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1 Introduction
In this paper we study minimum cost spanning tree problems (mcstp). Consider
that a group of agents, located at different geographical places, want some
particular service which can only be provided by a common supplier, called
the source. Agents will be served through connections which entail some cost.
However, they do not care whether they are connected directly or indirectly to
the source.
There are many economic situations that can be modeled in this way. For

instance, several towns may draw power from a common power plant, and hence
they have to share cost of the distribution network. This example appears in
Dutta and Kar (2004) [8]. Bergantiños and Lorenzo (2004, 2005) [1] [2] studied
a real situation where villagers should pay the cost of constructing pipes from
their houses to the water supplier.
An important issue addressed in the literature is how to allocate the connec-

tion cost amongst the agents. Several rules are proposed in the literature. We
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can mention, for instance, the papers by Bird (1976) [6], Feltkamp et al (1994)
[9], Kar (2002) [10], Dutta and Kar (2004) [8], and Bergantiños and Vidal-Puga
(2007a) [3].
In this paper we obtain a fair outcome through a non-cooperative mechanism.

Even though the non-cooperative approach is quite standard in the literature,
there are no many papers with this approach in mcstp. We mention two papers.
Bergantiños and Lorenzo (2004, 2005) [1] [2] studied a non-cooperative mech-

anism inspired by a real situation. Many equilibria may exist. Some of them are
Pareto optimal (the cost of connecting all the agents to the source is minimal)
but others are not. Moreover, some of the equilibria are extremely unfair. For
example, the payoff of symmetric agents could be different.
Mutuswami and Winter (2002) [12] introduced a general mechanism of net-

work formation and pointed out that this mechanism can be applied to mcstp.
They studied mcstp in a more general framework where the agents have some
private benefits which affect the final outcome. We study mcstp in the classical
framework (private benefits are not taken into account). Moreover, their mech-
anism is not easy to interpret in terms of mcstp. For instance, it is not clear
what the role of the source is.
We present a bargaining mechanism for connecting all the agents to the

source and dividing the cost amongst them. The basic idea is very simple, we ask
each agent the part of the cost he is willing to pay for an arc to be constructed.
We apply this idea following a sequential protocol. Initially, nobody is connected
to the source. At each step, at least one agent is connected to the source.
Unconnected agents can connect to the source through the agents connected in
previous steps.
This bargaining mechanism has three stages.
Stage 1. Each agent i submits a vector

¡
xij
¢
j∈N∈\{i} where x

i
j ≥ 0 is the

amount that agent i is willing to pay to agent j if agent j connects to the
source. The agent with the highest net offer (the difference between what other
agents offer to him and what he offers to the others) is selected. Ties are solved
randomly.
Stage 2. The selected agent, which we denote as α, proposes to the agents in

S ⊂ N (α ∈ S) to construct a tree t (in which each agent in S will be connected
to the source) and to divide the cost according to y ∈ RS .
Stage 3. If some agent in S rejects α0s proposal, α connects to the source

and each agent i ∈ N \ {α} pays xiα to α. The agents in N \ {α} continue
bargaining among themselves. However, they can now connect to the source
directly or through agent α.
If all the agents in S accept α’s proposal, t is constructed. The agents in

N \ S, if any, continue bargaining among themselves. However, they can now
connect to the source directly or through the agents in S.
We prove that there exists a unique payoff allocation associated with the

subgame perfect Nash equilibria of this mechanism. Moreover, this payoff allo-
cation coincides with the rule ϕ defined in Bergantiños and Vidal-Puga (2007a)
[3]. Thus, we have obtained a fair outcome through a non-cooperative mecha-
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nism.
We also prove that there are strong Nash equilibria whose payoff coincides

with the rule ϕ. These results are robust to many small modifications of the
bargaining mechanism.
Pérez-Castrillo and Wettstein (2001) [13] defined the bidding mechanism for

TU games. They proved that the payoff equilibria of the bidding mechanism
coincides with the Shapley value. We apply the ideas of the bidding mechanism
to mcstp. We prove that the payoff associated with each equilibria coincides
with the Shapley value of the cooperative game associated with the mcstp, as
defined by Bird (1976) [6].
The paper is organized as follows. In Section 2 we introduce mcstp. In

Section 3 we introduce the bargaining mechanism and present our main results.
In Section 4 we discuss several modifications of the mechanism. In Section 5 we
apply the mechanism of Pérez-Castrillo and Wettstein (2001) [13] to mcstp. In
the Appendix we present the proofs of the results.

2 The minimum cost spanning tree problem
In this section we introduce minimum cost spanning tree problems and some
results which are relevant for this paper.
Let N = {1, 2, ...} be the set of all possible agents. We are interested in

networks whose nodes are elements of a set N0 = N ∪ {0}, where N ⊂ N is
finite and 0 is a special node called the source. Usually we take N = {1, ..., n}.
Our interest lies on networks where each node of N is (directly or indirectly)
connected to the source.
Let ΠN denote the set of all orders over N. Given π ∈ ΠN , let Pre (i, π)

denote the set of elements of N which come before i in the order given by π.
Namely, Pre (i, π) = {j ∈ N : π (j) < π (i)} .
A cost matrix C = (cij)i,j∈N0

on N represents the cost of direct link between
any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0 and cii = 0 for
each i ∈ N0. Since cij = cji we will work with undirected arcs, i.e (i, j) = (j, i) .
We denote the set of all cost matrices over N as CN . Given C, C0 ∈ CN we

say C ≤ C 0 if cij ≤ c0ij for all i, j ∈ N0.
A minimum cost spanning tree problem, briefly an mcstp, is a pair (N0, C)

where N ⊂ N is a finite set of agents, 0 is the source, and C ∈ CN is the cost
matrix.
Given an mcstp (N0, C), we denote the mcstp induced by C in S ⊂ N as

(S0, C).
A network g over N0 is a subset of {(i, j) : i, j ∈ N0} . The elements of g

are called arcs. Given a network g and a pair of nodes i and j, a path form i to
j in g is a sequence of different arcs {(ih−1, ih)}lh=1 satisfying (ih−1, ih) ∈ g for
all h ∈ {1, 2, ..., l}, i = i0 and j = il.
A tree is a network satisfying that for all i ∈ N there exists a unique path

from agent i to the source. If t is a tree, we usually write t =
©¡
i0, i

¢ª
i∈N where

i0 ∈ N0 represents the first node in the unique path in t from agent i to 0.
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Given an mcstp (N0, C) and g ∈ GN , we define the cost associated with g as

c (N0, C, g) =
X
(i,j)∈g

cij .

When there are no ambiguities, we write c (g) or c (C, g) instead of c (N0, C, g).
A minimal tree for (N0, C), briefly an mt, is a tree t such that c (t) =

min {c (t0) : t0 is a tree}. It is well-known in the literature of mcstp that an mt
exists, even though it does not necessarily have to be unique. Given an mcstp
(N0, C) we denote the cost associated with any mt t in (N0, C) as m (N0, C) .
One of the most important issues addressed in the literature about mcstp

is how to divide the connection cost amongst the agents. A (cost allocation)
rule is a function ψ such that ψ (N0, C) ∈ RN for each mcstp (N0, C) andP
i∈N

ψi (N0, C) = m (N0, C) . As usually, ψi (N0, C) represents the cost allocated

to agent i.
A Transferable Utility (TU) game is a pair (N, v) where N ⊂ N is finite

and v : 2N → R satisfies v (∅) = 0.We denote the Shapley value (Shapley, 1953
[15]) of the TU game (N, v) as Sh (N, v) .
Bird (1976) [6] associated a TU game (N, vC) with each mcstp (N0, C) . For

each coalition S ⊂ N, vC (S) = m (S0, C) . Usually, we write v instead of vC .
Thus, we can define rules in mcstp through v. For instance, Kar (2002) [10]
studied the Shapley value.
Feltkamp et al (1994) [9] defined a rule called Equal Remaining Obligations

(ERO) through Kruskal’s algorithm (Kruskal, 1956 [11]). ERO was later called
the P -value in Branzei et al (2004) [7].
In Bergantiños and Vidal-Puga (2007a) [3] we defined the rule ϕ. A cost

matrix C is irreducible if reducing the cost of any arc, the minimal cost of
connecting all agents is also reduced. We defined

ϕ (N0, C) = Sh (N, vC∗)

where C∗ is the unique irreducible matrix associated with C.
In Bergantiños and Vidal-Puga (2007c) [5] we proved that ϕ coincides with

ERO.
In Bergantiños and Vidal-Puga (2007a, 2007b) [3] [4] we proved that ϕ sat-

isfies several properties. We mention three of them because we will use them in
several proofs.
Solidarity (SOL). For all mcstp (N0, C) and (N0, C

0) such that C ≤ C0,
ψ (N0, C) ≤ ψ (N0, C

0) .
Separability (SEP ). For allmcstp (N0, C) and S ⊂ N such thatm (N0, C) =

m (S0, C) +m ((N \ S)0 , C),

ψi (N0, C) =

½
ψi (S0, C) if i ∈ S
ψi ((N \ S)0 , C) if i ∈ N \ S.

