l 6= 0. Then,

t̂ = (tn f(i; l)g) [ f(j; k)g
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is a tree in (S0; C) and c
�
S0; C; t̂

�
= c (S0; C; t)�cil+cjk. Since t is

an mt in (S0; C) and cjk � cmini , we conclude that cjk = cil = cmini

and t̂ is an mt in (S0; C) :We can compute R̂ and
n
R̂l
o
l2R[f0g

for

t̂ in the same way that we computed R and
�
Rl
	
l2R for t. Now,

there exists l 2 R [ f0g such that fj; kg � R̂l and we proceed as
in Case 1.

� K does not satisfy CS:

See Dutta and Kar (2004).

� K does not satisfy ILC:

In Example 1, (N0; C0), (N0; C2) and 1 are as in the de�nition of ILC.
Nevertheless, K1 (N0; C

0) = 6 and K1 (N0; C
2) = 5.

� K does not satisfy IIT .

SinceK does not satisfy ILC, under Proposition 1 (c), the result holds.

� K does not satisfy SCM .

Since K does not satisfy ILC, under Proposition 1 (a) and Proposition
1(c), the result holds.

� K does not satisfy PM:

Since K does not satisfy CS, under Proposition 1 (b), the result holds.

� K does not satisfy POS:

In Example 1, K1 (N0; C
20) = �4:

� K does not satisfy SEP:

Example 3. Let (N0; C) be such that N = f1; 2; 3g and

C =

0BB@
0 10 100 20
10 0 10 100
100 10 0 40
20 100 40 0

1CCA :

Take S = f1; 2g : Then, m (N0; C) = 40; m (S0; C) = 20; m (f3g0 ; C) =
20; K1 (S0; C) = �35, and K1 (N0; C) = �15:
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(c)

� DK satis�es CS and CM .

See Dutta and Kar (2004).

� DK satis�es POS:

It is trivial.

� DK satis�es SYM .

Using arguments similar to those used when we proved that B satis�es
SYM; we can prove that DK also satis�es SYM .

� DK does not satisfy ILC:

In Example 1, (N0; C0) ; (N0; C2) ; and 1 are as in the de�nition of ILC:
Nevertheless, DK1 (N0; C

0) = 6 and DK1 (N0; C
2) = 2:

� DK does not satisfy SCM .

Since DK does not satisfy ILC, under Proposition 1 (a) and Proposi-
tion 1 (c), the result holds.

� DK does not satisfy CON:

In Example 1, DK (N0; Cx) = (2; 10) when x > 0 and DK (N0; C0) =
(6; 6) :

� DK does not satisfy SEP:
In Example 2, DK (N0; C) = (2; 2; 1) and DK (S0; C) = (1; 3).

� DK does not satisfy PM .

Since DK does not satisfy SEP , under Proposition 1 (b), the result
holds.

� DK does not satisfy ESEC:

Example 4. Let (N0; C) and (N0; C 0) be such that N = f1; 2; 3g ;

C =

0BB@
0 10 10 10
10 0 10 10
10 10 0 6
10 10 6 0

1CCA and C 0 =

0BB@
0 16 16 16
16 0 10 10
16 10 0 6
16 10 6 0

1CCA :

We have DK (N0; C) = (10; 8; 8) and DK (N0; C 0) = (14; 9; 9)

19



� DK does not satisfy IIT:

Since DK does not satisfy ILC, under Proposition 1 (c), the result
holds.

� DK does not satisfy ISC:

Example 5. Let (N0; C) and (N0; C 0) be such that N = f1; 2; 3g

C =

0BB@
0 100 110 120
100 0 6 6
110 6 0 10
120 6 10 0

1CCA and C 0 =

0BB@
0 100 110 120
100 0 3 6
110 3 0 10
120 6 10 0

1CCA
Then, DK3 (N0; C) = 53 and DK3 (N0; C

0) = 100:

(d)

� FTM satis�esCS, CM , SCM , PM , CON , POS, SEP , SYM , ESEC,
and IIT .

See Bergantiños and Vidal-Puga (2007a).

� FTM satis�es ISC.

Before proving it we need some previous results, which can be found
at Bergantiños and Vidal-Puga (2007a).

Given an mcstp (N0; C) and an mt t, Bird (1976) de�ned the min-
imal network (N0; Ct). In Bergantiños and Vidal-Puga (2007a), we
de�ned the irreducible form of an mcstp (N0; C) as the minimal net-
work (N0; C�) associated with any mt t.

