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1 Introduction

Many economic situations can be modelled as a problem of how to divide a resource

among agents who have claims on it. In this paper we study problems where an estate

E must be divided among a finite group of agents N , ci being the claim of agent i.

We study four kinds of problems that differ in the way an estate must be divided. In

bankruptcy problems (introduced by O’Neill (1982) and studied later by Aumann and

Maschler (1985)) an agent must receive at least 0 and at most his claim. In allocation

problems (Chun (1988) and Herrero, Maschler, and Villar (1999)) agents can receive

anything. In surplus problems (Moulin (1987)) every agent must receive at least 0. In

loss problems, defined in this paper, every agent must receive at most his claim. Notice

that with the four classes of problems we cover all the possibilities.

One of the most important topics of these problems is the axiomatic characterizations

of rules. The idea is to propose desirable properties and find out which of them charac-

terize every rule. Properties often help agents to compare different rules and to decide

which rule is preferred for a particular situation. Thomson (2003) and Moulin (2002)

give a survey of this literature.

A dual approach is to study what the rules satisfying a set of properties are. For in-

stance, Young (1988) characterizes the rules satisfying continuity, symmetry, and consis-

tency; de Frutos (1999) characterizes the rules satisfying non-manipulability; and Moulin

(2000) characterizes the rules satisfying consistency, composition up, composition down,

and scale invariance.

In this paper we adopt both approaches. We characterize the rules satisfying addi-

tivity in each of the four problems mentioned above. Moreover, using these additivity

properties, we characterize the well-known rules based on the principles of “proportion-

ality”, “equal award”, and “equal loss”.

Additivity is a standard property. It has been used in many situations. Although the

justification of additivity is not as clear as with other properties (for example, efficiency

or symmetry), in most cases it produces very interesting classes of rules. For instance, the

Shapley value, the most important value in cooperative games with transferable utility,

is characterized by additivity and other properties. If we compare the Shapley value with

other prominent values (for example the nucleolus) we realize that these values satisfy all

the properties characterizing the Shapley value except additivity.

In this paper we use two definitions of additivity: additivity on the estate (Moulin

(1987) and Chun (1988)), calledA1, and additivity on the estate and the claims (Bergantiños

and Méndez-Naya (2001)), called A2. In the four kinds of problems we characterize the
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rules satisfying A1 and A2.

The rules satisfying A1 are as follows. In allocation problems they are characterized

by the product of the estate and a claims-depending function. In surplus problems the

estate is divided among agents according to a weight system, which depends on the claims.

In loss and bankruptcy problems only the proportional rule satisfies A1.

The rules satisfying A2 are as follows. In allocation problems they are characterized

by the sum of two parts: one depending on the estate and the other depending on the

claims. In surplus (loss) problems the estate (loss) is divided among agents according to

a weight system, independent of the claims. There is no bankruptcy rule satisfying A2.

We obtain axiomatic characterizations of well-known rules. In allocation problems

and surplus problems, the proportional rule is characterized by A1 and other proper-

ties. In allocation and loss problems, the rights-egalitarian rule (Herrero et al. (1999))

is characterized by A2 and other properties. Moreover, A2 and other properties also

characterize the equal-sharing rule (Moulin (1987)) in surplus problems.

As a consequence of our results we can say that additivity properties also support

the use of rules based on the three classical principles. A1 is related to the principle of

“proportionality”; A2 is related to the principles of “equal award” and “equal loss”.

The paper is organized as follows. Section 2 introduces the problems studied in this

paper. In Section 3 we characterize the rules satisfying A1 and A2. In Section 4 we

characterize well-known rules using these additivity properties. Section 5 is devoted to

concluding remarks.

2 Preliminaries

We introduce some notation. Z denotes the set of integer numbers and N denotes the set

of non-negative integer numbers. Q denotes the set of rational numbers and Q+ denotes

the set of non-negative rational numbers. R denotes the set of real numbers and R+ the

set of non-negative real numbers.

N also denotes the set of potential agents. Let N be any finite subset of N. Given

x, y ∈ RN , x ≥ y means xi ≥ yi for all i ∈ N ; x + y = (xi + yi)i∈N . Moreover, 0N = (0, ...,0) ∈

RN . Given S ⊂ N , 1S = (xi)i∈N such that xi = 1 if i ∈ S and xi = 0 if i ∉ S.

