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Abstract

We study a simple bargaining mechanism in which, given an order

of players, the first n− 1 players sequentially announce their reserva-
tion price. Once these prices are given, the last player may choose a

coalition to cooperate with, and pay each member of this coalition his

reservation price. The only expected final equilibrium payoff is a new

solution concept, the “selective value”, which can be defined by means

of marginal contributions vectors of a reduced game. The selective

value coincides with the Shapley value for convex games. Moreover,

for 3-player games the vectors of marginal contributions determine the

core when it is nonempty.
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1 Introduction

Assume we study a society in which individuals have mechanisms which allow

them to make binding agreements at no cost. In particular, the individuals

are able to make commitments which cannot be revoked or renegotiated.

Consider a non-cooperative game, or mechanism, in which the players

make demands following a pre-specified order. These demands represent the

reservation prices for their respective resources. Finally, the last player in

the order chooses the resources he wants to buy and clears the market.

The above protocol generalizes the bargaining game illustrated by Schelling

(1980; Appendix B) as follows: two players may divide $100 as soon as they

agree on how to do it. The game terminates at “midnight”, when the bell

rings. If the two players have jointly claimed more than $100, they get noth-

ing. If they have jointly claimed no more than $100, they get their respective

claims. The presence of commitments is illustrated by a “turnstile that per-

mits a player to leave but not to return; his current offer as he goes through

the turnstile remains on the books until the bell rings” (Schelling 1980, p.

276).

Several possible extensions of this mechanism for more than two players

are given under the generic name of Demand Commitment Game. They are

discussed in Bennet and van Damme (1991), Selten (1992), Winter (1994),

and Dasgupta and Chiu (1998). A common feature of these models is that if

one or more players “go through the turnstile” demanding a feasible amount

(i.e. whatever they can assure by themselves is not less than the sum of their

commitments), they can form a coalition and leave the game. Thus, some

players may leave the game before all the others have a chance to move. In

our model, every player (but the last one) commits to a reservation price.

Our mechanism improves on previous ones in two aspects. First, it is simpler.

The second aspect refers to efficiency. In Winter’s and Dasgupta and Chiu’s,
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the Shapley value (Shapley, 1953) arises for convex games. But if the game

is not convex the equilibrium payoff may be inefficient1. In our mechanism

the equilibrium outcome is always unique and efficient in a nonrestrictive

class of games.

We call this (unique) outcome the selective value. Like the Shapley value,

the selective value can be defined as the average of marginal contributions of

the players given an order. The standard intuition of the marginal contribu-

tions in the Shapley value is as follows: Players sequentially enter a room,

and each player gets the difference between the worth of the people in the

room before and after his arrival. Of course, an equivalent interpretation is

that the players are initially cooperating in the room, and they sequentially

leave getting their respective marginal contribution.

The intuition of the marginal contributions in the selective value is similar.

All the players are initially cooperating in a room. Upon leaving the room,

each player prices his resources as the difference between the worth of the

people in the room before and after he leaves. However, at each point in time,

the players left in the room continue to think that they are cooperating and

may choose the “optimal” coalition consisting of players who have already

left.

Thus, unlike with the Shapley value, these marginal contributions are

not computed from the characteristic function of the original game. Instead,

they come from the characteristic function of a reduced game (following the

ideas in Davis and Maschler (1965) and Peleg (1986)) where a coalition can

buy the resources of the other players.

1In Dasgupta and Chiu’s model, efficiency in the nonconvex case is achieved by means

of prizes and penalties from the planner to the players. For large enough penalties, the

Shapley value arises for any game, and the planner does not gain or loose anything in

equilibrium. I think this result is unsatisfactory. For example, out of the equilibrium path

there may be a utility transfer to the players from outside.
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Hence, the selective value relates the definition of the Shapley value as

an average of marginal contributions to Davis and Maschler’s ideas of re-

duced games2. Both kinds of ideas have been successfully, but separately,

explored in the non-cooperative implementation of the Shapley value (Gul

(1989), Winter (1994), Hart and Mas-Colell (1996), Krishma and Serrano

(1995), Pérez-Castrillo and Wettstein (2001), among others), the core (Ser-

rano (1995a)), the nucleolus (Serrano (1993, 1995b)) and the kernel (Serrano

(1997)).

The selective value coincides with the Shapley value for convex games, and

thus we extend results due to Winter (1994) and Dasgupta and Chiu (1998).

For 3-player games, Dasgupta and Chiu show that the possible outcomes are

the vertices of the core, when the core has nonempty interior. We prove

that this result also applies in our mechanism. When the core is empty, the

selective value coincides with the nucleolus. Furthermore, the selective value

is also characterized for simple games.

In Section 2, we introduce our notation. In Section 3, we define the selec-

tive value and illustrate some of its properties. We also study the selective

value in several important classes of games. In Section 4, we formally de-

scribe the non-cooperative mechanism3 and prove that the selective value

is the only expected final payoff in subgame perfect equilibrium. Since the

selective value coincides with the Shapley value for convex games, we then

have given an additional non-cooperative justification for the Shapley value

for this class of games. In Section 5 we present some concluding remarks.