Given anmcstp (N0, C),
¡
S0, C

+T
¢
denotes themcstp obtained from (N0, C)

assuming that the agents in S have to be connected and the agents in T are
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already connected. Formally, c+Tij = cij for all i, j ∈ S and c+Ti0 = min
j∈T0

cij for all

i ∈ S. When T = {i}, we write C+i instead of C+T .
Given S ⊂ N and i ∈ S, we denote S−i = S \ {i} .
Equal Contributions (EC). For all i, j ∈ N, i 6= j,

ϕi (N0, C)− ϕi

³
N−j0 , C+j

´
= ϕj (N0, C)− ϕj

¡
N−i0 , C+i

¢
.

3 The bargaining mechanism
For each mcstp (N0, C), we introduce the bargaining mechanism B (N0, C).
We prove that there exists a unique payoff allocation associated with the sub-
game perfect Nash equilibria of B (N0, C). This payoff allocation coincides with
−ϕ (N0, C) . Thus, we have obtained a fair outcome through a non-cooperative
mechanism.

The objective of a fair rule is to divide the cost associated with an mt. We
believe that a natural approach is to decide, for each arc of the mt, which part
of the cost should be paid by each agent.
We present a bargaining mechanism for constructing a tree and dividing the

cost. The basic idea is very simple, we ask each agent the amount he is willing
to pay for an arc to be constructed. We apply this idea following a sequential
protocol. Initially nobody is connected to the source. At each stage, at least
one agent connects to the source. Unconnected agents can connect to the source
through the agents connected in previous stages.
We explain it in the following example.

Example 1. Let (N0, C) be such that N = {1, 2} and

C =

⎛⎝ 0 10 90
10 0 2
90 2 0

⎞⎠
In this example the mt is t = {(0, 1) , (1, 2)} and m (N0, C) = 12.
We present a bargaining mechanism for constructing a tree sequentially. At

each step, at least an arc is constructed.
We first decide the agent who connects to the source. We ask to each agent,

say agent i, the amount he is willing to pay to the other agent, say j, if agent j
connects to the source. Let x1

¡
x2
¢
denote the amount offered by agent 1 (2) .

This amount must be non-negative.
Assume x1 > x2. This means that agent 1 offers agent 2 more than agent 2

offers to agent 1. Thus, agent 2 is selected and he must connect to the source. If
x1 < x2, agent 1 is selected. If x1 = x2, each agent is selected with probability
0.5.
At this point there is a status quo in which agent 2 connects to the source

(i.e. the arc (0, 2) is constructed), agent 1 pays x1 to agent 2 and the rest of the
cost of arc (0, 2) is paid by agent 2.
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Now agent 2 can make a proposal (t, y) to agent 1, where t is a tree and
y = (y1, y2) satisfies y1 + y1 = c (N0, C, t).
If agent 1 accepts the proposal, the tree t is constructed, each agent i pays

yi, and the bargaining mechanism finishes.
If agent 1 rejects the proposal, the status quo is implemented. In the next

stage agent 1 connects to the source directly or through agent 2.

A natural question that arises is the following: what happens if we directly
implement the status quo? This means that the selected agent must connect to
the source and he cannot make a proposal.
Assume x1 = 20. This offer seems to be extremely bad because if agent

2 is selected, agent 1 must pay 20 to agent 2. Later, agent 1 can connect to
the source through agent 2 by paying 2. This means that he must pay 22.
Nevertheless if x1 = 0, in the worst case agent 1 connects to the source directly
paying only 10.
We now argue that offering x1 = 20 can be a strategic offer for agent 1. If

x2 < 20, agent 2 must connect to the source and agent 1 pays 20 to agent 2.
Thus, agent 2 pays 90−20 = 70. But if x2 = 21, agent 1 connects to the source.
Later, agent 2 can connect to the source through agent 1 paying the cost of arc
(1, 2) . In this case agent 2 pays 21 + 2 = 23.
Thus, 20 can be a good offer for agent 1 because agent 2 can react offering

him a larger amount. In this case, agent 1 will not pay 20.
This example suggests that if we directly implement the status quo, agents

in a good situation (with relatively small connection costs to the source) can
take advantage of the agents in a bad situation by offering them very high and
unreasonable amounts. Since we try to obtain fair outcomes, we do not directly
implement the status quo.
We allow the agents to make proposals in order to force them to offer some-

thing reasonable. Now, if x1 = 20 and x2 < 20, agent 2 is selected. Agent 2
proposes (t, y) where t is the mt and y = (12, 0). If agent 1 accepts, he pays 12.
If he rejects, he pays 22. Thus, his unreasonable offer goes against him.
In the next section we discuss this issue in a more formal way, obtaining

some theoretical results.

We now introduce the bargaining procedure B (N0, C) for the general case.
If there is only one agent (N = {i}), agent i connects to the source and pays

c0i. Assume we have defined the bargaining procedure for n−1 agents. We now
define it for the mcstp (N0, C) .

1. Stage 1. Simultaneously, each agent i ∈ N submits a vector xi =
¡
xij
¢
j∈N−i

where xij ∈ R+ for all i, j ∈ N, i 6= j. We denote x =
¡
xi
¢
i∈N .

xij is the amount that agent i is willing to pay to agent j if agent j connects
to the source.
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We define the net offer X (i) of agent i as

X (i) =
X

j∈N−i
xji −

X
j∈N−i

xij .

X (i) is the difference between what other agents offer to agent i and what
he offers to the others.

We define the set of winners according with x as

W (x) =

½
i ∈ N : X (i) = max

j∈N
{X (j)}

¾
.

We randomly select one agent out of W (x) . Assume that α is chosen.

2. Stage 2. Agent α proposes (S, t, y) where α ∈ S ⊂ N, t is a tree in (S0, C) ,
and y = (yi)i∈S satisfies

P
i∈S

yi = c (S0, C, t) .

Agent α proposes to the agents in S to construct the tree t and to divide
the cost according with y.

3. Stage 3. Sequentially, each agents in S−α either accepts or rejects (S, t, y).
Two cases are possible.

(a) Some agent in S−α rejects (S, t, y) .
Each agent i ∈ N−α pays xiα to agent α, who connects to the source.
Agent α’s payoff is −c0α +

P
i∈N−α

xiα.

The agents in N−α continue bargaining among them but now they
can connect to the source directly or through agent α, i.e. agents of
N−α play B

¡
N−α0 , C+α

¢
. The payoff for each agent i ∈ N−α is

−xiα + pi
¡
B
¡
N−α0 , C+α

¢¢
where pi

¡
B
¡
N−α0 , C+α

¢¢
denotes agent i’s payoff in B

¡
N−α0 , C+α

¢
.

(b) All the agents in S−α accept (S, t, y) .
The tree t is constructed. The payoff for each agent i ∈ S is −yi.
The agents in N \ S continue bargaining among them but now they
can connect to the source directly or through agents in S, i.e. they
play B

¡
(N \ S)0 , C+S

¢
.

The payoff for each agent i ∈ N \ S is pi
¡
B
¡
(N \ S)0 , C+S

¢¢
.

Remark 1. In Stage 3 we say that agents of S−α, sequentially, either accept
or reject (S, t, y). We do not specify the order because the results of the paper
are independent of the order. The only relevant issue is that agents answer
sequentially.
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Nash Equilibria (NE) and Subgame Perfect Nash Equilibria (SPNE) are
well-known concepts. Next proposition shows that it is possible to find an
SPNE in B (N0, C).

Proposition 1. There exists an SPNE for B (N0, C) whose payoff alloca-
tion coincides with −ϕ (N0, C) .

Proof. See the Appendix.

We now describe, in the mcstp explained in Example 1, the behavior of
agents when they play s = (s1, s2) as in the proof of Proposition 1.
Stage 1. Both agents submit 4

¡
x12 = x21 = 4

¢
. Hence, X (1) = X (2) = 0,

W (x) = N, and each agent is selected with probability 0.5.
Stage 2. Agent α proposes (N, t, y) where t = {(0, 1) , (1, 2)} and y = (6, 6) .
Stage 3. The other agent accepts this proposal.