We study problems where an estate E must be divided among a group of agents N , ci

being the claim of agent i ∈ N , c = (ci)i∈N the vector of claims, and C = ∑
i∈N

ci the sum of

the claims. We assume that the estate and the claims are non-negative real numbers, i.

e. (c,E) ∈ RN+ ×R+. The question that arises is: how to divide the estate among agents?
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This question is answered by means of defining rules. A rule, f , is a map which assigns

to any problem (c,E) a vector f (c,E) where fi (c,E) denotes the part of the estate

received by agent i ∈ N.

We now give a list of problems that fit in our general framework. Notice that the

difference among these problems is, mainly, in the definition of what a rule is.

A bankruptcy problem, BP , is a pair (c,E) ∈ RN+ × R+ where C ≥ E. We denote by

B the set of all bankruptcy problems. A bankruptcy rule is a function fB ∶ B → RN

satisfying that for all (c,E) ∈ B, ∑
i∈N

fB
i (c,E) = E and 0 ≤ fB

i (c,E) ≤ ci for all i ∈ N.

A surplus problem, SP , is a pair (c,E) ∈ RN+ × R+. We denote by S the set of

all surplus problems. A surplus rule is a function fS ∶ S → RN satisfying that for all

(c,E) ∈ S, ∑
i∈N

fS
i (c,E) = E and 0 ≤ fS

i (c,E) for all i ∈ N.

An allocation problem, AP , is a pair (c,E) ∈ RN+ ×R+. We denote by A the set of all

allocation problems. An allocation rule is a function fA ∶ A → RN satisfying that for all

(c,E) ∈ A, ∑
i∈N

fA
i (c,E) = E.

These problems have been studied in the literature. For instance, O’Neill (1982) and

Aumann and Maschler (1985) studied bankruptcy problems, Moulin (1987) studied sur-

plus problems, and Chun (1988) and Herrero et al. (1999) studied allocation problems.1

See Thomson (2003) and Moulin (2002) for a survey of this literature.

As far as we know the next class of problems has not been studied explicitly. A loss

problem, LP , is a pair (c,E) ∈ RN+ × R+ where C ≥ E. We denote by L the set of all

loss problems. A loss rule is a function fL ∶ L → RN satisfying that for all (c,E) ∈ L,

∑
i∈N

fL
i (c,E) = E and fL

i (c,E) ≤ ci for all i ∈ N .

Remark 1. These four kinds of problems cover all possible definitions of a rule. Given

i ∈ N , a bankruptcy rule satisfies 0 ≤ fB
i (c,E) ≤ ci, a surplus rule satisfies 0 ≤ fS

i (c,E),

a loss rule satisfies fL
i (c,E) ≤ ci, and an allocation rule has no restrictions at all. Notice

that any bankruptcy rule is a loss rule and any surplus rule is an allocation rule.

Herrero et al. (1999) consider the case where E < 0. It is easy to check that our

results are also valid if we allow the estate to be negative in AP and LP.

In BP and LP we need to impose the condition C ≥ E because otherwise it is not

possible to find f satisfying ∑
i∈N

fi (c,E) = E and fi (c,E) ≤ ci for all i ∈ N.

We now present some rules studied in this paper. The proportional rule, P , divides

the estate proportionally to the claims when their sum C is different from zero. Formally,

1Chun (1988) refers to allocation problems as rights problems.
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for all i ∈ N, c ≠ 0N ,

Pi (c,E) = λci where λ =
E

C
.

If c = 0N then, for all i ∈ N, Pi (0N ,E) =
E
n .

Remark 2. It is easy to check that the results obtained in this paper are also true if

we define P (0N ,E) in a different way.

Assume that c = 0N and (c,E) is a BP or a LP. Since C ≥ E ≥ 0, we conclude that

E = 0. Then, any bankruptcy rule or loss rule satisfies f (0N ,0) = 0N . Thus, P (0N ,0) =

0N .

The equal-sharing rule, ES, divides the estate equally among agents. Formally, for all

i ∈ N,

ESi (c,E) =
E

n
.