2I thank an anonymous referee for suggesting the relation between the selective value

and the reduced game.
3To avoid ambiguities, we use the term non-cooperative mechanism, or simply mecha-

nism, when referring to a non-cooperative game.
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2 Notation

Given a finite set A, by 2A we denote the cardinal set of A, by |A| the
cardinality of A, and by RA the set of real |A|-tuples whose indices are the
elements of A. Given a function f : 2A → R, by argmaxT⊂S {f (T )} we
denote the set of subsets T ⊂ S that maximize f (T ).

Let (N, v) be a transferable utility game (TU game), whereN = {1, 2, ..., n}
is the set of players and v is the characteristic function. This function as-

signs a real number v(S) to every coalition S ⊂ N , S 6= ∅ and v (∅) = 0.

The number v (S) represents the utility that players in S are able to achieve

by themselves when playing cooperatively. We often refer to “the game v”

instead of “the TU game (N, v)”. Let TU (N) denote the class of all games

with player set N and TU the class of all TU games.

Say that v is convex if v (T ) − v (T\ {i}) ≤ v (S) − v (S\ {i}) when i ∈
T ⊂ S, zero-monotonic if v(S)+v({i}) ≤ v(S∪{i}) when i /∈ S, and strictly

zero-monotonic if v(S) + v({i}) < v(S ∪ {i}) when i /∈ S. Note that if a

game is convex, it is zero-monotonic. Say that v ismonotonic if v (T ) ≤ v (S)

whenever T ⊂ S.

The core C (v) of the game v is the set of vectors x ∈ RN such thatP
i∈N xi = v (N) and

P
i∈S xi ≥ v (S) for all S ⊂ N . The core of a game

may be empty. However, if the game is convex, its core is nonempty.

Let Π be the set of all orders of N . Given π ∈ Π and i ∈ N , we define

the set of predecessors of i under π as

P π
i := {j ∈ N : π (j) < π (i)} .

We also denote P π
i := P π

i ∪ {i}.
In contrast with the standard motivation given in the literature, we define

the marginal contribution of a player in terms of people sequentially leaving

a room, all players being initially present and cooperating.
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Thus, the marginal contribution of player i in the game v under the order

π is given by

mπ
i (v) := v (N\P π

i )− v
¡
N\P π

i

¢
. (1)

The Weber set of v, W (v), is the convex hull of the vectors mπ (v)’s. If

v is convex, W (v) = C (v).

A value on G ⊂ TU (N) is a map f : G −→ RN . The Shapley value

(Shapley, 1953) for the game v is the average of the vectors of marginal

contributions, namely

Sh (v) :=
1

|Π|
X
π∈Π

mπ.

Other significant values are the prenucleolus and the nucleolus (Schmei-

dler, 1969). On the class of 3-player zero-monotonic games, the prenucleolus

and the nucleolus coincide.

We say that a value f onG satisfies efficiency if for all v ∈ G,
P

i∈N fi (v) =

v(N). It satisfies core selection if f (v) ∈ C (v) for all v ∈ G such that

C (v) 6= ∅. The Shapley value satisfies efficiency but not core selection. The
prenucleolus and the nucleolus satisfy both efficiency and core selection.

We say that v is a simple game if v (S) ∈ {0, 1} for all S ⊂ N , and

v (N) = 1. A coalition S in a single game is winning if v (S) = 1. Player i

in a simple game is a veto player if i /∈ S implies v (S) = 0. The core of a

monotonic simple game v with set of veto players T ⊂ N is the convex hull

of the imputations x ∈ RN which satisfy xi ≥ 0 for all i ∈ T ,
P

i∈T xi = 1

and xi = 0 for all i ∈ N\T . Thus, the core of v is nonempty if and only if
T 6= ∅.

3 The selective value

In this section we define the selective marginal contribution of a player for

each order π ∈ Π. Like with the marginal contributions that determine
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the Shapley value, imagine the players sequentially leave a room. Again,

a player’s marginal contribution is the difference between what the grand

coalition can get by itself before and after he leaves. However, in computing

what a coalition can get by itself, we assume that it may select some of the

players already outside of the room and have access to their resources, upon

paying their reservation prices. This means that, when P ⊂ N is the set of

players outside of the room and (ri)i∈P ∈ RP is the vector of their reservation

prices, the game we are considering is not (N, v), but rather the reduced game

(N\P, vr) where

vr (T ) =

(
0 if T = ∅
maxS⊂P

©
v (T ∪ S)−Pi∈S ri

ª
otherwise

(2)

for all T ⊂ N\P . Note that, since the maximum is unique, vr is well-defined.
This game is similar to one proposed by Davis and Maschler (1965) and

Peleg (1986). In the Davis-Maschler-Peleg (from now on, DMP) reduced

game, vr (N\P ) = v (N) −Pi∈P ri, i.e. the players in P should receive

their components of r. A consistency notion based on this definition of a

reduced game has provided the basis for characterizations of the core and

the prekernel (Peleg, 1986) and the prenucleolus (Sobolev, 1975).