Assume that agent 1 is selected. Should his proposal be accepted, his payoff
is −6. Should his proposal be rejected, agent 2 pays 4 to agent 1 and agent 1
connects to the source. Thus, agent 1’s payoff is −10 + 4 = −6.
Assume that agent 2 is selected. Should his proposal be accepted, his payoff

is also −6. However, should his proposal be rejected, agent 1 pays 4 to agent 2
and agent 2 connects to the source. Thus, agent 2’s payoff is −86.
The situation of agents 1 and 2 in this SPNE is completely asymmetric.

Agent 1 can guarantee himself a payoff of −6, independently of what agent 2
does. This is not the case for agent 2 because his worst-case payoff is −86.

B (N0, C) can have several SPNE. In Example 1, let s0 = (s01, s
0
2) be such

that s02 is the strategy defined in the proof of Proposition 1, and s01 is defined
as follows:
Stage 1. x12 = 4.
Stage 2. If α = 1, agent 1 proposes (N, t, y) where t = {(0, 1) , (1, 2)} and

y = (0, 12).
Stage 3. Agent 1 accepts y if and only if y1 ≤ x12 + 2.
If agent 1 rejects agent 2’s proposal, then he connects to the source through

agent 2 and he pays the cost of arc (1, 2). If agent 1 accepts agent 2’s proposal,
then B (N0, C) finishes.
It is not difficult to check that s0 is an SPNE of B (N0, C). Moreover, the

final payoff allocation is u (s0) = (−6,−6).
If agents play s0, with probability 0.5 agent 1 is selected, he proposes (N, t, y)

where t is themt and y = (0, 12), and his proposal is rejected. Thus, in B (N0, C)
exist SPNE paths with probability larger than 0 in which some Stage 2 pro-
posals are rejected.
However, Proposition 2 guarantees that there exists a unique equilibrium

payoff allocation.

Proposition 2. In any SPNE of B (N0, C), the final payoff allocation is
−ϕ (N0, C).
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Proof. See the Appendix.

The next theorem is a trivial consequence of Propositions 1 and 2.

Theorem 1. Given an mcstp (N0, C), B (N0, C) has SPNE. Moreover, the
payoff allocation for each SPNE coincides with −ϕ (N0, C).

Given a strategy profile s = (si)i∈N , we say that s is an Strong Nash Equilib-

ria (SNE) if for all T ⊂ N we cannot find (s0i)i∈T such that uj
³
(si)i∈N\T , (s0i)i∈T

´
>

uj (s) for all j ∈ T.
We now present a kind of equilibria, which is even stronger than SNE. We

say that s is a Very Strong Nash Equilibria (V SNE) if for all T ⊂ N and all

(s0i)i∈T ,
P
j∈T

uj

³
(si)i∈N\T , (s0i)i∈T

´
≤
P
j∈T

uj (s).

Notice that V SNE ⇒ SNE ⇒ NE.
In the next theorem we prove that B (N0, C) has V SNE and hence SNE.

Theorem 2. There exists a V SNE for B (N0, C) whose payoff allocation
coincides with −ϕ (N0, C).

Proof. See the Appendix.

4 Small modifications of the bargaining mecha-
nism

In this section we discuss some small modifications of B (N0, C) .

4.1 Modification 1

We modify B (N0, C) in such a way that the agent chosen at Stage 1 (α) only
can make proposals to the grand coalition N. Namely, let B1 (N0, C) be such
that

1. Stage 1. As in B (N0, C) .

2. Stage 2. As in B (N0, C) but S = N.

3. Stage 3. As in B (N0, C) .

Propositions 1 and 2 and Theorem 1 also hold true for B1 (N0, C). In fact,
the proofs of Propositions 1 and 2 are simpler under B1 (N0, C) than under
B (N0, C) .
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4.2 Modification 2

We modify Stage 2 allowing agent α to connect to the source receiving what the
other agents offer to him in Stage 1. Namely, let B2 (N0, C) be such that

1. Stage 1. As in B (N0, C) .

2. Stage 2. Agent α has two options. He can connect to the source or he can
propose (S, t, y) as in B (N0, C) .

If he connects to the source, each agent i ∈ N−α pays xiα to agent α.
Moreover, agents of N−α play B

¡
N−α0 , C+α

¢
.

If he proposes (S, t, y) we go to Stage 3.

3. Stage 3. As in B (N0, C) .

It is not difficult to see that Propositions 1 and 2 and Theorem 1 also hold
true for B2 (N0, C).

4.3 Modification 3

Assume that α must connect to the source receiving what the other agents offer
to him in Stage 1. Namely, let B3 (N0, C) be such that

1. Stage 1. As in B (N0, C).

2. Stage 2. Each agent i ∈ N−α pays xiα to agent α, who connects to the
source. Agent α’s payoff is −c0α +

P
i∈N−α

xiα.

3. Stage 3. The agents in N−α play B3
¡
N−α0 , C+α

¢
. Agent i’s payoff, i ∈

N−α, is
−xiα + pi

¡
B3
¡
N−α0 , C+α

¢¢
where pi

¡
B3
¡
N−α0 , C+α

¢¢
is agent i’s payoff in B3

¡
N−α0 , C+α

¢
.

Before introducing B (N0, C), we already discussed this bargaining mecha-
nism in Example 1. We now discuss B3 (N0, C) more carefully.
First, we must note that B3 (N0, C) could not have NE.
Consider the mcstp (N0, C) of Example 1.
Assume that agents submit

¡
x12, x

2
1

¢
in Stage 1. It is straightforward to prove

that the final payoff for agents 1 and 2 are:

u1
¡
x12, x

2
1

¢
=

⎧⎨⎩ −10 + x21 if x12 < x21
−2− x12 if x12 > x21
1
2

¡
−10 + x21

¢
+ 1

2

¡
−2− x12

¢
if x12 = x21

and

u2
¡
x12, x

2
1

¢
=

⎧⎨⎩ −2− x21 if x12 < x21
−90 + x12 if x12 > x21
1
2

¡
−2− x21

¢
+ 1

2

¡
−90 + x12

¢
if x12 = x21.

We now prove that B3 (N0, C) has no NE. We consider several cases:
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• x12 < x21. Assume that agent 2 submits y with x12 < y < x21. Thus,

u2
¡
x12, y

¢
= −2− y > −2− x21 = u2

¡
x12, x

2
1

¢
.

• x12 > x21. It is not a NE. It is analogous to the previous case.

• x12 = x21 ≤ 4. In this case, u
¡
x12, x

2
1

¢
= (−6,−46). Assume that agent 2

submits 5. Hence,

u2
¡
x12, 5

¢
= −2− 5 = −7 > −46 = u2

¡
x12, x

2
1

¢
.

• x12 = x21 > 4. In this case, u
¡
x12, x

2
1

¢
= (−6,−46). Assume that agent 1

submits 4. Hence,

u1
¡
4, x21

¢
= −10 + x21 > −6 = u1

¡
x12, x

2
1

¢
.

There is no equilibria in B3 (N0, C) because each agent i can submit any
vector xi =

¡
xij
¢
∈ RN−i+ . Assume that in Stage 1 we restrict agent i’s strategies

so that player i can only submit a vector from a finite subset of RN−i+ . For
instance, for each i ∈ N , j ∈ N−i, 0 ≤ xij ≤ m (N0, C) and 100xij ∈ Z+. This
means that, if the offered amounts are measured in dollars, the agents must
offer an integer number of cents.
Under this quite realistic assumption there are SPNE in B3 (N0, C). How-

ever, some SPNE payoff allocations are unfair. The agents who are close to
the source may take advantage of the agents who are far away from the source.
We see it in Example 1.
Assume that xij ∈ Z+ for each i, j ∈ N.

Consider the strategy profile (s1, s2) in Example 1 as follows: Stage 1. x12 =
20, x21 = 21. Stage 3. Agent i 6= α connects to agent α.
Under (s1, s2): In Stage 1, α = 1. In Stage 2, agent 2 pays 21 to agent 1 and

agent 1 connects to the source. In Stage 3 agent 2 connects to agent 1. Thus,

u (s1, s2) = (21− 10,−21− 2) = (11,−23) .

We now prove that (s1, s2) is an SPNE of B3 (N0, C) .

• Of course, (s1, s2) induces an NE in the subgame of Stage 3.