Notice that the equal-sharing rule is both an allocation rule and a surplus rule. Never-

theless, it is not a bankruptcy rule or a loss rule because ESi (c,E) could be larger than

ci.

We present a family of rules closely related to ES. We denote ω as a weight system if

ω ∈ RN+ and ∑
i∈N

ωi = 1.

The weighted-sharing rule WSω with weight system ω is defined for all i ∈ N as

WSω
i (c,E) = ωiE.

Notice that WSω is an allocation rule and a surplus rule but not a bankruptcy rule or a

loss rule. Of course, if ωi =
1
n for all i ∈ N , then WSω = ES.

Herrero et al. (1999) define the rights-egalitarian rule, RE, for all i ∈ N as

REi(c,E) = ci −
1

n
(C −E) .

Notice that the rights-egalitarian rule is an allocation rule and a loss rule (in LP, C ≥ E).

Nevertheless, it is not a bankruptcy rule or a surplus rule because REi (c,E) could be

negative.

We present other rules closely related to RE. The weighted-rights rule WRω with

weight system ω is defined for all i ∈ N as

WRω
i (c,E) = ci − ωi (C −E) .

Notice that WRω is an allocation rule and a loss rule but not a bankruptcy rule or a

surplus rule. Of course, if ωi =
1
n for all i ∈ N , then WRω = RE.
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We now present some properties used in this paper. First, we introduce the two

additivity properties considered in this paper.

Additivity on E (A1). For all (c,E) and (c,E′),

f(c,E +E′) = f(c,E) + f(c,E′).

Moulin (1987) and Chun (1988) used this property in surplus problems and in allo-

cation problems, respectively. A1 indicates that to divide the estate among the agents is

the same as dividing, first, one part of the estate, and afterwards, the remaining estate.

Additivity on (c,E) (A2). For all (c,E) and (c′,E′),

f(c + c′,E +E′) = f(c,E) + f(c′,E′).

Bergantiños and Méndez-Naya (2001) introduced this property in bankruptcy prob-

lems and in allocation problems. Suppose that the product sold by a firm depends on

several parts (quality and marketing, for instance). The total revenue of the firm, E +E′,

can be divided into two parts: one motivated by quality (E) and the other by marketing

(E′). We can also determine the contribution of every agent of the firm to quality (c) and

marketing (c′). Now we can allocate the revenue according to two procedures. First, we

allocate the total revenue (E+E′) according to the total contribution (c+c′). Second, we

allocate the revenue motivated by quality (E) according to the contribution to quality

(c), and the revenue of marketing (E′) according to the contribution to marketing (c′).

A2 guarantees that both procedures coincide.

Usually it is not very difficult to determine the contribution of the agents to each

part (for instance, hours worked) and to the total revenue. But sometimes it seems

impossible to know exactly the contribution of each part to the total revenue. Under

these circumstances it appears that the second procedure cannot be applied. However, if

the allocation rule satisfies A2, its application is possible since both procedures coincide.

There is no relation between A1 and A2. Later, we will see examples of rules satisfying

A1 but not A2 and rules satisfying A2 but not A1.

More properties will now be considered. Symmetry and continuity are standard prop-

erties that could be defined in each of the four problems studied in this paper.

Symmetry (SYM). For all problems (c,E), if ci = cj, then fi(c,E) = fj(c,E).

Continuity on E (CONT). For all sequences of problems (c,El) and all problems

(c,E), if El → E, then f (c,El)→ f (c,E) .

Suppose that the estate, E, is equal to the sum of the claims, C. Compatibility denotes

that each agent gets exactly the amount he claims.
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Compatibility (COM). For all problems (c,C) , f (c,C) = c.

The next property appeared in a preliminary draft of Herrero et al. (1999), but not

in the final version. Condition i) says that no agent gets less than he has a right to.

Condition ii) says that no agent gets more than he claims.

Claims Boundedness (CB). For all (c,E) ∈ A:

i) fA(c,E) ≥ c if C ≤ E.

ii) fA(c,E) ≤ c if C ≥ E.

Notice that all bankruptcy rules and loss rules satisfy CB.