Peleg (1986) explains the idea of the reduction as follows: Players in N\P
have agreed that the members of P should get their components of r, and

they have to decide how to share the surplus v (N)−Pi∈P ri. Furthermore,

the members of P , subject to getting their components of r, continue to

cooperate with the members of N\P . Then, for every coalition T ⊂ N\P ,
vr (T ) is the total payoff that the members of T expect to get.

In contrast, in the reduced game given by (2), players in N\P do not as-
sume that the members of P should get their components of r. However, and

remarkably, this distinction vanishes in our definition, as shown in Lemma 1

below.
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Let π ∈ Π. We define the selective marginal contribution of player i ∈ N

under π as

sπi (v) := vs (N\P π
i )− vs

¡
N\P π

i

¢
(3)

where s =
¡
sπj (v)

¢
j∈Pπ

i

∈ RPπ
i . Note that the definition of sπi (v) depends

only on those components sπj (v) that come before player i’s in π; this is why

sπ (v) is well-defined and unique by induction.

Note that the only difference between the marginal contributions given

in (1) and (3) is that what a coalition can get by itself is not given by v, but

by vs. When it is player i’s turn to leave, he selects the coalition N\S for
whom the surplus left to the coalition consisting of the remaining players is

maximal. Thus, each member of group S priced himself out of the market.

However, player i cannot claim the whole surplus, because then he would

also become too expensive for the players leaving after him.

Note that for π (1) = 1, P π
1 = ∅. Thus, the reduced game coincides with v

and the marginal contribution of player 1 is the same in both models, namely

sπ1 (v) = v (N)− v (N\ {1}) = mπ
1 (v) . (4)

The next lemma shows that the game vs coincides with the DMP reduced

game.

Lemma 1 Given i ∈ N and π ∈ Π,

vs (N\P π
i ) = v (N)−

X
j∈Pπ

i

sπj (v) ,

that is, no predecessor in the order is ever excluded by player i.

Proof. We assume π = (12...n). We proceed by induction on i. For i = 1

the result is trivial, since P π
1 = ∅. Assume the result is true for 1, 2, ..., i− 1.

We need to prove that, for any S Ã P π
i , the surplus obtained by including
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only the members of S is not less than the surplus obtained by including all

P π
i , i.e.

v ((N\P π
i ) ∪ S)−

X
j∈S

sπj (v) ≤ v (N)−
X
j∈Pπ

i

sπj (v) . (5)

Since S 6= P π
i , there are a player k < i and a coalition T ⊂ P π

k such that

S = T ∪ {k + 1, k + 2, ..., i− 1}. By the induction hypothesis

sπk (v) = v (N)−
X
j∈Pπ

k

sπj (v)− max
S0⊂Pπ

k

(
v
¡¡
N\P π

k

¢ ∪ S0¢−X
j∈S0

sπj (v)

)
,

which, by taking S0 = T , gives

sπk (v) ≤ v (N)−
X
j∈Pπ

k

sπj (v)− v
¡¡
N\P π

k

¢ ∪ T¢+X
j∈T

sπj (v)

= v (N)−
X

j∈Pπ
i \{k}

sπj (v)− v ((N\P π
i ) ∪ S) +

X
j∈S

sπj (v) ,

from which (5) is easily deduced.

Lemma 1 has two important consequences. First, for any i ∈ N , the

game (N\P π
i , vs) defined as in (2) is a DMP reduced game for every P π

i .

This means that the selective marginal contribution of player i given in (3)

is his marginal contribution in the DMP reduced game. Second, for each

order, the aggregate payoff is exactly v (N). This is not the case in the DMP

reduced game, where the players in a coalition N\P assume (given a vector

r ∈ RN) that players in P should get their components of r.

Remark 1 While Lemma 1 shows that the first term in (3) never excludes

any player, the second term vs
¡
N\P π

i

¢
may exclude some players. Note

that the selective marginal contributions of the predecessors of player i were

computed assuming that player i was cooperating. Without player i, the

demands of his predeccesors may become too expensive. For example, let

i = 2, and α := (12...n) ∈ Π with n ≥ 3, and let v be the unanimity game,
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i.e. v (N) = 1 and v (S) = 0 if S 6= N . The first player, when leaving,

demands sα1 (v) = 1. Thus,

vs
¡
N\Pα

2

¢
= 0 6= −1 = v (N\ {2})− sα1 (v)

i.e. the players in the room (N\ {1}) can get an aggregate payoff of 0 counting
on player 1, but without player 2 the cooperation of player 1 is unnecessary

and thus there is no point in paying his demand.

Lemma 1 also provides the following simple formula for sπ (v):

sπi (v) = v (N)− max
T⊂Pπ

i

(
v (N\ (T ∪ i)) +

X
j∈T

sπj (v)

)

for π ∈ Π and i ∈ N such that π (i) < n.

The next lemma establishes that, whatever aggregate payoff the members

of N\P may get in the reduced game (by cooperating with players in P ),

this amount is not less than what they get if one of them leaves and the

remaining players in N\P cooperate with the players in P .