• If agent 1 plays s01 with x012 < 20, u1 (s01, s2) = 11.

• If agent 1 plays s01 with x012 = 21, u1 (s
0
1, s2) =

1
211 +

1
2 (−21− 2) = −6.

• If agent 1 plays s01 with x012 > 21, u1 (s01, s2) = −x012 − 2 < 11.

• If agent 2 plays s02 with x021 < 20, u2 (s1, s02) = 20− 90 = −70.

• If agent 2 plays s02 with x021 = 20, u2 (s1, s
0
2) =

1
2 (−22) +

1
2 (−70) = −46.
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• If agent 2 plays s02 with x021 > 21, u2 (s1, s02) = −x021 − 2 < −23.

Consider the strategy profile (s1, s2) where: Stage 1. x12 = x, x21 = x + 1.
Stage 3. For each i ∈ N, i 6= α, agent i connects to agent α.
It is not difficult to prove that (s1, s2) is an SPNE of B3 (N0, C) for all

x = 3, ..., 43.

4.4 Modification 4

Assume that a group of agents must select a project from a given set. Pérez-
Castrillo and Wettstein (2002) [14] proposed the multibidding mechanism. In
the multibidding mechanism each agent i announces k bids, one for each project,
that are constrained to sum up zero. Furthermore, he chooses one of the
projects. The project with the highest aggregate bid is chosen as the winner.
In case of a tie, the winning project is randomly chosen among those with the
highest aggregate bid that have been selected by at least one agent. Once the
winning project is identified, the bids corresponding to it are paid (or received).
Pérez-Castrillo and Wettstein (2002) [14] proved that the equilibria of this

mechanism have interesting properties. For instance, the selected project is
efficient. The efficiency of the project crucially depends on the following facts.
Agents must select one of the projects. The project is selected among those
selected by at least one agent. Without this facts, the selected project could be
inefficient.
If we come back to B3 (N0, C) we realize that there are some similarities

with the multibidding mechanism. In both cases agents select something by
submitting bids. In B3 (N0, C) agents select the first agent who connects to the
source.
Of course, there are important differences. We mention two. Firstly, in

B3 (N0, C) each agent’s bids are positive and unrelated. In the multibidding
mechanism, the bids could be positive or negative but they are related (they
sum up zero). Secondly, in B3 (N0, C) the agents do not choose any agent for
connecting to the source, whereas in the multibidding mechanism the agents
select one project.
We believe that inmcstp it is more natural to force agents to submit positive

bids. Nevertheless, it makes sense that agents select the agent who connects to
the source.
We now modify B3 (N0, C) allowing the agents to select one agent in Stage

1. We then select α randomly among the agents with the highest aggregate bid
who have been selected for at least one agent.
Formally, we define B4 (N0, C) as follows:

1. Stage 1. Simultaneously, each agent i ∈ N submits a pair
¡
xi, i∗

¢
where

xi =
¡
xij
¢
j∈N−i ∈ R

N−i

+ and i∗ ∈ N.

xij has the same interpretation as in B(N0, C). i
∗ is the agent that i prefers

to be first connected to the source.

12



x, X (i) with i ∈ N, and W (x) are defined as in B(N0, C). Moreover,

W ∗ (x) = {j ∈W (x) : j = i∗ for some i ∈ N} .

We randomly select α ∈ W ∗ (x) when W ∗ (x) 6= ∅ and α ∈ W (x) when
W ∗ (x) = ∅.

2. Stage 2. As in B3 (N0, C) .

3. Stage 3. As in B3 (N0, C) .

In the next proposition we prove that −ϕ (N0, C) can be obtained as the
payoff of an SPNE of B4 (N0, C) .

Proposition 3. There exists an SPNE of B4 (N0, C) whose payoff coincides
with −ϕ (N0, C) .
Proof. See the Appendix.

Nevertheless, there are SPNE with a payoff different from −ϕ (N0, C) .
Consider, in Example 1, the strategy combination s = (s1, s2) where x12 =

x21 = 20 and 1∗ = 2∗ = 1. If the agents play s, agent 1 connects to the
source and agent 2 pays 20 to agent 1. Later, agent 2 connects to agent 1.
Thus, u (s) = (10,−22) . This means that agent 2 pays all the cost of the tree
constructed ({(0, 1) , (0, 2)}) plus 10 units to agent 1.
We now prove that s is an SPNE of B4 (N0, C) . Because of the definition

of B4 (N0, C) , it is enough to prove that if agent i submits s0i =
¡
x0ij , i

0∗¢ in
Stage 1, agent i does not improve. We consider several cases.

• If agent 1 submits s01 with x012 > 20, u1 (s01, s2) = −2− x012 < 10.

• If agent 1 submits s01 with x012 < 20, u1 (s01, s2) = 10.

• If agent 1 submits s01 with x012 = 20 and 10∗ = 2, u1 (s01, s2) = 1
2 (20− 10)+

1
2 (−20− 2) = −6 < 10.

• If agent 2 submits s02 with x021 > 20, u2 (s1, s02) = −2− x021 < −22.

• If agent 2 submits s02 where x021 < 20, u2 (s1, s02) = −70 < −22.

• If agent 2 submits s02 where x021 = 20 and 20∗ = 2, u2 (s1, s02) = 1
2 (20− 90)+

1
2 (−20− 2) = −46 < −22.

The idea behind this SPNE is the following. Agent 2’s connection cost to
the source is very large. He prefers agent 1 to connect first. Knowing that,
agent 1 offers 20 to agent 2. Agent 2 must offer the same to agent 1 because
otherwise he will be forced to connect to the source, which is worse. If both of
them submit 20, both of them prefer agent 1 to be first connected to the source.
Thus, both of them select agent 1 in Stage 1.
Using similar arguments to those used before we can prove that s = (s1, s2)

where x12 = x21 = x, 4 ≤ x ≤ 44, and 1∗ = 2∗ = 1 is an SPNE of B4 (N0, C) .
Moreover, u (s) = (10− x, x+ 2) .

13



5 A non-cooperative approach to the Shapley
value of Bird’s game

Pérez-Castrillo and Wettstein (2001) [13] defined, in TU games, the bidding
mechanism. They proved that the unique SPNE payoff allocation of the bid-
ding mechanism coincides with the Shapley value. In this section we define
B5 (N0, C) applying the ideas of the bidding mechanism to mcstp. We prove
that B5 (N0, C) has SPNE. Moreover, the payoff allocation associated with
each SPNE coincides with −Sh (N, vC) .

Given the mcstp (N0, C) we define the non-cooperative game B5 (N0, C) as
follows:

1. Stage 1. Simultaneously, each agent i ∈ N submits a vector xi =
¡
xij
¢
j∈N−i ∈

RN−i .
xij ∈ R represents the payoff that agent i is willing to pay to agent j in
order to be the proposer.

x, X (i) with i ∈ N, W (x) and α are defined as in B (N0, C) .

Agent α pays xαi to each agent i ∈ N−α.

2. Stage 2. Agent α proposes (t, y) where t is a tree in (N0, C) , y = (yi)i∈N ,
and

P
i∈N

yi = c (N0, C, t) . This means that α proposes to construct the

tree t, in which each agent i ∈ N will pay yi.

3. Stage 3. Sequentially, the agents in N−α either accept or reject the offer.
Two cases are possible.

(a) Some agent in N−α rejects (t, y) .
Agent α connects to the source. His payoff is −c0α −

P
i∈N−α

xαi .

The agents in N−α play B5
¡
N−α0 , C

¢
. Agent i’s payoff, i ∈ N , is

xαi + pi
¡
B5
¡
N−α0 , C

¢¢
where pi

¡
B5
¡
N−α0 , C

¢¢
is agent i’s payoff in B5

¡
N−α0 , C

¢
.

(b) All the agents in N−α accept (t, y) .
The tree t is constructed. Agent α’s payoff is −

P
i∈N−α

xαi − yα. Each

agent i’s payoff, i ∈ N−α, is xαi − yi.

We now discuss the main differences between B (N0, C) and B5 (N0, C).
Stage 1. In both mechanisms each agent i ∈ N submits a vector

¡
xij
¢
j∈N−i .

However, agents are submitting very different things. In B (N0, C) , x
i
j repre-

sents the payoff that agent i is willing to pay to agent j so that agent j connects
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to the source. In B5 (N0, C), xij represents the payoff that agent i is willing to
pay to agent j in order to be the proposer.
In B (N0, C) , x

i
j must be non-negative. In B

5 (N0, C) , x
i
j could be negative.