3 Additive rules

In this section we characterize the set of additive rules in the four problems. In Theorem

1 we characterize the rules satisfying A1 and in Theorem 2 the rules satisfying A2.

Theorem 1. a) An allocation rule fA satisfies A1 and CONT if and only if for all

(c,E) ∈ A,

fA
i (c,E) = Eαi (c) for all i ∈ N ,

where α ∶ RN+ → RN satisfies ∑
i∈N

αi (c) = 1 for all c ∈ RN+ .

b) A surplus rule fS satisfies A1 if and only if for all (c,E) ∈ S,

fS
i (c,E) = Eωi (c) for all i ∈ N

where ω ∶ RN+ → RN+ is such that ω (c) is a weight system for every c ∈ RN+ .

c) The proportional rule is the only loss rule satisfying A1.

d) The proportional rule is the only bankruptcy rule satisfying A1.

Proof. a) It is trivial to prove that any function given by fA (c,E) = Eα (c) satisfies

A1 and CONT .

We now prove the converse. Assume that fA is an allocation rule satisfying A1 and

CONT. Since fA satisfies A1 we conclude that:

• fA (c,E) = EfA (c,1) for all E ∈ N.

• If E = 1
q , where q ∈ N, then fA (c,E) = EfA (c,1).

• Given E ∈ Q+, fA (c,E) = EfA (c,1) .
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Since fA satisfies CONT , fA (c,E) = EfA (c,1) for all E ∈ R+.

If we take α (c) = fA (c,1) the result holds.

b) It is trivial to prove that any function given by fS (c,E) = Eω (c) satisfies A1.

We now prove the converse. Assume that fS is a surplus rule satisfying A1. Using

arguments similar to those used in part a) we can conclude that given E ∈ Q+, fS (c,E) =

EfS (c,1) .

Let E be a non-negative irrational number (E ∈ R+ ∖Q+). Then, there exists (El)l∈N
such that El ∈ Q+, 0 < El < E, and lim

l→∞
El = E. Thus, for all l ∈ N,

fS (c,E −El) = fS (c,E) − fS (c,El) = fS (c,E) −ElfS (c,1) .

Since fS (c,E −El) ≥ 0N and ∑
i∈N
fS
i (c,E −El) = E −El, for all i ∈ N,

fS
i (c,E −El) ≤ E −El .

Thus, for all i ∈ N ,

0 ≤ lim
l→∞

fS
i (c,E −El) ≤ E − lim

l→∞
El = 0.

So, for all i ∈ N,

0 = lim
l→∞

fS
i (c,E −El) = fS

i (c,E) −Ef
S
i (c,1) .

Hence, fS (c,E) = EfS (c,1) for all (c,E) ∈ S.

If we take ω (c) = fS (c,1) the result holds.

c) It is trivial to prove that the proportional rule satisfies A1.

We now prove the converse. Assume that fL is a loss rule satisfying A1. We first

prove that fL (c, εE) = EfL (c, ε) when (c, εE) ∈ L, (c, ε) ∈ L, E ∈ R+, and ε ∈ Q+.

Using arguments similar to those used in part a) we can conclude that, given c ∈

RN+ such that C > 0, (c, εE) ∈ L, (c, ε) ∈ L, E ∈ Q+, and ε ∈ Q+,

fL (c, εE) = EfL(c, ε).

Given (c, εE) ∈ L with E a non-negative irrational number, there exists (El)l∈N such

that El ∈ Q+, 0 < El < E, and lim
l→∞

El = E. Thus, for all l ∈ N,

fL (c,C − (εE − εEl)) = c − fL (c, εE) +ElfL (c, ε) .

Since fL (c,C − (εE − εEl)) ≤ c and ∑
i∈N
fL
i (c,C − (εE − εEl)) = C − (εE − εEl), for all

i ∈ N ,

fL
i (c,C − (εE − εEl)) ≥ ci − (εE − εEl) .
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Thus, for all l ∈ N,

c − (εE − εEl)1N ≤ fL (c,C − (εE − εEl)) ≤ c.

So, c = lim
l→∞

fL (c,C − (εE − εEl)) = c − fL (c, εE) + EfL (c, ε). Hence, fL (c, εE) =

EfL (c, ε) for all E ∈ R+ such that (c, εE) ∈ L and (c, ε) ∈ L.