Lemma 2 If v is zero-monotonic, then

vr (N\P ) ≥ vr (N\ (P ∪ {i})) + v ({i})

for all i ∈ N\P and all (rj)j∈P ∈ RP . If v is strictly zero-monotonic, the

inequality is strict.

Proof. Let P ⊂ N , i ∈ N\P , and (rj)j∈P ∈ RP . Let E ⊂ N be such

that

E ∈ argmax
T⊂P

v (N\ (T ∪ {i}))−
X
j∈P\T

rj

 .

By zero-monotonicity,

v (N\E)−
X

j∈P\E
rj ≥ v (N\ (E ∪ {i})) + v ({i})−

X
j∈P\E

rj
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which is precisely vr (N\ (P ∪ {i})) + v ({i}). Hence, the result holds. The
proof for the strict inequality is analogous.

Remark 2 The reduced game vr need not satisfy this weak version of zero-

monotonicity (i.e. vr (N\P ) ≥ vr (N\ (P ∪ {i})) + vr ({i})) because both
N\ (P ∪ {i}) and {i} may be using the same resources. See Example 2.7 in
Peleg (1986).

Corollary 1 Lemma 2 implies that each sπ (v) is individually rational for v

(i.e. sπi (v) ≥ v ({i}) for all i ∈ N) when v is zero-monotonic.

Analogously to the Weber set, we define W σ (v) as the convex hull of the

vectors sπ (v)’s.

Definition 1 Given a game v, its selective value σ (v) is the average of its

selective marginal contributions vectors, namely

σ (v) :=
1

|Π|
X
π∈Π

sπ (v) .

The next proposition characterizes the selective value in convex games,

monotonic simple games, and zero-monotonic 3-player games.

Proposition 1 a) If v is convex, then σ (v) = Sh (v).

b) Let v be a monotonic simple game, and let T be the set of veto players.

Then, σ (v) is given by

1. If T = ∅
σi (v) =

1

n

for all i ∈ N .

2. If T 6= ∅
σi (v) =

(
1
|T | if i ∈ T

0 if i /∈ T.
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c) Let v be a zero-monotonic game with n = 3.

1. If the core of v is nonempty, then the selective marginal contributions

vectors of v are its vertices. Thus, W σ (v) = C (v) .

2. If the core is empty, then the selective value coincides with the prenu-

cleolus.

The proof of Proposition 1 is in the Appendix. The proof of the next

corollary is straightforward.

Corollary 2 The selective value satisfies core selection for convex games,

monotonic simple games, and zero-monotonic 3-player games.

Proposition 1, part c1), together with the results in the next sections, also

extend Theorem 5 in Dasgupta and Chiu (1998). Moreover, Proposition 1,

part a) extends the results of Winter (1994) and Dasgupta and Chiu (1998)

(cf. Theorem 1 below) for convex games. For non-convex games, the selective

value does not coincide with the Shapley value (see Examples 1 and 2 below).

However, it is more “stable” (in the sense of “core selection”) in both simple

games (Proposition 1, part b)) and 3-player games (Proposition 1, part c1)).

Example 1 shows that this stability result does not hold for more than 3

players. Moreover, it shows that parts a) and c1) in Proposition 1 are tight.

Example 1 Let n = 4 and v be given by v ({i}) = 0 for all i ∈ N , v (N) =

60, v (S) = 36 if {1, 2} ⊂ S and |S| ≤ 3, and v (S) = 24 otherwise. Then,

Sh (v) = (18, 18, 12, 12) ∈ C (v), and σ (v) = (19, 19, 11, 11) /∈ C (v).

Example 2 Let n = 4 and v be given by v ({i}) = 0 for all i ∈ N , v (N) =

60, v (S) = 36 if 1 ∈ S and 2 ≤ |S| ≤ 3, and v (S) = 24 otherwise. Then,

Sh (v) = (21, 13, 13, 13) /∈ C (v), and σ (v) = (24, 12, 12, 12) ∈ C (v).
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Proposition 1, part c2), is also tight. The next example shows that the

selective value for 3 players does not coincide with the prenucleolus when the

game has a nonempty core.

Example 3 Let n = 3 and v be given by v (N) = 30, v ({1, 2}) = v ({1, 3}) =
6 and v (S) = 0 otherwise. Then, σ (v) = (12, 9, 9) and the prenucleolus of v

is (10, 10, 10).

Now, we briefly discuss whom in the order has more power. We assume

that the order is α = (1...n) ∈ Π. If only the grand coalition is winning

(unanimity games) then the first player gets all the surplus. On the other

hand, if the game has no veto players, then the last player gets all the surplus.

When there are veto players, each of them would prefer to be the first veto

player in the order.