This is fundamental. If we force xij ≥ 0 for all i, j ∈ N in B5 (N0, C), the result
stated in Proposition 4 below does not hold.
Stage 2. In B (N0, C), agent α can make a proposal to a subset of N. In

B5 (N0, C) the proposal must be made to all agents of N. As me mention before,
the result of Theorem 1 also holds for B (N0, C) if the proposal is made to all
agents of N . In B5 (N0, C), Proposition 4 below does not hold if we allow agent
α to make proposals to a proper subset of N.
Stage 3. Assume that agent α’s proposal is rejected. In both mechanisms

agent α connects to the source. In B (N0, C) agents of N−α can connect to
the source through agent α. In B5 (N0, C) they cannot. Both mechanisms are
defined in order to be coherent with the previous stages. In B (N0, C) , x

i
α

represents the amount that agent i is willing to pay to agent α so that agent
α connects to the source. Thus, the agents in N−α can connect to the source
through agent α because they are paying for that. In B5 (N0, C), xαi represents
the payoff that agent α is willing to pay to agent i in order to be the proposer.
Agent α is the proposer because he paid for that. The agents in N−α should
not take advantage of the connection of agent α.

We have the following result for B5 (N0, C) .

Proposition 4. Given an mcstp (N0, C), B5 (N0, C) has SPNE.Moreover,
the payoff allocation for each SPNE coincides with −Sh (N, vC) .

Proof. See the Appendix.

6 Appendix
In this section we prove the main results of the paper.

6.1 Proof of Proposition 1

We proceed by induction on the number of agents n. If n = 1 the result is trivial.
Assume that for all n ≤ p there exists an SPNE whose payoff coincide with
−ϕ (N0, C) . We will prove it when n = p+ 1.

We define the strategy profile s = (si)i∈N in B (N0, C) as follows:

Stage 1. For all i ∈ N and j ∈ N−i, xij = ϕi (N0, C)− ϕi

³
N−j0 , C+j

´
.

Stage 2. Agent α proposes (N, t, y) where t is an mt in (N0, C) and yi =
xiα + ϕi

¡
N−α0 , C+α

¢
for all i ∈ N−α.

Stage 3. Each agent i ∈ S \ {α} accepts y if and only if yi ≤ xiα +
ϕi
¡
N−α0 , C+α

¢
.
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If (S, t, y) is rejected, B
¡
N−α0 , C+α

¢
is played. By induction hypothesis we

know that there exists an SPNE s+α =
¡
s+αi

¢
i∈N−α in B

¡
N−α0 , C+α

¢
such that

u (s+α) , the payoff allocation associated with s+α in B
¡
N−α0 , C+α

¢
, coincides

with −ϕ
¡
N−α0 , C+α

¢
. We define s as s+α in B

¡
N−α0 , C+α

¢
.

If (S, t, y) is accepted, the agents inN\S play B
¡
(N \ S)0 , C+S

¢
. Under the

induction hypothesis we know that there exists an SPNE s+S =
¡
s+Si

¢
i∈N\S

in B
¡
(N \ S)0 , C+S

¢
such that u

¡
s+S

¢
= −ϕ

¡
(N \ S)0 , C+S

¢
.We define s as

s+S in B
¡
(N \ S)0 , C+S

¢
.

We first prove that s is well-defined. We only need to prove that xij ≥ 0 for
all i, j ∈ N , i 6= j.
Take i, j ∈ N, i 6= j. Let C 0 be such that

c0kl =

½
ckl if k, l ∈ N0 \ {j}
c+j0l if k = j.

For all l ∈ N−j0 , c0jl = c+j0l = min {c0l, cjl} ≤ cjl. Thus, C 0 ≤ C. Since ϕ sat-

isfies SOL, ϕi (N0, C
0) ≤ ϕi (N0, C) and hence, xij ≥ ϕi (N0, C

0)−ϕi
³
N−j0 , C+j

´
.

Notice that c00j = c+j0j = min {c0j , cjj} = cjj = 0. Thus, m (N0, C
0) =

m
³
N−j0 , C 0

´
and m ({j}0 , C 0) = 0. Since ϕ satisfies SEP , ϕi (N0, C

0) =

ϕi

³
N−j0 , C 0

´
.

Since c0kl = c+jkl for all k, l ∈ N−j , we have ϕi (N0, C
0) = ϕi

³
N−j0 , C+j

´
and

hence xij ≥ 0.

We now prove that s is an SPNE of B (N0, C) whose payoff allocation
coincides with −ϕ (N0, C). We prove several claims:

Claim 1. Under s, X (i) = 0 for all i ∈ N and u (s) = −ϕ (N0, C).
Assume that agents play s. For each i ∈ N,

X (i) =
X

j∈N−i
xji −

X
j∈N−i

xij

=
X

j∈N−i

h¡
ϕj (N0, C)− ϕj

¡
N−i0 , C+i

¢¢
−
³
ϕi (N0, C)− ϕi

³
N−j0 , C+j

´´i
.

Since ϕ satisfies EC we conclude thatX (i) = 0. Thus, α is randomly selected
among all the agents.
The final payoff for each agent i ∈ N can be written as 1

n

P
j∈N

pi (j) where

pi (j) is the payoff obtained by agent i when α = j.
We now prove that pi (j) = −ϕi (N0, C) for all j ∈ N. Since agents play s,

agent α proposes (N, t, y) where for each i ∈ N−α, yi = xiα +ϕi
¡
N−α0 , C+α

¢
=

ϕi (N0, C). Moreover, all the agents in N−α accept (N, t, y).
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If j 6= i,

pi (j) = −xij − ϕi

³
N−j0 , C+j

´
= −ϕi (N0, C) .

If j = i,

pi (i) = −yi = −m (N0, C) +
X

k∈N−i
yk

= −m (N0, C) +
X

k∈N−i
ϕk (N0, C) = −ϕi (N0, C) .

Claim 2. For all S Ã N, s induces an SPNE in B
¡
(N \ S)0 , C+S

¢
.

It is a trivial consequence of the induction hypothesis.

Claim 3. For all S ⊂ N and i ∈ S,

m (N0, C) ≤ m (S0, C) +m
¡
(N \ S)0 , C+S

¢
≤ m (S0, C) +

X
j∈N\S

ϕj
¡
N−i0 , C+i

¢
.

Let
¡
N−i0 , C 0

¢
such that

c0jk =

⎧⎨⎩
cjk if j, k ∈ N \ S
c+S0k if j ∈ S−i0 , k ∈ N \ S
0 if j, k ∈ S−i0 .

It is straightforward to prove that m
¡
S−i0 , C 0

¢
= 0 and moreover

m
¡
N−i0 , C 0

¢
= m ((N \ S)0 , C0) .

Since ((N \ S)0 , C0) =
¡
(N \ S)0 , C+S

¢
and ϕ satisfies SEP, ϕj

¡
(N \ S)0 , C+S

¢
=

ϕj
¡
N−i0 , C 0

¢
for all j ∈ N \ S.

Since C 0 ≤ C+i and ϕ satisfies SOL, ϕj
¡
N−i0 , C 0

¢
≤ ϕj

¡
N−i0 , C+i

¢
for all

j ∈ N \ S. Hence,

m
¡
(N \ S)0 , C+S

¢
=

X
j∈N\S

ϕj
¡
(N \ S)0 , C+S

¢
≤

X
j∈N\S

ϕj
¡
N−i0 , C+i

¢
.

Let t and t0 be twomt in (S0, C) and
¡
(N \ S)0 , C+S

¢
, respectively. Because

of the definition of C+S , it is possible to find a graph g in (N0, C) such that
m
¡
(N \ S)0 , C+S

¢
= c (N0, C, g) and t ∪ g is a tree in (N0, C) . Thus,

m (N0, C) ≤ c (N0, C, t ∪ g) = c (S0, C, t) + c (N0, C, g)

= m (S0, C) +m
¡
(N \ S)0 , C+S

¢
≤ m (S0, C) +

X
j∈N\S

ϕj
¡
N−i0 , C+i

¢
.
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Claim 4. The strategy profile s induces a NE in the subgames that begin
in Stage 3.
Let (S, t, y) be α’s proposal in Stage 2 and i ∈ S−α. We prove that agent i

does not improve by deviating.
Assume that (S, t, y) is rejected. Agent i’s final payoff is

−xiα + pi
¡
B
¡
N−α0 , C+α

¢
, s
¢

where pi
¡
B
¡
N−α0 , C+α

¢
, s
¢
is agent i’s payoff inB

¡
N−α0 , C+α

¢
when the agents

in N \ {i, α} play s.
Under the induction hypothesis, pi

¡
B
¡
N−α0 , C+α

¢
, s
¢
≤ −ϕi

¡
N−α0 , C+α

¢
.