We now prove that fL is the proportional rule.

If c = 0N and (c,E) ∈ L, then E = 0 and fL (0N ,0) = 0N .

Assume that (c,E) ∈ L and c ≠ 0N . Let ε ∈ Q+ be such that C > ε. Then,

fL (c,E) = fL (c,
E

ε
ε) =

E

ε
fL (c, ε) .

We know that,

c = fL (c,
C

ε
ε) =

C

ε
fL (c, ε)

which implies that fL (c, ε) = ε
C c. Then,

fL (c,E) =
E

ε

ε

C
c =

E

C
c = P (c,E) .

d) Since every bankruptcy rule is a loss rule, part d) is an immediate consequence of

c). ∎

Remark 3. For n > 1, condition CONT in a) is needed to avoid an infinite family of

meaningless solutions. Let (Bl)l∈L be a Hamel basis of R as vector space over QwithBl > 0

for all l ∈ L (see, for instance, Aczél and Dhombres (1989) for a detailed explanation).

Let γ ∶ RN+ ×L→ RN be any function satisfying

∑
i∈N
γi (c, l) = B

l

for all (c, l) ∈ RN+ ×L.
We define fA as follows. Given E ∈ R+, there exists a unique {q1, ..., qm} ⊂ Q and

{Bl1 , ...,Blm} such that E =
m

∑
k=1
qkBlk . Thus,

fA (c,E) =
m

∑
k=1
qkγ (c, lk)

is well-defined, it satisfies A1, and ∑
i∈N
fA
i (c,E) = E for all E ∈ R+. However, by choosing

an appropriate function γ, it is not of the form fA (c,E) = Eα (c). For example, given

l0 ∈ L, we define γ as follows:
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γ (c, l) =

⎧⎪⎪
⎨
⎪⎪⎩

1{1}Bl0 if l = l0

1N
Bl

n otherwise.

The associated function fA is an allocation rule satisfying A1. However, it cannot be

written as fA (c,E) = Eα (c).

Chun (1988) characterizes, in Theorem 4, the class of allocation rules satisfying A1,

continuity on the estate and the claims (CONT ∗) , SY M2 and Pareto optimality. Notice

that in our paper Pareto optimality is already included in the definition of an allocation

rule.

Assume that we restrict ourselves to allocation problems where C > 0, as Chun (1988)

does. Using arguments similar to those used in the proof of Theorem 1, part a), we can

conclude the following. An allocation rule satisfies A1, CONT ∗, and SYM if and only

if for all (c,E) ∈ A,

fA (c,E) = Eα (c)

where α ∶ RN+ → RN is a continuous function satisfying ∑
i∈N

αi (c) = 1 for all c ∈ RN+ and

αi (c) = αj (c) whenever ci = cj.

Of course, these rules coincide with the class of rules characterized in Theorem 4 of

Chun (1988), although the formulation is different.

It is straightforward to prove that an allocation rule fA satisfies A1, CONT, and

SYM if and only if for all (c,E) ∈ A, fA (c,E) = Eα (c) where α ∶ RN+ → RN satisfies

∑
i∈N

αi (c) = 1 for all c ∈ RN+ and αi (c) = αj (c) whenever ci = cj.

Notice that in part d) we obtain a new characterization of the proportional bankruptcy

rule. Also, the proportional loss rule can be characterized as the only loss rule satisfying

A1.

The next theorem characterizes the rules satisfying A2.

Theorem 2. a) An allocation rule fA satisfies A2 and CONT if and only if for all

(c,E) ∈ A,

fA
i (c,E) = βi (c) +Exi for all i ∈ N ,

where β ∶ RN+ → RN is a function satisfying ∑
i∈N

βi (c) = 0 for all c ∈ RN+ and β (c + c′) =

β (c) + β (c′) for all c, c′ ∈ RN+ . Moreover, x ∈ RN and ∑
i∈N

xi = 1.

2Chun (1988) uses anonymity instead of symmetry. Nevertheless, our comments are also valid if we

write anonymity instead of symmetry.
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b) A surplus rule fS satisfies A2 if and only if it is a weighted-sharing rule WSω for

some weight system ω.

c) A loss rule fL satisfies A2 if and only if it is a weighted-rights rule WRω for some

weight system ω.

d) There is no bankruptcy rule satisfying A2.