For a zero-monotonic game v, the first player gets his marginal contri-

bution (as stated in (4)). When v is convex, mα (v) = sα (v) (see the proof

of Proposition 1, part a)). In a convex game, the larger the coalition, the

larger the marginal contribution of a new member. Thus, players prefer to

appear in the order as soon as possible. Moreover, the last player obtains his

minimum possible payoff v ({n}).
The power of the last player, however, can significantly increase when the

game is not convex. Consider for example the symmetric game v with n = 3

given by v (N) = 1, v (S) = ν if |S| = 2, and v (S) = 0 otherwise. The

selective marginal vector is sα (v) = (1− ν, ν, 0) for ν ≤ 1/2 and sα (v) =

(1− ν, 1− ν, 2ν − 1) for ν > 1/2. Note that this game is convex for ν ≤ 1/2.
A reason for the increase in the last player’s power is the following. Play-

ers in the middle are constrained by the first players’ reservation prices. They

cannot demand too much because they would become too expensive. If a

player is forced to demand little, the players after him may need to reduce

their own demands, so as not to be excluded. The next example illustrates
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this point: Consider the symmetric game v with n = 4 given by v (N) = 1,

v (S) = ν if |S| = 2 or |S| = 3, and v (S) = 0 otherwise. The selective

marginal vector is sα (v) = (1− ν, 0, 0, ν).

For the sake of completeness, we also consider the symmetric game v with

n = 4 given by v (N) = 1, v (S) = ν3 if |S| = 3, v (S) = ν2 if |S| = 2, and
v (S) = 0 otherwise. This game is convex for 2ν2 ≤ ν3 ≤ (ν2 + 1) /2. Its
selective marginal vector sα (v) is

(1− ν3, ν3 − ν2, ν3 − ν2, 2ν2 − ν3) for ν3 ≤ min
©
2ν2,

ν2+1
2

ª
,

(1− ν3, ν3 − ν2, ν2, 0) for 2ν2 ≤ ν3 ≤ ν2+1
2

,

(1− ν3, 1− ν3, 2ν3 − 1, 0) for ν2+1
2
≤ ν3 ≤ 2

3
,

(1− ν3, 1− ν3, 1− ν3, 3ν3 − 2) for ν3 ≥ max
©
ν2+1
2

, 2
3

ª
.

The last player’s power also increases in 3-player games with an empty

core. From the proof of Proposition 1, part c2), we know that

sα (v) = (v (N)− v ({2, 3}) , v (N)− v ({1, 3}) , v ({1, 3}) + v ({2, 3})− v (N)) .

This means that only 2-player coalitions including player 3, that is coali-

tions of the form {i, 3}, satisfy sαi (v) + sα3 (v) = v ({i, 3}), while sα1 (v) +

sα2 (v) < v ({1, 2}), i.e. players 1 and 2 have no chance of doing without
player 3.

4 The main result

We define here the bargaining mechanism. First, a random order is chosen.

As in the previous section, we assume that this order is α = (12...n). The

mechanism has n stages. In the first stage, player 1 makes a demand d1 ∈ R.
In the second stage, player 2, aware of player 1’s choice, makes a demand d2 ∈
R, and so on. When player n’s turn comes, he faces a vector (di)i∈Pα

n
∈ RPα

n

of demands. He then selects a group of players to exclude, denoted E ⊂ Pα
n .
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This means that the coalition N\E forms, and player n gets its resources by

paying di to every player i ∈ Pα
n \E. The final payoff is di for every player

i ∈ Pα
n \E, v (N\E) −

P
i∈Pα

n \E di for player n, and v ({i}) for every i ∈ E.

We say then that players in E are excluded.

The next theorem is our main result, and it shows that the selective value

arises in the bargaining mechanism as the only expected subgame perfect

equilibrium payoff.

Theorem 1 For strictly zero-monotonic games, there exists a unique ex-

pected subgame perfect equilibrium payoff, and it is the selective value.

To prove this result, we need the following lemma. We denote byM (α, i, d)

the subgame which begins when players in Pα
i have stated their demands

(dj)j∈Pα
i
∈ RPα

i and it is player i’s turn. If i = 1, we write M (π, 1).

Lemma 3 Let v be a strictly zero-monotonic game. Assume we are in a

subgame perfect equilibrium of the subgame M (π, i, d) and π (i) < n (i.e.

player i has to make a demand). Then, player i demands di = vd (N\P π
i )−

vd
¡
N\P π

i

¢
, and he is not excluded.

Proof. We proceed by backwards induction. Assume we are in the last

round, i.e. we are in the subgame M (α, n, d) for some d ∈ RPα
n . Since we

are in equilibrium, player n should exclude a coalition E ⊂ Pα
n such that

E ∈ argmax
T⊂Pα

n

v (N\T )−
X

j∈Pα
n \T

dj

 . (6)

Assume now that it is the turn of player i < n, i.e. we are in the subgame

M (α, i, d) for some (dj)j∈Pα
i
∈ RPα

i .

Claim: Player i < n is excluded if and only if di > vd (N\Pα
i ) −

vd
¡
N\Pα

i

¢
.
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The implication of this Claim is as follows: Since player i obtains v ({i})
if excluded, by Lemma 2 it is optimal for him not to be excluded. Thus,

di ≤ vd (N\Pα
i )− vd

¡
N\Pα

i

¢
. Clearly, no di < vd (N\Pα

i )− vd
¡
N\Pα

i

¢
can

be part of an equilibrium because di + ε is a better reservation price for i

without being excluded. Thus, di = vd (N\Pα
i )− vd

¡
N\Pα

i

¢
and player i is

not excluded.