Thus, if (S, t, y) is rejected, agent i obtains at most

−xiα − ϕi
¡
N−α0 , C+α

¢
.

We consider several cases.

1. There exists j ∈ S \ {α, i} such that yj > xjα + ϕi
¡
N−α0 , C+α

¢
.

Since j plays sj , agent j rejects (S, t, y) . If agent i plays si he obtains
−xiα−ϕi

¡
N−α0 , C+α

¢
, which is the maximum he can obtain when (S, t, y)

is rejected. Thus, agent i cannot improve.

2. yj ≤ xjα+ϕi
¡
N−α0 , C+α

¢
for all j ∈ S\{α, i} and yi > xiα+ϕi

¡
N−α0 , C+α

¢
.

All the agents in S \ {α, i} accept (S, t, y). If agent i plays si, he rejects
(S, t, y) and plays an SPNE of

¡
N−α0 , C+α

¢
. Thus, his payoff is −xiα −

ϕi
¡
N−α0 , C+α

¢
.

Assume that agent i deviates. Two cases are possible.

(a) He rejects (S, t, y). In this case, he obtains at most−xiα−ϕi
¡
N−α0 , C+α

¢
.

Thus, he cannot improve.

(b) He accepts (S, t, y). In this case, his payoff is −yi, which is smaller
than −xiα − ϕi

¡
N−α0 , C+α

¢
. Thus, he does not improve.

3. yj ≤ xjα + ϕi
¡
N−α0 , C+α

¢
for all j ∈ S−α.

All the agents in S \ {α, i} accept (S, t, y). If agent i plays si, he accepts
(S, t, y). Thus, his payoff is −yi.
Assume that agent i does not play si. If he accepts (S, t, y), his payoff is
also −yi. If he rejects (S, t, y), he obtains at most −xiα − ϕi

¡
N−α0 , C+α

¢
.

Thus, he does not improve.

Claim 5. The strategy profile s induces a NE in the subgames that begin
in Stage 2.
By playing s, agent α gets

−m (N0, C) +
X

i∈N−α
xiα +

X
i∈N−α

ϕj
¡
N−α0 , C+α

¢
.
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Assume α makes a different proposal (S, t0, y0). We will prove that he does
not improve. We consider two cases.

1. There exists j ∈ S−α such that y0j > xjα + ϕj
¡
N−α0 , C+α

¢
. In this case,

α’s proposal is rejected and α’s payoff is −c0α +
P

i∈N−α
xiα.

Under Claim 3,

m (N0, C) ≤ m ({α}0 , C) +
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
= c0α +

X
i∈N−α

ϕi
¡
N−α0 , C+α

¢
.

Hence,

−c0α +
X

i∈N−α
xiα ≤ −m (N0, C) +

X
i∈N−α

xiα +
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
and α does not improve.

2. y0i ≤ xiα + ϕi
¡
N−α0 , C+α

¢
for all i ∈ S−α.

In this case, (S, t, y) is accepted and α’s payoff is

−y0α = −c (S0, C, t) +
X

i∈S−α
y0i

≤ −m (S0, C) +
X

i∈S−α

¡
xiα + ϕi

¡
N−α0 , C+α

¢¢
.

Under Claim 3,

−y0α ≤ −m (N0, C) +
X

i∈N\S
ϕi
¡
N−α0 , C+α

¢
+
X

i∈S−α

¡
xiα + ϕi

¡
N−α0 , C+α

¢¢
= −m (N0, C) +

X
i∈S−α

xiα +
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
.

Since xiα ≥ 0 for all i ∈ N−α,

−yα ≤ −m (N0, C) +
X

i∈N−α
xiα +

X
i∈N−α

ϕi
¡
N−α0 , C+α

¢
and α does not improve.

Claim 6. The strategy profile s induces a NE in the subgames that begin
in Stage 1.
Under Claim 1, u (s) = −ϕ (N0, C).
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Assume that agent i submits x0i =
¡
x0ij
¢
j∈N−i instead of x

i. We take x0 =n
x0i,

©
xj
ª
j∈N−i

o
.

For all j ∈ N−i,

X 0 (j) =
X

k∈N−j
x0kj −

X
k∈N−j

x0jk =
X

k∈N\{i,j}
xkj + x0ij −

X
k∈N−j

xjk

= X (j)− xij + x0ij .

Under Claim 1, X (j) = 0 for all j ∈ N. Thus, X 0 (j) = x0ij − xij .
Since α is randomly chosen out of W (x0), the payoff obtained by agent i

when he deviates is
1

|W (x0)|
X

j∈W (x0)

pi (j)

where pi (j) denotes the payoff obtained by agent i when α = j.
We consider two cases:

1. There exists some j ∈ N−i such that x0ij > xij . In this case, X
0 (j) > 0.

Moreover, for all k ∈ W (x0), k 6= i, we have that X 0 (k) ≥ X 0 (j) > 0.
Hence, x0ik > xik for all k ∈W (x0), k 6= i.

(a) Assume that α 6= i. Since α plays s, he proposes (N, t, y) where
yj = x0jα + ϕj

¡
N−α0 , C+α

¢
for all j ∈ N−α.

All the agents inN\{α, i} accept (N, t, y) because they play s. Under
Claim 4,

pi (α) ≤ −x0iα−ϕi
¡
N−α0 , C+α

¢
< −xiα−ϕi

¡
N−α0 , C+α

¢
= −ϕi (N0, C)

and hence agent i is worse.

(b) Assume that α = i. Since the agents in N−i play s, under Claim 5,
pi (i) ≤ −ϕi (N0, C).

Thus, agent i gets

1

|W (x0)|
X

j∈W (x0)

pi (j) ≤
1

|W (x0)|
X

j∈W (x0)

(−ϕi (N0, C)) = −ϕi (N0, C)

and does not improve.

2. x0ij ≤ xij for all j ∈ N−i.
In this case,

X 0 (j) = x0ij − xij ≤ 0

for all j ∈ N−i.
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Since x0i 6= xi, there exists j ∈ N−i such that x0ij < xij . Thus,

X 0 (i) =
X

k∈N−i
x0ki −

X
k∈N−i

x0ik =
X

k∈N−i
xki −

X
k∈N−i

x0ik

>
X

k∈N−i
xki −

X
k∈N−i

xik = X (i) = 0,

which means that W (x0) = {i}. Under Claim 5, agent i gets, at most,
−ϕi (N0, C).

6.2 Proof of Proposition 2

We proceed by induction on the number of agents n. If n = 1 the result is trivial.
Assume that the result holds when n ≤ p. We will prove it when n = p+ 1.
Let s = (si)i∈N be an SPNE for B (N0, C). We prove several claims.

Claim 1. If α’s offer is rejected, each agent i ∈ N−α gets−xiα−ϕi
¡
N−α0 , C+α

¢
.

It is an immediate consequence of the induction hypothesis.

Claim 2. If α proposes (S, t, y) such that S = {i1, ..., iq, α} and yi <
xiα + ϕi

¡
N−α0 , C+α

¢
for all i ∈ S−α, then (S, t, y) is accepted.

Assume that the agents in S−α answer in the order {i1, ..., iq}. Assume that
the agents in {i1, ..., iq−1} have already accepted (S, t, y). If agent iq accepts
(S, t, y), his payoff is −yiq . If agent iq rejects (S, t, y), under Claim 1, his payoff

is −xiqα − ϕiq
¡
N−α0 , C+α

¢
. Since the agents play an SPNE, agent iq accepts

(S, t, y).
Assume now that the agents in {i1, ..., iq−2} have already accepted (S, t, y).

If agent iq−1 accepts, agent iq must decide if he accepts or not. Since agent iq is
bound to accept (S, t, y), agent iq−1 will get −yiq−1 if he accepts. If he rejects,
under Claim 1 he gets −xiq−1α − ϕiq−1

¡
N−α0 , C+α

¢
. Since the agents play an

SPNE, agent iq−1 accepts (S, t, y).
Repeating this argument we can conclude that all the agents in S−α accept

(S, t, y) .