Proof. a) It is trivial to prove that if fA (c,E) = β (c) +Ex then fA satisfies A2 and

CONT.

We now prove the converse. Since fA satisfies A2 we conclude that fA (c,E) =

fA (0N ,E) + fA (c,0) .

Using arguments similar to those used in the proof of Theorem 1 a) we can conclude

that fA (0N ,E) = EfA (0N ,1) for all E ∈ R+.

If we define β (c) = fA (c,0) and x = fA (0N ,1), the result holds.

b) It is trivial to prove that every weighted-sharing rule WSω satisfies A2.

We now prove the converse. Assume that fS is a surplus rule satisfying A2.

Using arguments similar to those used in the proof of Theorem 1 b) we can conclude

that given E ∈ R+, fS (0N ,E) = EfS (0N ,1) .

If we define β (c) = fS (c,0) and x = fS (0N ,1), every surplus rule has the form given in

part a). Since fS (c,E) ≥ 0N for all (c,E) ∈ S, β (c) = fS (c,0) ≥ 0N . As ∑
i∈N

fS
i (c,0) = 0 we

conclude that fS (c,0) = 0N . Now it is easy to prove that fS =WSω where ω = fS (0N ,1)

is a weight system.

c) It is trivial to prove that every weighted-rights rule WRω satisfies A2.

We now prove the converse. Assume that fL is a loss rule satisfying A2.

We first prove that for all i ∈ N and x ∈ R+, fL (x1{i},0) = xfL (1{i},0) .

Using arguments similar to those used in Theorem 1 a) we can conclude that given

x ∈ Q+ and i ∈ N,

fL (x1{i},0) = xfL (1{i},0).

Let x be a non-negative irrational number. Then, there exists (xl)l∈N such that xl ∈ Q+,

0 < xl < x, and lim
l→∞

xl = x. Thus, for all i ∈ N and l ∈ N,

fL ((x − xl)1{i},0) = fL (x1{i},0) − xlfL (1{i},0) .

Since fL ((x − xl)1{i},0) ≤ (x − xl)1{i} and ∑
j∈N
fL
j ((x − x

l)1{i},0) = 0, for all i ∈ N

and l ∈ N,
fL ((x − xl)1{i},0) ≥ − (x − xl)1N .
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Thus, for all i ∈ N,

− (x − xl)1N ≤ fL ((x − xl)1{i},0) ≤ (x − xl)1{i}.

Then,

0N = lim
l→∞

fL ((x − xl)1{i},0) = fL (x1{i},0) − xfL (1{i},0) .

Since fL (c,E) ≤ c and ∑
i∈N

fL
i (c,E) = E for all (c,E) ∈ L, we conclude that for all

i ∈ N, fL (x1{i}, x) = x1{i}, and fL (1{i},0) = 1{i} − yi, where yi ∈ RN+ .

We now prove that yi = yj for all i, j ∈ N, i ≠ j. Since fL satisfies A2,

fL (1{i,j},1) = fL (1{i},1) + fL (1{j},0) = 1{i} + 1{j} − yj

fL (1{i,j},1) = fL (1{i},0) + fL (1{j},1) = 1{i} − yi + 1{j}.

Then, yi = yj.

Given i ∈ N we define ω = yi. It is trivial to see that ω is a weight system.

We now prove that fL =WRω. Given (c,E) ∈ L, we consider a partition {N1,{i} ,N2}

of N such that ci = c1i + c
2
i , c

1
i ≥ 0, c2i ≥ 0, and E = ∑

j∈N1

cj + c1i . Since fL satisfies A2,

fL (c,E) = ∑
j∈N1

fL (cj1{j}, cj) + fL (c1i 1{i}, c
1
i ) + f

L (c2i 1{i},0) + ∑
j∈N2

fL (cj1{j},0)

= ∑
j∈N1

cj1{j} + c1i 1{i} + c
2
i f

L (1{i},0) + ∑
j∈N2

cjf
L (1{j},0)

= ∑
j∈N1

cj1{j} + c1i 1{i} + c
2
i (1{i} − ω) + ∑

j∈N2

cj (1{j} − ω) .