We now prove the Claim. Consider the subgame M (α, i, d) for some

(dj)j∈Pα
i
∈ RPα

i . Assume first that di < vd (N\P π
i ) − vd

¡
N\P π

i

¢
. We prove

that player i is not excluded, i.e. i /∈ E with E satisfying (6). Suppose,

on the contrary, that i ∈ E. We show that di is low enough that there is

E0 ⊂ Pα
n such that player n strictly prefers to exclude E

0. If i = n− 1, it is
clear that no player following i is excluded. If i < n− 1, we can assume the
same thing by the induction hypothesis. Thus, E ⊂ Pα

i .

Let

E0 ∈ argmax
T⊂Pα

i

v (N\T )−
X

j∈Pα
n \T

dj

 .

Then

v (N\E0)−
X

j∈Pα
n \E0

dj = max
T⊂Pα

i

v (N\T )−
X

j∈Pα
n \T

dj


= vd (N\Pα

i )−
X

j∈Pα
n \Pα

i

dj

> vd
¡
N\Pα

i

¢− X
j∈(Pα

n \{i})\Pα
i

dj

= max
T⊂Pα

i :i∈T

v (N\T )−
X

j∈Pα
n \T

dj


≥ v (N\E)−

X
j∈Pα

n \E
dj.

But this contradicts (6). Thus, i /∈ E and player i’s final payoff is di.
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Assume now di > vd (N\Pα
i )− vd

¡
N\Pα

i

¢
. We have to prove that player

i is excluded, namely i ∈ E. Suppose, on the contrary, that i /∈ E. Again,

we show that di is long enough that there is E0 ⊂ Pα
n such that player n

strictly prefers to exclude E0. If i = n− 1, it is clear that no player following
i is excluded. If i < n − 1, we can assume the same thing by the induction
hypothesis. Thus, E ⊂ Pα

i . Let

E0 ∈ argmax
T⊂Pα

i :i∈T

v (N\T )−
X

j∈Pα
n \T

dj

 .

Then

v (N\E0)−
X

j∈Pα
n \E0

dj = max
T⊂Pα

i :i∈T

v (N\T )−
X

j∈Pα
n \T

dj


= max

T⊂Pα
i

v (N\ (T ∪ {i}))−
X

j∈Pα
n \(T∪{i})

dj


= vd

¡
N\Pα

i

¢− X
j∈Pα

n \Pα
i

dj

> vd (N\Pα
i )−

X
j∈Pα

n \Pα
i

dj

= max
T⊂Pα

i

v (N\T )−
X

j∈Pα
n \T

dj


≥ v (N\E)−

X
j∈Pα

n \E
dj.

Again, this contradicts (6). Thus, player i is excluded and his final payoff

is v ({i}).
Since it is optimal for player i not to be excluded, he commits to exactly

vd (N\Pα
i )− vd

¡
N\Pα

i

¢
.

We now proceed to prove the main theorem.
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Proof of Theorem 1. By Lemma 3, the only possible payoff in equi-

librium is sα (v). We must prove that there exists an equilibrium supporting

sα (v). We consider the following strategies: In the subgame M (α, i, d),

player i demands di = vd (N\Pα
i )− vd

¡
N\Pα

i

¢
. In the subgame M (α, n, d),

player n excludes a coalition E ⊂ Pα
n such that

E ∈ argmax
T⊂Pα

n

v (N\T )−
X

j∈Pα
n \T

dj

 . (7)

If there are more than one maximizer, player n chooses a coalition E with

minimum cardinality.

By the Claim in the proof of Lemma 3, it is clear that these strategies

constitute a subgame perfect equilibrium. Moreover, the final payoff is sα (v).

Since the order is randomly chosen, we deduce that the only final expected

payoff is the selective value.

5 Concluding remarks

An immediate consequence of Lemma 3 is that the equilibrium payoff of any

player depends on the identity of the players who come before and after him,

but not on the way they are ordered. Hence, they do not need to know the

order in advance. In fact, the bargaining mechanism could have been defined

by choosing the first player at random; after this player makes his demand,

another player is chosen at random, and so on.

If we consider (non-strictly) zero-monotonic games, there exists a sub-

game perfect equilibrium whose expected payoff outcome coincides with the

selective value. A possible equilibrium is the one presented in the proof of

Theorem 1, where the group of minimal cardinality is excluded in case of

indifference between several groups E. However, there may exist subgame

perfect equilibria whose associated expected final payoff outcome is not the

18



selective value. Consider the next example.

Example 4 Let n = 3 and v be given by v (N) = v ({1, 3}) = v ({2, 3}) = 1
and v (S) = 0 otherwise. The selective value of v is the only core allocation

(0, 0, 1). We consider the following strategies: Players 2 and 3 play according

to the strategies described in the proof of Theorem 1, which implement the

selective value. However, if the set given in (7) contains more than one

coalition, player 3 will exclude the first coalition in (7) given the preference

relation ∅ Â {1} Â {2} Â {1, 2}. Moreover, player 1 plays according to these
strategies except when he is first in the order, where he demands d1 = 1.