Claim 3. ui (s) ≥ −ϕi (N0, C) for all i ∈ N .
Given i ∈ N and ε > 0, let s0i be agent i’s strategy defined as follows:

1. Stage 1. Agent i submits xi with xij = ϕi (N0, C)−ϕi

³
N−j0 , C+j

´
for all

j ∈ N−i.

2. Stage 2. If α = i, agent i proposes (N, t, y) where t is an mt in (N0, C)
and for all j ∈ N−i, yj = xji + ϕj

¡
N−i0 , C+i

¢
− ε

n−1 .

3. Stage 3. If α 6= i, agent i always rejects the proposal of agent α.

Given S ⊂ N, i /∈ S, s0i coincides with si in B
¡
(N \ S)0 , C+S

¢
.
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Let x0 =
¡
x0j
¢
j∈N be such that x0j = xj for all j ∈ N−i. It is clear that

ui (s \ s0i) =
1

|W (x0)|
X

j∈W (x0)

pi (j)

where s\s0i is the strategy profile that results from s after replacing agent i’s
strategy from si to s0i.
We now prove that ui (s \ s0i) ≥ −ϕi (N0, C)− ε.
We consider two cases:

1. i /∈W (x0) .

Take j ∈ W (x0). Agent i rejects agent j’s proposal. Since s0i coincides

with si in B
³
N−j0 , C+j

´
, under the induction hypothesis

pi (j) = −x0ij − ϕi

³
N−j0 , C+j

´
= −ϕi (N0, C) .

Thus, ui (s \ s0i) = −ϕi (N0, C) > −ϕi (N0, C)− ε.

2. i ∈W (x0) .

Following the same reasoning as in the previous cases, we know that
pi (j) = −ϕi (N0, C) for all j ∈W (x0) \ {i}.
Under Claim 2, agent i’s proposal is accepted. Thus,

pi (i) = −m (N0, C) +
X

j∈N−i

µ
xji + ϕj

¡
N−i0 , C+i

¢
− ε

n− 1

¶
.

It is not difficult to see that
P
j∈N

X (j) = 0. Since i ∈ W (x0), we deduce

that X (i) ≥ 0. Hence,X
j∈N−i

xji ≥
X

j∈N−i
xij = (n− 1)ϕi (N0, C)−

X
j∈N−i

ϕi

³
N−j0 , C+j

´
.

Thus,X
j∈N−i

³
xji + ϕj

¡
N−i0 , C+i

¢´
≥ (n− 1)ϕi (N0, C)

−
X

j∈N−i

³
ϕi

³
N−j0 , C+j

´
− ϕj

¡
N−i0 , C+i

¢´
.

Since ϕ satisfies EC, the last expression coincides with

(n− 1)ϕi (N0, C)−
X

j∈N−i

¡
ϕi (N0, C)− ϕj (N0, C)

¢
=

X
j∈N−i

ϕj (N0, C) .
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Hence,

ui (s \ s0i) ≥
1

|W (x)|

⎛⎝−m (N0, C) +
X

j∈N−i
ϕj (N0, C)− ε

⎞⎠
− |W (x)|− 1

|W (x)| ϕi (N0, C)

=
1

|W (x)| (−ϕi (N0, C)− ε)− |W (x)|− 1
|W (x)| ϕi (N0, C)

= −ϕi (N0, C)−
ε

|W (x)| ≥ −ϕi (N0, C)− ε.

Since s is an SPNE, ui (s) ≥ ui (s \ s0i) . Thus, for all ε > 0, ui (s) ≥
−ϕi (N0, C)− ε, which means that ui (s) ≥ −ϕi (N0, C).

Claim 4. ui (s) = −ϕi (N0, C) for all i ∈ N.
Under Claim 3, ui (s) ≥ −ϕi (N0, C) for all i ∈ N. Since

P
i∈N

ϕi (N0, C) =

m (N0, C), it is enough to prove that
P
i∈N

ui (s) ≤ −m (N0, C).

X
i∈N

ui (s) =
X
i∈N

1

|W (x)|
X

j∈W (x)

pi (j) =
1

|W (x)|
X

j∈W (x)

X
i∈N

pi (j) .

It is enough to prove that
P
i∈N

pi (j) ≤ −m (N0, C) for all j ∈W (x) .

Given j ∈W (x), two cases are possible.

1. Agent j’s proposal (S, t, y) is accepted. Thus,X
i∈S

pi (j) = −c (S0, C, t) ≤ −m (S0, C) .

Under the induction hypothesis,X
i∈N\S

pi (j) =
X

i∈N\S

¡
−ϕi

¡
(N \ S)0 , C+S

¢¢
= −m

¡
(N \ S)0 , C+S

¢
.

Under Claim 3 in the proof of Proposition 1,

−m (S0, C)−m
¡
(N \ S)0 , C+S

¢
≤ −m (N0, C) .

Thus,
P
i∈N

pi (j) ≤ −m (N0, C) .

2. Agent j’s proposal (S, t, y) is rejected. Thus,

pj (j) = −c0j +
X

i∈N−j
xij .
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Under the induction hypothesis,X
i∈N−j

pi (j) =
X

i∈N−j

³
−xij − ϕi

³
N−j0 , C+j

´´
= −

X
i∈N−j

xij−m
³
N−j0 , C+j

´
.

Thus, X
i∈N

pi (j) = −c0j −m
³
N−j0 , C+j

´
.

Applying Claim 3 in the proof of Proposition 1 to {j},X
i∈N

pi (j) ≤ −m (N0, C) .

6.3 Proof of Theorem 2

We proceed by induction on the number of agents n. If n = 1, the result is
trivial. Assume that for all n ≤ p there exists a V SNE whose payoff allocation
coincides with −ϕ (N0, C). We will prove it when n = p+ 1.
Let s = (si)i∈N be the strategy profile s = (si)i∈N in B (N0, C) as in the

proof of Proposition 1, with V SNE instead of SPNE.
Given T ⊂ N , we know that if the agents in N play s,

P
i∈T

ui (s) = −P
i∈T

ϕi (N0, C) .

Assume that the agents in T ⊂ N deviate and each j ∈ T plays s0j instead
of sj . We will prove that

a =
X
i∈T

ui

³
(sj)j∈N\T ,

¡
s0j
¢
j∈T

´
≤
X
i∈T
−ϕi (N0, C) .

We prove several claims.

Claim 1. If s0j coincides with sj in stages 1 and 2 for each j ∈ T , a ≤P
i∈T
−ϕi (N0, C) .

According with s, each agent j ∈ T accepts (N, t, y) as in the definition of
S. Assume that some agent in T rejects (N, t, y) . Each agent i ∈ N−α pays
xiα = ϕi (N0, C)− ϕi

¡
N−α0 , C+α

¢
to agent α, who connects to the source. The

agents in N−α play B
¡
N−α0 , C+α

¢
.

Under the induction hypothesis, the agents in N−α ∩ T obtain, at most,

−
X

i∈N−α∩T
ϕi
¡
N−α0 , C+α

¢
.

We consider two cases:

1. α /∈ T . In this case,

a ≤ −
X
i∈T

xiα −
X
i∈T

ϕi
¡
N−α0 , C+α

¢
= −

X
i∈T

ϕi (N0, C) .
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2. α ∈ T. In this case,

a ≤ −c0α +
X

i∈N−α
xiα −

X
i∈T−α

xiα −
X

i∈T−α
ϕi
¡
N−α0 , C+α

¢
= −c0α +

X
i∈N\T

xiα −
X

i∈T−α
ϕi
¡
N−α0 , C+α

¢
= −c0α +

X
i∈N\T

ϕi (N0, C)−
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
= −c0α +m (N0, C)−

X
i∈T

ϕi (N0, C)−
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
.

Under Claim 3 in the proof of Proposition 1 with S = {α},

a ≤ −
X
i∈T

ϕi (N0, C) .

Claim 2. If s0j coincides with sj in stage 1 for each j ∈ T , a ≤ −
P
i∈T

ϕi (N0, C).

We consider several cases.

1. α /∈ T . Under Claim 1, a ≤
P
i∈T
−ϕi (N0, C).

2. α ∈ T and α’s proposal is accepted.

The agents in T ∩ S obtain

−c (S0, t, C) +
X

i∈(N\T )∩S
yi.

Since the agents in N \ T play s and (S, t, y) is accepted, for each i ∈
(N \ T ) ∩ S

yi ≤ x0iα + ϕi
¡
N−α0 , C+α

¢
= xiα + ϕi

¡
N−α0 , C+α

¢
= ϕi (N0, C) .

Thus, the agents in T ∩ S obtain, at most,

−m (S0, C) +
X

i∈(N\T )∩S
ϕi (N0, C) .