Now it is straightforward to prove that fL (c,E) =WRω (c,E) .

d) Suppose that N = {1,2}, E = 6, and c = (7,7). We can find i ∈ N such that

fB
i (c,E) ≥ 3. Assume without loss of generality that i = 1.

Since f satisfies A2, fB
1 (c,E) = f

B
1 ((6,1),1) + f

B
1 ((1,6),5) ≤ 1 + 1 = 2, which is a

contradiction. ∎

Remark 4. CONT is again needed in Theorem 2 a). We can use the same example

as in Remark 3.

If we compare the rules satisfying A1 (Theorem 1) with the rules satisfying A2 (The-

orem 2) in the four kinds of problems we obtain the following:

In AP both classes of rules are unrelated. Moreover, an allocation rule fA satisfies

A1, A2, and CONT if and only if for all (c,E) ∈ A, fA (c,E) = Ex where x ∈ RN and

∑
i∈N

xi = 1.
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In SP the class of rules satisfying A2 is a subset of the class of rules satisfying A1

(just take ω (c) = ω for all c).

In LP the proportional rule, the only rule satisfying A1, does not satisfy A2. Moreover,

the weighted-rights rules, which satisfy A2, do not satisfy A1.

In BP the proportional rule, the only rule satisfying A1, does not satisfy A2.

4 Characterizations of classical rules

In this section we characterize the three classical rules based on the principles of “pro-

portionality”, “equal award”, and “equal loss” using the additivity properties.

In Theorem 2 part c) we characterize the class of weighted-rights rules in LP . Notice

that the weighted-rights rules also satisfy A2 and CONT in AP (take βi (c) = ci − ωiC

and xi = ωi for all i ∈ N). Nevertheless, there are more allocation rules satisfying both

properties. The next proposition characterizes the weighted-rights allocation rules as the

only allocation rules satisfying A2 and CB.

Proposition 1. An allocation rule fA satisfies A2 and CB if and only if fA is a

weighted-rights rule WRω for some weight system ω.

Proof. If ω is a weight system it is straightforward to prove that WRw satisfies A2

and CB.

We now prove the converse. Let fA be an allocation rule satisfying both properties.

We define ω as fA(0N ,1). Since fA satisfies CB we conclude that ω is a weight system.

Using arguments similar to those used in the proof of Theorem 1 b) we conclude that

for all E ∈ R+, fA (0N ,E) = EfA (0N ,1) = Eω.

Let (c,E) be an allocation problem where E ≤ C. As fA satisfies CB we have that

fA (c,C) = c. Since fA satisfies A2,

fA (c,E) = fA (c,C) − fA (0N ,C −E)

= c − ω (C −E)

= WRω (c,E) .

The case E > C is similar to the case E ≤ C. ∎

We now prove that this proposition is a tight characterization result.

ES satisfies A2 but not CB.

13



Given (c,E) ∈ A and i ∈ N , we define the allocation rule ψ as

ψi(c,E) =

⎧⎪⎪
⎨
⎪⎪⎩

min{x, ci} if C ≥ E

REi (c,E) if C < E

where ∑
i∈N

min{x, ci} = E. ψ satisfies CB but not A2.

In Theorem 1, parts c) and d), we characterize the proportional rule in LP and BP as

the only rule satisfying A1. Nevertheless, in AP and in SP there are more rules satisfying

these two properties. The next corollary shows that if we add COM to A1 and CONT

(A1), the proportional rule becomes the only rule satisfying these properties in AP (SP ).

In this corollary we assume that C > 03.

Corollary 1. a) The proportional rule is the only allocation rule satisfying A1,

CONT and COM.

b) The proportional rule is the only surplus rule satisfying A1 and COM.

Proof. a) Of course the proportional rule satisfies A1, CONT and COM.

Let fA be an allocation rule satisfying these properties. It is trivial to see that

Theorem 1 a) is also true if we restrict to the case C > 0. Then, we conclude that for any

(c,E) ∈ A, fA (c,E) = Eα (c) where ∑
i∈N

αi (c) = 1. Since fA satisfies COM , fA (c,C) = c.