It is not difficult to check that these strategies constitute a subgame per-

fect equilibrium. When the order is different from (123), the final payoff is

(0, 0, 1). When the order is (123), the final payoff is (0, 1, 0). Hence, the

selective value is not achieved.

If we want to obtain the selective value for general zero-monotonic games,

we have to make additional assumptions. For example, let us consider the

following tie-breaking rule:

• If a player i is indifferent to demanding d0i or di and d0i < di, he strictly

prefers to demand d0i.

• If the last player is indifferent to excluding E0 or E and E0 Ã E, he

strictly prefers to exclude E0.

With this tie-breaking rule, we can prove that Theorem 1may be extended

to any zero-monotonic game.

Vidal-Puga and Bergantiños (2003) model this tie-breaking rule by “pun-

ishing” with a small penalty ε > 0 the players involved in an exclusion. We

can do the same thing in our model. In particular, let us assume that each

excluded player must pay ε > 0. We call this modified mechanism the ε-

bargaining mechanism. Its structure is otherwise the same as before. The
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only difference lies in the payoff function. When the last player presents a

coalition E of excluded players, the final payoff is v ({i})− ε for each i ∈ E.

By similar arguments to those of Theorem 1, we can prove that, for any

ε > 0, the ε-bargaining mechanism yields the selective value as final expected

outcome for any zero-monotonic game.

Remark 3 The selective value is also the unique expected subgame perfect

equilibrium payoff if the penalty to the excluded players is agent-dependent,

i.e. any player i has a penalty ε (i) > 0 for being excluded.

6 Appendix

Proof of Proposition 1. a) We prove that, in convex games, the balanced

contributions and the selective balanced contributions coincide; i.e. sα (v) =

mα (v). This means that the marginal contribution of a player i ∈ N in the

room does not change if players outside the room are not available, that is,

v
¡
N\Pα

i

¢ ≥ v (N\ (T ∪ {i}))−
X

j∈Pα
i \T

sαj (v) (8)

for all T ⊂ Pα
i and

sαi (v) = mα
i (v) . (9)

We proceed by induction on i. For i = 1, (8) is trivial and (9) coincides

with (4). Let i > 1 and assume that (8)-(9) hold for 1, 2, ..., i − 1. Let
T ⊂ Pα

i . Then, (8) is equivalent to

v
¡
N\Pα

i

¢ ≥ v (N\ (T ∪ {i}))−
X

j∈Pα
i \T

mα
j (v) . (10)

We prove (10) by inverse induction on |T |. For T = Pα
i , (10) holds

trivially. Assume (10) holds for all coalitions S ⊂ Pα
i such that |T | < |S| ≤

|Pα
i |. Let i∗ be the first player in Pα

i \T , i.e. the player with the lowest
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index in Pα
i \T . This means that all his predecessors (if any) belong to T ,

i.e. Pα
i∗ ⊂ T .

Let T ∗ := T ∪ {i∗} ⊂ Pα
i . By the induction hypothesis

v
¡
N\Pα

i

¢ ≥ v (N\ (T ∗ ∪ {i}))−
X

j∈Pα
i \T∗

mα
j (v)

= v (N\ (T ∪ {i, i∗})) +mα
i∗ (v)−

X
j∈Pα

i \T
mα

j (v) . (11)

But Pα
i∗ ⊂ T ∪ {i, i∗}. Thus, N\Pα

i∗ ⊃ N\ (T ∪ {i, i∗}), and by convexity,

v (N\Pα
i∗)− v

¡
N\Pα

i∗
¢ ≥ v (N\ (T ∪ {i}))− v (N\ (T ∪ {i, i∗})) . (12)

Since mα
i∗ (v) = v (N\Pα

i∗)− v
¡
N\Pα

i∗
¢
, we apply (11) and (12) to obtain

(10).

We now prove (9)

sαi (v) = v (N)−
X
j∈Pα

i

sαj (v)− max
T⊂Pα

i

v (N\ (T ∪ {i}))−
X

j∈Pα
i \T

sαj (v)


= v (N)−

X
j∈Pα

i

£
v
¡
N\Pα

j

¢− v
¡
N\Pα

j

¢¤− v
¡
N\Pα

i

¢
= v (N)− [v (N)− v (N\Pα

i )]− v
¡
N\Pα

i

¢
= v (N\Pα

i )− v
¡
N\Pα

i

¢
= mα

i (v) .

This completes the proof of part a).

b1) Assume first that T = ∅. Since no player is necessary to form a win-
ning coalition, the marginal contribution of the first player (i.e. his demand)

is zero. Thus, the situation inside the room does not change (i.e. again, no

player is necessary to form a winning coalition). This means that all the

players leave the room demanding zero, and the last player obtains 1 for

getting the resources of the other players for free. Since each player has the
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same probability of being last, the expected final payoff is the same for all

players.

b2) Assume now that T 6= ∅. Then, the same reasoning as before applies
for non veto players. However, the first veto player has a marginal contribu-

tion of 1, because no winning coalition can be formed without him. Thus,

the first veto player in the order obtains 1 and the remaining players 0. Since

each veto player has the same probability of being first, the expected final

payoff is the same for all veto players.

c1) It is straightforward to show that4, under our hypothesis,

max {yi : y ∈ C (v)} = v (N)− v (N\i) (13)

for all i ∈ N .