Since the agents in N \ T play s, and under the induction hypothesis, the
agents in T ∩ (N \ S) obtain, at most,

−
X

i∈T∩(N\S)
ϕi
¡
N−S0 , C+S

¢
.
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Hence,

a ≤ −m (S0, C) +
X

i∈(N\T )∩S
ϕi (N0, C)−

X
i∈T∩(N\S)

ϕi
¡
N−S0 , C+S

¢
= −m (S0, C) +

X
i∈(N\T )∩S

ϕi (N0, C)−m
¡
(N \ S)0 , C+S

¢
+

X
i∈(N\T )∩(N\S)

ϕi
¡
N−S0 , C+S

¢
.

Under Claim 3 in the proof of Proposition 1,

a ≤ −m (N0, C) +
X

i∈(N\T )∩S
ϕi (N0, C) +

X
i∈(N\T )∩(N\S)

ϕi
¡
N−S0 , C+S

¢
Since ϕ satisfies SOL and C+S ≤ CN\S ,

a ≤ −m (N0, C) +
X

i∈(N\T )∩S
ϕi (N0, C) +

X
i∈(N\T )∩(N\S)

ϕi (N0, C)

= −m (N0, C) +
X

i∈N\T
ϕi (N0, C) = −

X
i∈T

ϕi (N0, C) .

3. α ∈ T and α’s proposal is rejected.

Since the agents in N \ T play s and, s0j coincides with sj in Stage 1 for
each j ∈ T , xiα = ϕi (N0, C)− ϕi

¡
N−α0 , C+α

¢
for all i ∈ N .

Agent α obtains

−c0α +
X

i∈N−α
xiα = −c0α +

X
i∈N−α

ϕi (N0, C)−
X

i∈N−α
ϕi
¡
N−α0 , C+α

¢
.

Since the agents in N \T play s, under the induction hypothesis the agents
in T−α obtain, at most,

−
X

i∈T−α

¡
xiα + ϕi

¡
N−α0 , C+α

¢¢
= −

X
i∈T−α

ϕi (N0, C) .

Hence,

a ≤ −c0α +
X

i∈N\T
ϕi (N0, C)−

X
i∈N−α

ϕi
¡
N−α0 , C+α

¢
= −c0α +

X
i∈N\T

ϕi (N0, C)−m
¡
N−α0 , C+α

¢
.

Applying Claim 3 in the proof of Proposition 1 with S = {α} ,

a ≤ −m (N0, C) +
X

i∈N\T
ϕi (N0, C) = −

X
i∈T

ϕi (N0, C) .
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Claim 3. If the agents in T deviate in Stage 1, a ≤ −
P
i∈T

ϕi (N0, C) .

Assume that the agents in T submit
©
x0i
ª
i∈T where, for each i ∈ T, x0i =¡

x0ij
¢
j∈N−i . We take x

0 =
³¡
x0i
¢
i∈T ,

¡
xi
¢
i∈N\T

´
.

For each j ∈ N \ T ,

X 0 (j) =
X

i∈N−j
x0ij −

X
i∈N−j

x0ji =
X

i∈N\(T∪{j})
xij +

X
i∈T

x0ij −
X

i∈N−j
xji

= X (j)−
X
i∈T

xij +
X
i∈T

x0ij =
X
i∈T

x0ij −
X
i∈T

xij .

Since α is randomly chosen out of W (x0), agent i’s payoff, i ∈ T , is

1

|W (x0)|
X

j∈W (x0)

pi (j) .

We consider two cases:

(a) There exists j ∈ N \ T such that
P
i∈T

x0ij >
P
i∈T

xij .

In this case, X 0 (j) > 0 and for all k ∈ W (x0) , X 0 (k) ≥ X 0 (j) > 0. We
now consider several subcases:

1. α /∈ T.

Since α plays s, he proposes (N, t, y) where yi = x0iα+ϕi
¡
N−α0 , C+α

¢
for all i ∈ N−α. All the agents in N \ (T ∪ {α}) accept (N, t, y).
Using arguments similar to those used in Claim 1 we can conclude
that X

i∈T
pi (α) ≤ −

X
i∈T

x0iα −
X
i∈T

ϕi
¡
N−α0 , C+α

¢
< −

X
i∈T

xiα −
X
i∈T

ϕi
¡
N−α0 , C+α

¢
= −

X
i∈T

ϕi (N0, C) .

2. α ∈ T and α’s proposal is accepted.
Using arguments similar to those used in case 2 of Claim 2 we can
conclude that X

i∈T
pi (α) ≤ −

X
i∈T

ϕi (N0, C) .

3. α ∈ T and α’s proposal is rejected.
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Using arguments similar to those used in case 3 of Claim 2 we can
deduce thatX

i∈T
pi (α) ≤ −c0α +

X
i∈N−α

x0iα −
X

i∈T−α

¡
x0iα + ϕi

¡
N−α0 , C+α

¢¢
= −c0α +

X
i∈N\T

xiα −
X

i∈T−α
ϕi
¡
N−α0 , C+α

¢
.

Since x0iα = xiα for all i ∈ N \ T, applying Claim 3 of Proposition 1
with S = {α} we deduce that

X
i∈T

pi (α) ≤ −m (N0, C) +
X

i∈N\T
xiα +

X
i∈N\T

ϕi
¡
N−α0 , C+α

¢
= −

X
i∈T

ϕi (N0, C) .

Thus, if the agents in T deviate, they obtain

1

|W (x0)|
X

j∈W (x0)

X
i∈T

pi (j) ≤
1

|W (x0)|
X

j∈W (x0)

Ã
−
X
i∈T

ϕi (N0, C)

!
= −

X
i∈T

ϕi (N0, C) .

(b)
P
i∈T

x0ij ≤
P
i∈T

xij for all j ∈ N \ T .

In this case, for each j ∈ N \ T, X 0 (j) ≤ X (j) = 0. Two subcases are
possible:

1. There exists j ∈ T such that X 0 (j) > 0.

Since
P
i∈N

X 0 (i) = 0, we have W (x0) ⊂ T. Using arguments similar

to those used in case (a) when α ∈ T, we can conclude that agents
of T obtain, at most, −

P
i∈T

ϕi (N0, C) .

2. X 0 (j) ≤ 0 for each j ∈ T.

Since
P
i∈N

X 0 (i) = 0, we have X 0 (i) = 0 for each i ∈ N and W (x0) =

N. Hence,
P
i∈T

x0ij =
P
i∈T

xij for each j ∈ N\T. Using arguments similar

to those used in case (a) , we can conclude that agents of T obtain,
at most, −

P
i∈T

ϕi (N0, C) .
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6.4 Proof of Proposition 3

We proceed by induction on the number of agents n. If n = 1 the result is trivial.
Assume that for all n ≤ p there exists an SPNE s = (si)i∈N in B

4 (N0, C) such
that u (s) = −ϕ (N0, C) . We will prove it when n = p+ 1.
Let i0 ∈ N be such that there exists an mt in (N0, C) with (0, i0) ∈ t.
We define the strategy combination s in B4 (N0, C) as follows:

Stage 1. For all i ∈ N and j ∈ N−i, xij = ϕi (N0, C) − ϕi

³
N−j0 , C+j

´
and

i∗ = i0.
Stage 3. By induction hypothesis, there exists an SPNE s+α =

¡
s+αi

¢
i∈N−α

in B4
¡
N−α0 , C+α

¢
such that u (s+α) = −ϕ

¡
N−α0 , C+α

¢
. We define s as s+α in

B4
¡
N−α0 , C+α

¢
.

Using arguments similar to those used in the proof of Proposition 1 we can
prove that s is an SPNE satisfying u (s) = −ϕ (N0, C).

6.5 Proof of Proposition 4

A TU game (N, v) is zero-monotonic if for all S ⊂ N and i /∈ S, v (S)+v ({i}) ≤
v (S ∪ {i}) .
Pérez-Castrillo andWettstein (2001) [13] proved that if (N, v) is zero-monotonic,

the bidding mechanism associated with (N, v) has SPNE. Moreover, the payoff
of each SPNE coincides with the Shapley value of (N, v).
It is not difficult to prove the following claims:
Claim 1. Given an mcstp (N0, C), (N,−vC) is zero-monotonic.
Claim 2. The SPNE of B5 (N0, C) coincide with the SPNE of the bidding

mechanism applied to the TU game (N,−vC) .
Thus, Proposition 4 is a consequence of both claims.
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