Now it is easy to conclude that α (c) = c
C , and hence, fA (c,E) = E

C c = P (c,E).

b) It is similar to the proof of part a). ∎

Corollary 1 a) is a tight characterization result. RE satisfies CONT and COM but

not A1. Because of Remark 3 there exist rules satisfying A1 and COM but not CONT.

We take the same example but with the function γ defined as follows:

γ (c, l) =

⎧⎪⎪
⎨
⎪⎪⎩

cB
l

C if C ′s Bl-th coordinate is non-zero

1N
Bl

n otherwise.

Finally, ES satisfies A1 and CONT but not COM.

Corollary 1 b) is a tight characterization result. ES satisfies A1 but not COM. The

surplus rule ϕ defined as ϕi (c,E) = max{0, ci + β} where ∑
i∈N

ϕi (c,E) = E satisfies COM

but not A1.

Moulin (1987) characterizes in his Theorem 2 the proportional surplus rule using A1

and other properties. These properties are completely different from COM used in part

b) of Corollary 1.

3In the general case (C ≥ 0) we will obtain that there exist many rules satisfying these properties.

Nevertheless, all of them satisfy f (c,E) = E
C
c when C > 0.
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Part a) of Corollary 1 is closely related to Theorem 5 in Chun (1988) where he proved

that the proportional rule is the only allocation rule satisfying A1, CONT ∗, and COM4.

In our result we change CONT ∗ to CONT (CONT is weaker than CONT ∗). Then,

Chun’s characterization of the proportional rule is also true only with continuity on the

estate.

In Theorem 2 parts b) and c) and in Proposition 1 we characterize the class of

weighted-sharing rules and weighted-rights rules in AP , SP , and LP using A2 and other

properties. Unfortunately, in BP there are no rules satisfying A2. The next corollary

shows that if we add SYM to the properties used in Theorem 2 and Proposition 1 we

can characterize the equal-sharing rule in SP and the rights-egalitarian rule in AP and

LP .

Corollary 2. a) The rights-egalitarian rule is the only allocation rule satisfying A2,

CB, and SYM .

b) The equal-sharing rule is the only surplus rule satisfying A2 and SYM.

c) The rights-egalitarian rule is the only loss rule satisfying A2 and SYM.

Proof. It is similar to the proof of Corollary 1. ∎

It is not difficult to check that Corollary 2 is a tight characterization result.

Since CB implies COM and RE satisfies CB, part a) of Corollary 2 can be obtained

also as a consequence of Proposition 3 in Bergantiños and Méndez-Naya (2001), where

they proved that RE is the only allocation rule satisfying A2, COM, and SYM.

Moulin (1987) characterizes in his Theorem 2 the equal-sharing surplus rule using

several properties, which are different from the properties used in part b) of Corollary 2.

Nevertheless, Moulin (1987) and we use an additivity property, Moulin uses A1 and we

use A2.

5 Concluding Remarks

The results obtained in Section 3 can be summarized in the following Table:

(Insert Table 1 here)

4Compatibility is called exact clearance in Chun (1988).
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The results obtained in Section 4 can be summarized in the following Table:

(Insert Table 2 here)

With A1 and other properties we characterize the proportional rule in each of the

four problems. With A2 and other properties we characterize the “egalitarian” rules,

the equal-sharing rule in surplus problems and the rights-egalitarian rule in loss and

allocation problems. This suggests that additivity properties support the use of rules

based on the three classical principles: A1 supports the principle of “proportionality”,

and A2 supports the principles of “equal award” and “equal loss”.
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Table 1

Additive rules

A1 A2

Allocation and CONT and CONT

Eα(c) β(c) +Ex

Surplus Ew(c) Weighted-sharing

w(c) is a weight system

Loss Proportional Weighted-rights

Bankruptcy Proportional
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Table 2

Characterizations of classical rules

Allocation Proportional with Rights-egalitarian with

A1, CONT , and COM A2, CB, and SYM

Surplus Proportional with Equal-sharing with

A1 and COM A2 and SYM

Loss Proportional with Rights-egalitarian with

A1 A2 and SYM

Bankruptcy Proportional with

A1
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