An mcstp (N0; C�) is irreducible if and only if there exists a tree t in
(N0; C

�) that satis�es the following two conditions:

(A1) t is lineal, i.e. t = f(�s�1; �s)gns=1 where �0 = 0.
(A2) Given �p; �q 2 N0 with p < q, c��p�q = max

sjp<s�q

�
c��s�1�s

	
.

Moreover, t is an mt.

Given an mcstp (N0; C), we say that the agents connect to the source
via t0 in the order � following Prim�s algorithm if t0 is obtained through
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Prim�s algorithm and in stage p, the arc selected is
�
�0p; �p

�
, for each

p. We de�ne C�� as follows: for all �p; �q 2 N0 with p < q;

c���p�q = max
sjp<s�q

�
c�0s�s

	
:

The mcstp (N0; C��) is the irreducible form of (N0; C), i.e. C�� = C�.
Moreover, t = f(�s�1; �s)gns=1 is an mt in (N0; C�) that satis�es (A1)
and (A2).

Let (N0; C), (N0; C 0) and i 2 N be as in the de�nition of ILC. We
assume that there exists a unique arc (j; k) such that cjk 6= c0jk. The
general case can be derived from this case using similar arguments to
those used with B and K. We assume, without loss of generality, that
c0jk < cjk.

Since c0jk < cjk � cmini , we deduce that i 6= j and i 6= k.

We consider three cases:

1. There exists an mt t = f(l0; l)gl2N in (N0; C) such that (j; k) 2 t:
Assume, without loss of generality, that j < k, k0 = j, and that
the agents connect to the source (in C) via t in the order � =
(1; :::; n) following Prim�s algorithm.
Since t is an mt in (N0; C) and (j; k) 2 t; we have that t is an mt
in (N0; C 0). Let �0 = (�01; :::; �

0
n) such that the agents connect to

the source (in C 0) via t in the order �0 following Prim�s algorithm.
We can �nd �0 such that for each l = 1; :::; j, we have l = �0l and
c�(l�1)l = c0�(l�1)l = cl0l.
Let p be such that k = �0p. Thus, j < p � k. Moreover, we
can choose �0 such that l = �0l for all l = j + 1; :::; p � 1 and
c�(l�1)l = c0�(l�1)l = cl0l < cmini for all l = p; :::; k:

Assume that we can �nd m 2 N such that m > k; c�(m�1)m =

cm0m � cmini , and c�(l�1)l = c0�(l�1)l = cl0l < cmini for all l = k +
1; :::;m�1. Then, for all l = m; :::; n, l = �0l and c

�
(l�1)l = c0�(l�1)l =

cl0l. Since cl0l < cmini for all l = p; :::;m� 1 we deduce that �0i = i.
Moreover, i < j or i � m:

If we can not �nd m as above, then �0i = i < j: In this case we
take m = n+ 1:
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We now prove that c�il = c0�il for all l 2 N0 n fig : We assume that
i < j (the case i � m is similar and we omit it).
By (A2), it is trivial to see that c�il = c0�il when l � j. If j < l � m�
1, then c�il = c�ij = c0�ij = c0�il . If l � m, c�il = max

n
c�ij; c

�
(m�1)l

o
=

max
n
c0�ij; c

0�
(m�1)l

o
= c0�il :

In Bergantiños and Vidal-Puga (2007a, Lemma 4.1(b)), we proved
that FTM satis�es IOC in the class of irreducible matrices. Thus,
FTMi (N0; C

�) = FTMi (N0; C
0�).

From Bergantiños and Vidal-Puga (2007a, De�nition 3.1), it is
straightforward to check that for allmcstp (N0; C), FTM (N0; C) =
FTM (N0; C

�). Hence, FTMi (N0; C) = FTMi (N0; C
0) :

2. For all mt t in (N0; C) ; (j; k) =2 t. Moreover, for all mt t0 in
(N0; C

0), (j; k) =2 t0:
Let t be an mt in (N0; C). Thus, t is also an mt in (N0; C 0). Since
FTM satis�es IIT , FTMi (N0; C) = FTMi (N0; C

0) :

3. For all mt t in (N0; C), (j; k) =2 t. Moreover, there exists an mt t0
in (N0; C 0) such that (j; k) 2 t0.
Clearly, m (N0; C) > m (N0; C

0) : We de�ne the mcstp (N0; C 00)
where c00jk = c0jk+m (N0; C)�m (N0; C 0) and c00lm = clm otherwise.
Notice that C � C 00 � C 0:

It is trivial to see that if t is an mt in (N0; C), then t is an mt in
(N0; C

00). Since FTM satis�es IIT; FTMi (N0; C) = FTMi (N0; C
00) :