We define xα as the vertex of C (v) associated to α. Namely

xα1 = max {y1 : y ∈ C (v)}
xα2 = max {y2 : y ∈ C (v) , y1 = x1}
xα3 = v (N)− xα1 − xα2 .

We prove that xα = sα (v). By (13)

xα1 = v (N)− v (23) = sα1 (v) .

Moreover

sα2 (v) = v (N)−max {v (13) , v (3) + sα1 (v)}
= v (N)−max {v (13) , v (N)− v (23) + v (3)} .

It is enough to prove that sα2 (v) = xα2 . There are two cases:

4In this section, we use v (N\i) instead of the more cumbersome v (N\ {i}). Similarly,
v (ij) = v ({i, j}) and so on.

22



Case 1: v (13) ≥ v (N) − v (23) + v (3). Then sα2 (v) = v (N) − v (13).

We show that

v (N)− v (13) = max {y2 : y ∈ C (v) , y1 = v (N)− v (23)} = xα2 .

Let y ∈ C (v) be such that y1 = v (N)− v (23). Then

y2 = v (N)− y1 − y3 = v (23)− y3.

Since y ∈ C (v), we have y1 + y3 ≥ v (13) and thus

y2 ≤ v (23) + y1 − v (13) = v (N)− v (13) .

Therefore, xα2 ≤ v (N)− v (13).

Let y ∈ C (v) such that y1 = v (N)− v (23) and y2 < v (N)− v (13). Let

yε := y+(0, ε,−ε) with 0 < ε < v (N)− v (13)− y2. So, yε1 = v (N)− v (23).

It is straightforward to show that yε ∈ C (v).

Thus, xα2 = v (N)− v (13) = sα2 (v).

Case 2: v (13) < v (N)− v (23)+ v (3). Then sα2 (v) = v (23)− v (3). We

show that

v (23)− v (3) = max {y2 : y ∈ C (v) , y1 = v (N)− v (23)} = xα2 .

Let y ∈ C (v) be such that y1 = v (N)− v (23). Then

y2 = v (N)− y1 − y3 = v (23)− y3.

Since y ∈ C (v), we have y3 ≥ v (3) and thus

y2 ≤ v (23)− v (3) .

Therefore, xα2 ≤ v (N)− v (3).

Let y ∈ C (v) be such that y1 = v (N)−v (23) and y2 < v (23)−v (3). Let
yε := y + (0, ε,−ε) with 0 < ε < v (23)− v (3)− y2. So, yε1 = v (N)− v (23).

It is straightforward to show that yε ∈ C (v).
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Thus, we conclude that xα2 = v (23)− v (3) = sα2 (v).

c2) For every vector x ∈ RN , and every S ⊂ N , we define the excess of S

at x as the number eS (x) := v (S) −Pi∈S xi. We use the next lemma, due

to Kohlberg (1971):

Lemma 4 Let B1,B2,B3, ... be the sets of coalitions of highest excess at x,
second highest, third highest, etc. Let Dt = B1 ∪B2 ∪ ... ∪Bt. Then, x is the
prenucleolus iff each Dt is a balanced collection5.

First, we compute sα (v). By (4), sα1 (v) = v (N) − v (23). To compute

sα2 (v), we note that the payoff

x := (v (N)− v (23) , v (23)− v (3) , v (3))

satisfies
P

i∈S xi ≥ v (S) for all S 6= {1, 3} (by zero-monotonicity). Since the
core is empty, x1 + x3 < v (13). Hence,

sα2 (v) = v (N)−max {v (13) , v (3) + sα1 (v)}
= v (N)−max {v (13) , x3 + x1} = v (N)− v (13) .

Since sα (v) is efficient, sα3 (v) = v (13) + v (23) − v (N). Performing the

required calculations, we obtain the selective value for player 1 as

σ1 (v) =
1

3
[v (N) + v (12) + v (13)− 2v (23)] .

The expressions for σ2 (v) and σ3 (v) are analogous. We now compute the

excesses at σ (v).

The excess of {1, 2} at σ (v) is

e12 (σ (v)) =
1

3
[v (12) + v (13) + v (23)− 2v (N)] .

5A collection C = {S1, S2, ..., St} of coalitions is balanced if there exists a vector λ ∈ RC
with λS > 0 for all S ∈ C such that PS∈C:i∈S λS = 1 for all i ∈ N .
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By symmetry, e12 (σ (v)) = e13 (σ (v)) = e23 (σ (v)). It is well-known that

a zero-monotonic 3-person game v has an empty core if and only if

v (12) + v (13) + v (23) > 2v (N)

and thus the above excesses are positive.

Since the excess of {i} at σ (v) is clearly nonpositive for any i ∈ N , it

follows from Lemma 4 that σ (v) is the prenucleolus of v.
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