By Case 1, FTMi (N0; C
00) = FTMi (N0; C

0) :

� FTM satis�es ILC.
Since FTM satis�es IIT , under Proposition 1 (c), the result holds. �

In the next table we summarize the results obtained in Theorem 1.
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B K DK FTM
CS YES no YES YES
CM no YES YES YES
SCM no no no YES
PM no no no YES
CON no YES no YES
POS YES no YES YES
SEP no no no YES
SYM YES YES YES YES
ESEC YES YES no YES
IIT no no no YES
ISC YES YES no YES
ILC no no no YES

4 Concluding remarks

We have studied di¤erent properties that are de�ned in the literature of cost
allocation in mcspt. Most of these properties have been previously studied
in the literature and applied to some rules. However, not all the properties
had been checked for all the rules. In this paper we �ll this gap.
There are other properties that have been studied in the literature. We

brie�y comment three of them: consistency, additivity, and strategic merging.
The idea of consistency is the following: Some agents pay the allocation

that some rule assigns to them, and connect to the source. The rest of the
agents face the resulting mcstp and pay the allocation that the same rule
assigns to them. Consistency states that the �nal allocation is the same as
before. Two di¤erent properties of consistency are used to characterize DK
(Dutta and Kar, 2004, Theorem 2) and B (Dutta and Kar, 2004, Theorem
3), respectively.
Additivity implies that the solution for the sum of two problems should be

the sum of their respective solutions. This property is too strong and no rule
satis�es it. A restricted version of additivity is used to characterize FTM
in Brânzei, Moretti, Norde and Tijs (2004) and Bergantiños and Vidal-Puga
(2005).
Strategic merging arises when a group of agents manipulates the allocation

by merging and acting as a single node. It is of interest that no improvement
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be possible via strategic merging. Among the above rules, only B satis�es
this property in an wide class of problems. Non-strategic merging is used to
characterize B in Gómez-Rúa and Vidal-Puga (2005) and Özsoy (2006).

References

[1] Bergantiños G. and Lorenzo L. (2004) A non-cooperative approach to
the cost spanning tree problem. Mathematical Methods of Operations
Research 59, 393-403.

[2] Bergantiños G. and Lorenzo L. (2005) Optimal equilibria in the non-
cooperative game associated with cost spanning tree problems. Annals of
Operations Research 137, 101-115.

[3] Bergantiños G. and Vidal-Puga J.J. (2005) Additivity in cost span-
ning tree problems. Journal of Mathematical Economics. Forthcoming,
doi:10.1016/j.jmateco.2008.03.003.

[4] Bergantiños G. and Vidal-Puga J. (2007a) A fair rule in minimum cost
spanning tree problems. Journal of Economic Theory 137(1), 326-352,
doi: 10.1016/j.jet.2006.11.001.

[5] Bergantiños G. and Vidal-Puga J. (2007b) The optimistic TU game in
minimum cost spanning tree problems. International Journal of Game
Theory 36(2), 223-239, doi: 10.1007/s00182-006-0069-7.

[6] Bird C.G. (1976) On cost allocation for a spanning tree: A game theo-
retic approach. Networks 6, 335-350.

[7] Brânzei R., Moretti S., Norde H. and Tijs S. (2004) The P-value for cost
sharing in minimum cost spanning tree situations. Theory and Decision
56, 47-61.

[8] Dutta B. and Kar A. (2004) Cost monotonicity, consistency and mini-
mum cost spanning tree games. Games and Economic Behavior 48(2),
223-248.

[9] Feltkamp V., Tijs S. and Muto S. (1994) On the irreducible core and the
equal remaining obligation rule of minimum cost extension problems.
Mimeo, Tilburg University.

24



[10] Gómez-Rúa M. and Vidal-Puga J.J. (2005) Non-manipulability
in cost spanning tree problems. Mimeo. Avaliable at
http://webs.uvigo.es/vidalpuga

[11] Özsoy H. (2006) A characterization of Bird�s rule. Mimeo. Available at
http://www.owlnet.rice.edu/~ozsoy/index_jobmarketpaper.html

[12] Kar A. (2002) Axiomatization of the Shapley value on minimum cost
spanning tree games. Games and Economic Behavior 38, 265-277.

[13] Prim R.C. (1957) Shortest connection networks and some generaliza-
tions. Bell Systems Technology Journal 36, 1389-1401.

[14] Shapley L. (1953) A value for n-person games. In: Kuhn HW, Tucker
AW (eds.), Contributions to the Theory of Games II, Princeton Univer-
sity Press, Princeton, pp. 307-317.

25


